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NOTES

ON A THEOREM OF SKOROHOD!

By Lester E. DusBIiNs

University of California, Berkeley

1. Skorohod in [2], p. 180, found for each L.-martingale X;, X:, --- of
mean 0 with independent increments, a sequence of stopping times 1 = 72 < -+ -
for standard Brownian motion B(t) such that (i): B(r1), B(72), - - - has the same
joint distribution as the martingale and (ii) : each 7; has a finite expectation. (And
David Freedman and Strassen [3], p. 318, noted that the assumption of independ-
ent increments may be dropped.) The stopping times Skorohod found depend
upon a random variable independent of the Browniar motion B(¢). The point
of this note is to exhibit equally effective stopping times r; whose moment of
stopping, 7;(w), depends only on the path w, and not on a random variable in-
dependent, of the Brownian motion. The construction incidentally realizes the
martingale X;, X,, --- inside Brownian motion in a natural way even if the
X, do not have finite second moments, and indeed sometimes even if they have
no first moment. What is essential is that E[X, — Xn | X1, ---, X,] be 0, in
which event, the process is fair; but it is not essential that the increment X, —
X, itself have a mean. Moreover, as will also be evident, the same stopping
times 7; embed the discrete-time martingale X;, X., :-- inside any continu-
ous-time martingale M (¢) that resembles Brownian motion in having contin-
uous, unbounded paths with 2/ (0) = 0.

2. Let @ be the set of all continuous, real-valued functions « defined for
0 =< t < o« which are unbounded from above and from below. Of course, if €
is endowed with its natural o-field, on which a countably-additive probability
is given, then w(¢), or, more precisely, the set of evaluation maps w — w(t),
becomes a stochastic process. All continuous processes in this note are to be
understood to be of this form.

A lottery is a probability measure on the real line.

The program is to define for every lottery u with a finite expectation £ (u),
and every w £ @, a nonnegative real number 7(u, w) = 7(u)(w), so that 7(u)
is a stopping time such that, for every martingale w(¢) with unbounded, con-
tinuous paths, and with «(0) = E(u), the map «w — w(7(u, w)) has u for its
distribution.

To define 7(r), it is convenient to introduce u* and p~ for the conditional
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distribution of u given [E(u), «) and (— «, E(u)) respectively. (In the trivial
case that u has only one point in its support, let 4~ = p = p.)

As another preliminary, for any set K of n-tuples, let (m; K) be the set of
(n 4+ 1)-tuples of the form (m, ) where z is an element of K. Now introduce,
for each u and positive integer n, a finite set of n-tuples of real numbers H,(u),
thus.

Let Hi(p) contain only the 1-tuple £(u); and, letting K,(u) be the union of
H,(p*) with Ho(p™), Hapa(p) is defined to be (E(u); Ka(u)).

Here is the main definition.

Let 7(u, w) be the least ¢ such that for all positive integers n, there is an n-tuple
h =6 = -+ =t, = tfor which (w(t1), ---, w(ts)) is an element of H,(u).
As is easily verified: for all x4 with finite expectations, and all w £ €, 7(u, w) is a
finite, nonnegative, real number; and 7(u) is a stopping time, the natural stop-
ping time for p.

3. As is easily verified, for each n and x ¢ H,(u) there is a real number y,
such that the (n + 1)-tuple z followed by y, is an element of H,11(x), and every
element of H,1(n) is of this form.

Lemma? 1. If Ho(p) = H,(4') for all n, then p = u'.

Proor. Let Q be the set of all z such that wlz, ©) = u'[z, ). Since
Hy(p) = Hy(u), E(u) = E(4') and E(n) ¢ Q, as is easily verified. Let S,(u)
be the set of = such that for some (21, --, #n) € Ha(u), z» = z. Verify that
because Hot1(n) = Hut1(1'),8a(n) = Sa(n’) and Sa(n) < Q. So if Sw(u) is the
union over 7 of the S,(u), So(u) C Q. Moreover, S.(u) is dense in the support
of u, as is easily seen. The problem is to see that every z in the support of u
is in Q. This is now apparent if there is no, or at most one, point z of positive
probability under w; it becomes apparent in general by first verifying that if
a’ < 2" are two points of positive probability under u, then 3 & S..(u) such that
' £ 2 £ 2. Since every z in the support of pisin @, u = u’, and the lemma is
proven.

ProrosiTionN 1. Let u be a lottery with a finite mean m. Then for every continuous
martingale w(t) with unbounded paths and with w(0) = m, the stopped random
variable w — w(7v(u, w)) has u for its distribution. If the martingale w(t) s stand-
ard Brownian motion, the expectation of 7(u) is the variance of u.

Proor. To establish the first assertion, it suffices, according to Lemma 1,
to show that H,(x) = H,(x') for all n, where u” is the distribution of w(r (g, »)).
Details are given here only for u with compact support for » = 1, and the
modifications necessary for the general case are left to the reader.

As established by Doob [1], p. 382, almost all paths w of the martingale are
unbounded from above and from below, so 7(u, ») is well defined. Plainly, the
infimum of ¢ and 7(u, w), namely ¢t A 7(u, w) is 7(u, w) for all sufficiently large ¢.
S0 w*(¢) = w(t A 7(p, ») is w(r(u, )) for all such . By familiar theory, o™ (¢) is

2 T thank Isaac Meilijson and Friedrich W. Scholz for helping me see the role of Lemma 1.
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a martingale with expectation E(w*(f)) = E(w*(0)) = m. Under the assump-
tion that u has compact support, «* is uniformly bounded. Since it converges
almost surely to w(7(u, w)), the limiting random variable also has mean m.
So Hi(u) = Hl(ﬂl)°

For the proof of the second part of Proposition 1, a definition and a lemma are
useful. Let 7(n) = 7(n, p) be the least ¢ such that there is an n-tuple 4 < t, <

- = to = tfor which w(#), -+, w(t,) is an element of H,(u). Since the 7(n)
are stopping times with r(n) = 7(n + 1), and since for eachn, w(t A 7(n)) is
uniformly bounded in ¢, standard theory applies to show that w(7(1)), w(7(2)),

- is a martingale.

As is easily verified, for any convex function ¢, E(¢(w(r(n)))) is majorized by
[ ¢ du, which, according to the first part of this proposition, is the same as
E(p(w(7))). So Elw(r(n))| = Elw(r)|;and, of course w(7(n)) — w(7). Therefore
one has

LemMma 2. w(7(1)), w(7(2)), -+, w(7) s a martingale.

Incidentally, the distribution of the discrete martingale w(r(1)), w(7(2)),
- -+ plainly depends only on u, and in particular, not on the distribution of the
continuous martingale w(¢). In contrast, the distribution of r(n) and of =,
plainly do depend on the distribution of w(%).

Now suppose that «(¢) is standard, Brownian motion and, for simplicity,
assume that u has mean 0. Then, as observed by Paul Lévy, o’(¢) — ¢is a
martingale of mean 0. The immediate problem is to see that, for each n,

(1) E((1)(n)) = E(r(n)).
To see (1), notice first that
(2) E((t A 7(n)) —t A 7(n)) = 0 for each ¢

Of course, t A 7(n) T 7(n),and w’(t A 7(n)) = w’(7(n)) ast— . Since the
first convergence is monotoneint, E(f A 7(n)) T E(r(n)). Andsince o’ (¢A 7(n))
is uniformly bounded in ¢, E(w’(¢ A 7(n))) converges to E(w*(r(n))). Asnow
follows from (2), (1) does indeed hold.

Since w(7(1)),w(7(2)), + -+ — w(r), Lemma (2) implies that E(o’*(r(n))) —
E(&’(7)). Plainly, E(r(n)) — E(r). Hence, in view of (1), E(«*(7)) = E(r).
And, by the first part of this proposition, E(w*(r)) = [2*du(z). Hence E(r)
is the variance of u.

Let X3, Xz, -+ be a stochastic process. If ug, the distribution of X; , as well
as pn(21, - -+ , ), aregular conditional distribution of X,.; — X, given X; = «;,
1 = j = n, have mean 0, the process is fair.

Let 7(uo) and 7(ua(21, - - -, ,)) be the natural stopping times associated with
wo and u.(21, ++-, %.), and let their values at w be written as 7(uo; @) and
T(#n(xl y Ty xn)7 w)'

Now define an increasing sequence of stopping times for €, 70 < =
thus. Let 70 = 7(uo), and let

(3) T"(w) = T"—l(w) + T(#"(xl,) Tty .’1?1.,); w,)}
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where z;41 =w (1;(w)), and «'(s), or more fully, w,’ (), is w(s 4+ 7o1(w)) —
w(Ta_1(w)).

TueoreEM. Let X1, Xs, --- be a martingale of mean 0, or more generally, a
fair stochastic process, and let w(t) be a martingale with continuous, unbounded
paths for 0 = t < o and w(0) = 0. Then w(r), w(r1), - -+ has the same joint
dustribution as does X1, Xs, -+ . Moreover, if each X ;11 has a variance v; < o,
and f the martingale « is standard Brownian motion, then the expected value of T; s
fintte and equals v; .

Proor. That w(7y) has the same distribution as X; is immediate from Propo-
sition 1. Turn now to the conditional distribution of the increment w(rn41) —
w(7,) given the history of the martingale w up to time 7, . As is not difficult to
verify, for any stopping time s, the conditional distribution of the future of a
martingale (with continuous and unbounded paths), given its past up to time
s, 1s again almost surely that of a martingale (with continuous and unbounded
paths). From this fact, together with Proposition 1 and standard-type argumenta-
tion involving conditional distributions, it follows that the conditional distribu-
tion of w(7ny1) — w(7,) given the past of w until time 7, is g (z1’, + -+, Tui1),
where zj41 is w(7;(w)). Since the conditional distribution of X,.; — X, given
Xi, -+, Xnis uo(X1, ---, X,), the unconditional joint distribution of w(r),
w(7), -+ - is the same as that of X;’, X5, --- . This completes the proof of the
first assertion of Theorem 1. The second assertion is provable by an argument
similar to the one which proves the second assertion of Proposition 1.
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