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NEW CONDITIONS FOR CENTRAL LIMIT THEOREMS!

" By PERcY A. PIERRE?
Unaversity of Michigan

1. Introduction. A general formulation of the central limit problem for sums
of independent random variables is the following (see Logve [3], p. 291). Let

Sn = Zk Xnk

where k = 1, -+ , ko, ko, — o asn — o, and for each n {X,} are independent
random variables with probability distribution functions F,; and EX,; = O.
Let {F,} be the distribution functions of {S,} and let &(x) be the distribution
function of a normal random variable with zero-mean and variance ¢°. Under
these conditions it is possible to show the following:

TueorREM 1.1. Let maxiVar Xn — 0 and 3 Var Xu — o < o where o° 4s a
positive constant. The sums S, are asymptotically normal (i.e., Fo(z) — ®(z)) if
and only if for every e > 0

(1.1) gn(e) = D f|3| se & dF i, — 0.

Excent. in special cases, the application of condition (1.1) is difficult because
of the integrals involved. By assuming the existence of fourth-order moments, we
are able to prove new necessary and sufficient conditions for both normal and
Poisson convergence which involve only moments. The proof of the theorem
makes use of a characterization of the normal distribution among infinitely
divisible (ID) laws which was perhaps first recognized by Borges [1] and later
independently by the author [4].

2. Normal convergence.

TuporeM 2.1. Let E|S,|*™ be uniformly bounded for some &> 0. Let
maxiVar X, — 0, Zk Var Xn — o° < ® where o° is a positive constant. Then
S. 18 asymptotically normal if and only if

(2.1) ES.! — 3{ES,}*—0.

Proor. The asymptotic normality of S, implies condition (2.1) by the moment
convergence theorem (see Loeve [3], p. 184) and the fact that for a zero-mean
normal random variable S, ES* — 3{ES%}* = 0.

To prove the converse it is sufficient to show that every convergent subse-
quence {F,/} of {F,} converges to ®(z) (see Feller [2], p. 261).
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Let F be the limit of . , then F is an infinitely divisible law with characteristic
function f(u) such that (see Logve [3], p. 293),
(2.2) log f(u) = [ (6™ — 1 — tuz)2*dK(z)

where K () is monotone increasing and of bounded variation, K(— ) = 0, and
K(o) = ¢" < w. The integrand is defined by continuity at the origin. It is
known that F(x) is a normal law if and only if K(x) increases only at z = 0.

Since E[S,|“*” are uniformly bounded, all moments of S, of order 4 or less
converge to those of F. Since ES," — 3{ES,%}* — 0,

0= [2'dF(z) — 3 {[ & dF(z)}*
(2.3) = (d*/du') log f(u) |u=o
= [’ dK(z).

This last equation is obtained by differentiating the right hand side of equation
(2.2) under the integral sign. This is justified in the following way. That

(2.4) —(d*/du’) log f(u) = [ e™ dK(z)

is shown by Loeve [1], p. 293. Thus the left hand side of equation (2.4) is a
characteristic function. Since this characteristic function is twice differentiable,
its second derivative is given by (Loéve [3], p. 200)

(d'/du’) log f(u) = [ 2°™ dK (z)

and equation (2.3) follows. Thus K(z) increases only at a = 0.

Finally, since ) Var X,; — o we have shown that F,, — ®(z) and the proof
is complete.

Condition (2.1) becomes even simpler when we note that

ES,' — 3{ES,Y* = X 1 [EX i — 3{EX24Y.
The left hand side is usually called the fourth cumulant of S, . This identity says
that the fourth cumulant of a sum of independent random variables equals the
sum of the fourth cumulants.
If the distributions F, are known to be infinitely divisible (ID), then mo-

ments higher than 4 are not required.
THEOREM 2.2. If F,, are 1D, then F,(x) — ®(x) if and only if ES,> — ¢° and

ES.' — 3{ES,}*— 0.
Proor. The characteristic functions f,(u) are given by
log fu(u) = [ (¢™ — 1 — tuz)e™ dKa(z).
For any e > 0
Jleise dKn(z) < [ 222 dKu(z) =0

as n — . Thus K, (z) converges to a step function at the origin of size o°.
The converse is obtained from the moment convergence theorem.
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3. Poisson convergence. The key features of the results above is that the fourth
cumulant (i.e., £S,' — 3{ES,}®) corresponds to [ 2 dK(z) and is a good test
for a jump of K(z) at the origin. However, this method can be used to test for
jumps at other points also. For example, the equation f (z — 1) dK(z) =0
implies that K(z) can only have a jump at z = 1. This leads to the following
results. First we note that

[ (z — 1) dK.(2)

ES,' — 3{ES,}}* — 2ES,* + ES.’
= D% [EXw — 3{EXow)’ — 2EX 0 + EX ).

TaroreM 3.1. Let E|S.|“*” be uniformly bounded for some & > 0. Then S, is
asymptotically Poisson (i.e., log fo(u) — [¢*(e™ — 1) — suc’]) if and only if

ES,' — 3{ES,}* — 2ES,’ + ES, — 0.

In a similar way we obtain:
THEOREM 3.2. If F, are 1D, then F, is asymptotically Poisson if and only if
ES,’ — ¢ and

ES,' — 3{ES.}* — 2ES,’ + ES,— 0.
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