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NOTES

STOCHASTIC APPROXIMATION FOR SMOOTH FUNCTIONS

By VAcrav FaBian

Michigan State University and Czechoslovak Academy of Sciences

1. Summary. The problem of approximating a point # of minimum of a funec-
tion fe @ (see 2.1) is considered. An approximation procedure of the type de-
scribed in Fabian (1967) using the design described in Fabian (1968), but with
the size of design increasing, achieves the speed

(1) E|Xn — 0] = o(ta' log* ta);

here X, is the nth approximation and ¢, the number of observations necessary to
construct X;, Xo, -+, X, .

2. The result. We shall refer to the two papers mentioned above by using
symbols I and II. The k-dimensional Euclidean space will be denoted by R,
coordinates of matrices and vectors will be denoted using superseripts. All norms
are Euclidean. The symbols o(h,) and O(h,) mean function sequences (number
sequences in particular) such that k' o(h,) converge uniformly to zero and
|ha ' O(h,)| are uniformly bounded by a constant. As usual log; stands for
log log and &;; is the Kronecker symbol.

2.1. Functions considered. The class € of functions considered contains f if and
only if f satisfies the following conditions: Denote, if they exist, by H(z), D.(x),
respectively, the matrix of the second partial derivatives of f at « and the vector
of the sth order partial derivatives of f at z with respect to the individual coordi-
nates, so that D{”(z) = 9°f(z)/8(x'”)". There exist positive numbers K, , K, ,
K;, r, a point 6 ¢ R* and a neighborhood N of 6 such that for every z ¢ R, the
Hessian H(x) exists and

(1) Dy(6) =0, (z— 0)'Di(z) 2 Kollz — 6", [H(2)|| £ Ks;
for every positive integer s and every « ¢ N, D,(z) exists and
(2) |1Ds(2)]| < Kaslr'.

2.2. Remark. Note that if ¢ = 2 and f is analytic in a sphere with radius p > 7,
Cauchy formula implies (2.1.2) for points in the sphere with radius »* (both
spheres with the same center and K suitably chosen).

2.3. The approximating sequence. When f € € is given, X, , X, , - - - is supposed
to be a sequence of k-dimensional random vectors satisfying the following
conditions:

(1) Xn+1 = Xn - anYn, EX12 < —|—OO
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with

(2) @n=an"¥,, a>0, = (s3'n) ety 1 ¥a = logi’n,
(3) sn = logn logz n if n= e,

sn = logn forn < e°. With &, = [X;, Xz, -+, X,], Ex,Y» = M,(X,) where
(4) M(2) = &' Zimoilf(z + cowie;) — f(x — cawees)], §=1,2-,k

(with vectors e; satisfying e{” = §;;) and

(5) By, ||Ya — Ma(Xa)||* = 2k ¢2°0" 21 (0%/m2).

The design [uy, - -+ , Uml, [71, -+ + , nm] depends on n and is described in 2.4, the

v’s are solutions to equations

(6) Tui v = oy, J=12--,m.
2.4. The choice of design. We suppose m = m,, is the smallest integer greater or

equal to s,/2,

(1) wi=cos ([(m —1)/(2m — D)lx), &= [2m(m — 1) +37u:" (1 — $8im),

and, with a fixed integer K, n, is the smallest integer greater or equal to Km &; .
(To avoid notational difficulties we do not indicate the dependence of u; , & , n:,
and sometimes of m, onn.) The solution to (2.3.6) is then (see Theorem (I1.5.1))

(2) vi = (2m — D=1 (1 — £6im).

2.5. Remark. For m and N = > 7 n, given, n; > 0, the sum Y 7 (vi/n;)
appearing in (2.3.5) is minimized by the choice of (2.4.1) with n; = N§; resulting
in
(1) Mod/E = 3@2m — 1)), Xiauit = 2m(m — 1) + 1
(see Theorem II.5.1 and relation (II1.5.1.9)). This choice will not lead in general
to integer valued 7, . Under the choice of 2.4, we obtain

2) Tod/n £ FKC(2m — 1)%/m,  2Xian = (K + I)m

(with D Py n; = (K + 1)m, without restricting the n.’s to be integers, we would
be able to obtain (K + 1)~ (2m — 1)*/m).

With 2k Z i—1 n; observations of function values on stage n we can achieve
(2.3.4) and (2.3.5) and assume that ¢, , the number of observations up to the
nth stage, satisfies

(3) tn S B(K + 1) 2 0= (sj + 2).

2.6. Theorem. If fe @ and Xy, X, , - -« s the approximation sequence described
in 2.3 and 2.4, 0 the unique stationary point of f and t, the number of observations
necessary to construct X, , Xz, -+, Xn, then

(1) E| X, — 0] = o(t;! log*t,).
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2.7. Remark. It is known that there is no procedure for which E|| X, — 0| <
C ¢! with C independent of f (see e.g. Schmetterer’s (1961) review, Section 4)
and there is probably no such with C depending on f, although the latter seems
not to have been proved. The present procedure is evidently not asympotically
optimal. The choice of s, was made in accordance to the fact that we need, later
in the proof, to have ¢,’s, — 0, but it was not a unique possible choice. The
sequence ¢, was chosen as to make approximately equal the two terms constitut-
ing E|| X, — 6", the systematic error, and the variance of a.Y, . The function
¥n has been used to eliminate the effect of not knowing the values of K, and r,
appearing in 2.1.

3. Proof. We shall suppose an f ¢ @ is given and use the notation used in 2.1,
relating to our particular f. As above, we shall frequently skip the subscript = in
my, and s, .

3.1. Preliminaries. Set h(n) = (s™'n
forward way it is possible to verify

(1) GnCasn = a'n'g(n), ™ = R T(n)Ya
(2) CnlSn — 0,
(d/dn) log g(n) = O(n™") and, forn = &
(3) gln + 1)/g(n) = 14+ 0(n7Y), log g(n) = logn — 2 log, n.
By (2.5.1), XY™ u;® < 2m’ and Schwartz inequality implies > 7 u;® <

I(s+1)
)a

, ¢(n) = Ya.'h(n). In a straight-

2m*”. From (2.4.2), [uwd = m ", jui™ v £ mu™™ " < m™" and hence,
form = 3
(4) ZT=1 Iuwil = 2Sn*, - lui2m+lvil =1

3.2. Properties of the Y, . Suppose, without loss of generality, that 6 = O.
Choose an ¢ > 0 such that C(2¢) = {z; ||z|| < 2¢f € N. By Lemma 1.3.1 there
is no such that forn = ne, z € C(e), Mo (x) = D(x) + ¢.""Qn(x) with ||Q.(z)|| =<
2 [(2m + 1) 1T 27 o™ ™| sup {|Demia(y)|; y € N}, which is less or
equal to 2k K, ™™ because of (2.1.2). Hence and from (3.1.1), because
r2m+1¢n—2m — 0’

(1) M,(x) = D(z) + o(h¥n)) all zeC(e).

For all z, by (1.3.1.3), M.(z) = 2> T vuD(&) with ||& — || < ¢, and,
using (2.1.1), (2.3.6), (3.1.4), and (3.1.2), M,(z) = D(x) + 2D 7 vauD(&)
— D(z)] = D(z) + 0(1)cusn”® = D(z) + o(1). This together with (1) and
(2.1.1) implies first
(2) o |Ma(@)|” = |zl®o(an) + ano(h7(n))
and, secondly,

(3) ¥ Ma(z) 2 [Ko — o(D)] Il — llz]l oA (n)).
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But ||z]lo(A(n)) < o(|Jz]®) + o(hA ™ (n)) and

(4) 02 Mo(2) Z aa[Ko — o(1)] ] — 2 %(q 7 (n)).
Note also that by (2.3.5), (2.5.2) and (3.1.1)
(5) aan”Yn - Mn(Xn)”2 = n_lo(q_l(n)).

3.3. Completion of the proof. By (3.2.2), (3.2.4) and (3.2.5),
E|Xnl’ = L — 2K — o(1)]aa]B| X.|* + n7'0(g(n)).
Using the first part of (3.1.3) we obtain [I — [2K, — o(1)]an ¥,]g(n + 1) /
aln) 2 1 — n™* for sufficiently large n, for which then also
g(n + 1) B|Xpnl® < (1 — n7)g(n) B|X.|* + O(n™).
Chung’s lemma (see Lemma 1.4.2) then implies
(1) E|X.|* = 0(g7'(n)).

Next note that ¢, = n,t. < Cn s, with a constant C according to (2.5.3), and,
because of (3.1.3), logg(n) = logn — 2 log: ¢, . We have, however, logn =
log ¢, — logs, — log C and, by (2.3.3), log s, < logzt, — logs ¢, , which gives

log g(n) = logt, — 3 logst, + logs t, — log C
and
g (n) = o(ta™" log't,)
which with (1) implies (2.6.1) and completes the proof.
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