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EQUIVALENCE OF GAUSSIAN STATIONARY PROCESSES'

By T. R. Cuow

Oregon State Unaversity

Let @ be the real line, and R(s, ¢t) = r(s — t) and S(s, t) = s(s — t), where r
and s are continuous positive definite functions, and hence by Bochner’s theorem
can be written as Fourier transforms of finite regular Borel measures (spectral
measures) dp, do. There are unique Gaussian measures P and @ such that the
processes defined by z:(w) = w(f) have means respectively m and n and co-
variances respectively B and S. It is known (cf. Grenander [4]) that P and Q are
equivalent if and only if

(a) p and ¢ have the identical non-atomic parts;

(b) they have the same set of atoms and if the masses are a; and b; then
> {1 — (ai/b:)}* must be finite.

The purpose of this paper is to investigate the necessary and sufficient con-
ditions for P and @ being equivalent when G is a separable locally compact group.
Let G be a separable locally compact group which need not be abelian. Then
every positive definite function p can be written as an integral of positive definite
functions px

p(t) = [am(t) du

where A may be taken as the real line and u a finite regular Borel measure. This
representation, being essentially unique in the sense that we shall discuss in the
paper, is called spectral representation of p. Theorem 2 gives the desired con-
ditions in terms of spectral representations.

1. Decomposition of positive definite functions. Let G be a separable locally
compact group; M (@), the set of all finite Radon measures on G; v, a continuous
positive definite function on G. Consider the sesqui-linear functional B, on
M(G) x M(G) defined by

(1) By(a,8) = [ [v(s"t)a(dt)B(ds) - - - .
It is clear that B,(e,a) = 0 for all aeM(G), and the subspace
N, = {ae M(@)| B,(a, @) = 0} is invariant under the left translations. Let H,
be the Hilbert space gotten by completing M (G) /91, with the inner product de-
fined by (1). The left translations induce a unitary representation U of G on H,
in a canonical way.

Let U be the von Neumann algebra? generated by {U,, s € G}. Then thereis a
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1 This work was supported by NSF Grant No. GP 7474.

2 A subalgebra of the Banach algebra of all continuous operators in a Hilbert space is
called a von Neumann algebra if it is closed in the weak operator topology, and the ajoint
operation. For the general theory in this section we refer to Dixmier [2].
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separable locally compact space A, which may be taken as the real line, and a
direct integral representation of H, (confer the appendix for definition)

(2) Hy, = [ H,(Mu(dN)
so that L has central decomposition
(3) w = [Ru)u(d),

i.e., the centers of p—a.a. algebras U()\) are the algebras of scalar multiples of
the identity transformation on H,(\). Accordingly,

4) Us = [2U.(\)p(dN)

where y—a.a. U,(\) are unitary on H,()\), and the cyclic vector £ is the direct
integral of cyclic vectors £(\) in H,(\)

(5) = [REO)u(@N).
Since the inner product on the direct integral of Hilbert spaces is defined as
(6) (2, 9) = [a (@, pas(dN)

wherez = [§ondu,y = [%y»duand (-, - )a denotes the inner product of H(A),
it follows that

v(s) = (U, &) = (JT U.NEN) du, 3 EQN) dp)
(7 = [a (U:(NEN), EQ) ) du
= fA 7 (8) du

where s — v (s) = (U, (N)EQ), EQ\)) is positive definite for p almost every A.
Normalizing v, so that v\(e) = 1, we obtain an integral representation

(8) v(s) = fA () du.

The change of the measure p within the equivalence class will not change the

central decomposition. Therefore the integral representation is unique.
DerintTioN. The finite regular Borel measure p in (8) is called the central

Radon measure of v. Identity (8) is called the spectral representation of +.

2. Gaussian stationary processes. Let G be a separable locally compact group.
A real (or complex) valued stochastic process {X., ¢t & G} is called a Gaussian
process if all finite subsets of X¢’s are jointly Gaussian or equivalently if every
finite linear combinations of {X,} are Gaussian. Mean functions and covariance
functions can be defined similarly as in real line case.

Let {z(t), te G} be a Gaussian stationary process with mean zero and co-
variance function p;

H, = (M(G)/N,)”

as defined in Section 1; and £, the cyclic vector in H, . Let M be the Hilbert space
spanned by {z (%), ¢ ¢ G} with inner product defined by (U, V) = E(UV). Since
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E{z(t)z(s)} = (Uit U,E), there is an isometry ¥: M — H, . According to the de-
composition theory, H, can be centrally decomposed as

JRH,(\) du

where A may be taken as the real line (cf. J. T. Schwartz, [5]), and u is the central
Radon measure so that

p(t) = [Rm(t) dp

with pn(e) = 1, and p—a.a. p\’s are positive definite. For each positive definite
function py , there corresponds a stationary Gaussian process {x,(t), ¢ € G} so that
H,(\) is isometrically isomorphic to M (\), the Hilbert space spanned by {x\
(1), te@Gy.

Let ¢y(N\): M(\) — H,(\) be the isometry such that

y(N)an(t) = UNEN) and
E{a()an(s)} = a(s7t) = (TNEN), UdNEQ) M.

It is clear that N — M (\) is a measurable field of Hilbert spaces. z\(t)’s are
certainly p-“‘integrable’” since N — p\(t) is a p-integrable function. We see that
ff M (N\) dp is well defined and is isometrically isomorphic to ff H(\) du with
f‘f z2(t) du corresponding to ff U.(N)E(N) dp. M and f? M (X\) du are thus iso-
metrically isomorphic and the isometry carries z(t) to f? () dp. By identify-
ing them, we have

(9) z(t) = [an(t) du
and
(10) v =[Sy du.

DeriniTioN. We say z(f) in the formula (9) admits a direct integral repre-
sentation.

From what we discussed above, we conclude the following theorem:

TuEOREM 1. Any stationary Gaussian process on a locally compact group admits
a direct integral representation.

3. The equivalence of Gaussian stationary processes.

DeriNITION. Two stochastic processes are said to be mutually equivalent (or
perpendicular) if and only if their induced probability measures are equivalent
(or totally singular respectively).

DeriniTION. Let G be a separable locally compact group. Two positive definite
functions p and ¢ are said to be equivalent (p ~ ¢ symbolically), if there is an
equivalence operator T from H, onto H, ;i.e., T is a linear homeomorphism such
that I — T*T is Hilbert-Schmidst.

3 f(\) is said to be p-‘““integrable’”’ if and only if A — (f(A), (f(\))r is u-integrable and
u-measureable.
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THEOREM 2. Let G be a separable locally compact group. Two stationary processes
{X(t),te G} and {Y(t), t € G} with means zero, covariances p and o respectively are
equivalent if and only if they admit the direct integral representations

z(t) = [San(2) d, y(@) = [San(t) d

where p and o are the central Radon measures of p and o respectively such that
(1) p and v have the identical non-atomic parts, and
(ii) they have the same set of atoms which is countable such that

(11) 2 wad(a)(1 — p(a)/v(a))® <

where d(a) s the dimension of H,(a) #f H,(a) s finite dimensional and « other-
wise, and A s the set of all atoms.

The theorem is an immediate consequence of a theorem of Feldman (cf. Feld-
man [3]), together with one proved by the author (cf. Chow [1]).

TuaeoreEM. (Feldman)t {X,, te G} and {Y., t ¢ G} are mutually equivalent if
and only if p ~ .

TaeorEM. (Chow) p ~ ¢ if and only if (i) there exists a locally compact Haus-
dorff space A such that both p and ¢ admit spectral representations

p(t) = [aon(t) du, a(t) = [am(t) dv;

(ii) the central Radon measure p and v have the identical non-atomic parts; and (iii)
they have the same set of atoms such that (11) is satisfied.

Our result can be slightly generalized. Suppose X is a separable metric space;
G, a locally compact group on X which has a dense orbit. For instance, G acts
ergodicly on X and ergodic measure satisfies u(0) > 0 for every open set O C X.
It is known that in such cases @ possesses a dense orbit in X. It has been proved
(cf. Chow [1]) that for every continuous group invariant® positive definite func-
tion there corresponds a positive definite function in @, and vice versa. So our
theorem can be carried over by natural embedding.

4. Examples. We shall use following examples in this section to demonstrate
how our results imply the known results.

ExampLE 1. Let G be the abelian group of real numbers with usual topology.
Then the spectral representation of a position definite function is given by
Bochner’s theorem. The central Radon measure is nothing but the ordinary
spectral measure in stationary analysis.

p(t) = JZae™™ du(N).

—i\E

To each covariance function ¢, there corresponds a stationary process

n(t) = ¢ ™u(0)

¢ Feldman originally proved the real valued case and the theorem was stated more gen-
erally. For our purpose, we transform his theorem into complex form and state it in such a
way which fits our special case.

5 A function on X X X is said to be group invariant if f(z: , 22) = f(gz:1 , g22).
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or as spectral representation,
o(t) = [Zee ™ dZy(w)

where {Zy(w), —© < w < «} is a process with orthogonal increment, such that
E{|dZ\]"} = point mass at \. Let

dg(w) = f?—w,w) dZ)\(w) dﬂ()\),

then dé(w) can be identified with a stationary Gaussian process as discussed in
Section 2 such that

E{ldg(@)} = [Zo B{ldan} du(N) = du(N).
By a modified argument of Fubini’s theorem, it follows that
2(t) = [Cwwmn(®) du = [Com [Zae ™ dZa(w) dp
= [Zoe™ [Cuy dZ0(0) dp = [Z0e ™ di(w)

which is the classical spectral representation of the Gaussian stationary process.
Theorem 2 translated into spectral language provides the exact result mentioned
in the introduction.

ExampLE 2. Let G be a compact group, p, a positive definite function on @,
(U, H,), the canonical unitary representation of G. Then the direct integral de-
composition reduces to a direct sum.

HP = ®xrer Hp()‘)

where H,(\) is the multiple of some irreducible invariant subspace; Us(\) is
some multiple of irreducible representation; and y—a.a. t — pa(t) = (U;(N)E(N),
£(N)) -u(N) are positive definite. Therefore any Gaussian stationary process
{x(t), t ¢ G} can be decomposed as a direct sum:

z(t) = 2aaan(t)

which corresponds to sum p(t) = D _aapr(t). Since z(t)’s are mutually ortho-
gonal, this direct sum can actually be considered as an ordinary sum of stochastic
processes. Then it follows from our theorem that two stationary processes are
equivalent if and only if conditions (i), (ii) in Theorem 2 are satisfied and

(iii) X d(z)(1 — ox(e)/m(e))? < o where d(\) is the dimension of H,(}).
APPENDIX

Let A be a locally compact space, and £ = {&,,1 = n =< «} be a collection of
disjoint Borel subsets of A such that A = U518, Let by S hy C -+ C ho
be a sequence of Hilbert spaces, k., having dimension n. The direct integral pre-
hilbert space with Radon measure p and dimension sets Z is the set of all functions
f: A — hy such that

1) fON) eh, S hoif N6,
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(A.1) (i) fis a p-measurable vector-valued function in A, ,
(i) [allfO)|*du < o, and
iv) (f, 9) = [a (FON), g(N) )w(dN)

where (-, -)x is the inner product in A, .

If we identify two such functions when they differ only by a p-null function,
we then obtain a complete space with an inner product given by (A.1). We call
this Hilbert space the direct integral hilbert space, denoted by [%h(\)u(dN).
For any element f ¢ f? h(N)u(dX\), we write f = f?f()\)u(d)\).

Similarly, we can define the direct integral von Neumann algebra. Let @ be
a von Neumann algebra on a Hilbert space H. Then there exists a self-adjoint
bounded operator A in the center Z, of @ such that Z, is identical with the
collection of all bounded Borel functions of A. Let A be the space of the spectral
representation of 4 (which may be taken as the real line) and p its spectral
measure. Then H can be decomposed into a direct integral Hilbert space
ff H(N)p(d\) such that @ is accordingly decomposed into a central decomposi-
tion f Ce(N)u(dn); e, @(\) acts on H()\) and p-almost every von Neumann
algebras @(\) has center isomorphic to the algebra of sealar multiples of identity
operator on H(\).
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