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ON ERLANG’S FORMULA!

By Lajos TaxkAcs

Case Western Reserve University

1. Introduction. The following mathematical model of telephone traffic has
some importance in designing telephone exchanges.

In the time interval (0, =) calls are arriving at a telephone exchange in ac-
cordance with a Poisson process of density A, thatis,if 71,72, -+ -, 7a, - - - denote

the arrival times, then 7, — 7,4(n = 1,2, .-+ ; 70 = 0) are mutually inde-
pendent random variables having a common distribution function
(1) F(z) =1—¢™ if 220,

=0 if z<0.

There are m available lines. If an arriving call finds a free line, then a connection
is realized without delay. If every line is busy when a call arrives, the call is lost.
The holding times are mutually independent, positive random variables having a
common distribution function H(x), and a finite expectation

(2) o= [¢xdH(z).

The holding times are also independent of the arrival times and the initial state.
The initial state is given by the number of busy lines at time ¢ = 0 and by the
remaining lengths of the holding times in progress at time ¢ = 0.

If we choose the initial distribution in such a way that the process becomes
stationary, then the probability that at time ¢ the number of busy lines in k£ isgiven
by Erlang’s formula,

(3) Py = [(\)"/RU[2 50 (Aa)’/51T
fork =0,1,--- ,mandallt = 0.

This formula has an interesting history. In 1917 A. K. Erlang [1] deduced
formula (3) for the case when the holding times are constant . While Erlang’s
result is correct, his proof is not complete. He has made use of a property of the
process which is far from evident. Erlang noted also that if the holding times have
an exponential distribution, that is,

4) H(z) =1—¢%* for 2=0,
=0 for =z <0,
then (3) is valid. If H(x) is an exponential distribution function, then Erlang’s

proof is acceptable.
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Erlang’s investigations automatically raised the problem of whether (3) re-
mains valid also for an arbitrary H(z). The answer is affirmative and this was
established first in 1927 by A. E. Vaulot [11], and subsequently by F. Pollaczek
[8], C. Palm [7], L. Kosten [5], K. Lundkvist [6], A. Y. Khinchin [4] and B. A.
Sevastyanov [9]. For other appropriate references see R. Syski [10] pp. 271-278.

There is an essential difference between the cases of an exponential H(z) and
an arbitrary H(z). If we denote by »(¢) the number of busy lines at time ¢, then
{»(1),0 < t < »} is a Markov process if and only if H(z) is an exponential dis-
tribution function. If H(x) is given by (4), then it is easy to show that

exists, is independent of the distribution of »(0), and Px(k = 0, 1, --- , m) is
given by (3). If we assume that P{»(0) = k} = Py(k = 0,1, ---, m), then

{»(t),0 = t < o} becomes a stationary process for which P{»(t) = k} = P} for
all £ = 0. That is for a stationary process, Px(k = 0, 1, - - - , m) is the probability
that at time ¢ the number of busy lines is k.

In the general case, {»(¢),0 = ¢ < «} is not a Markov process. However, if we
introduce auxiliary variables we can achieve that the process becomes Markovian.
If»(t) = k(k =1,2 ---,m), then let x1(2), x2(¢), - -+, xx(t) be a random
permutation of the remaining lengths of the & holding times in progress at time ¢.
We suppose that all the k! permutations are equally probable. Then the process

{v(t), xa(£), -+, %0 (t);0 =t < o} is a Markov process. It can be shown that
(6) limpw Pir(t) =k, xa(t) < @1, -+, xa(t) = @} = Pi [T H¥ ()
fork=0,1,--- ,mandz; = 0,2. =0, - -+, = 0, where
(7) H*@) =o' [§[l — Hw)]du if z=0,

=0 if z<0,
and P is defined by (3). The limit (6) is independent of the distribution of
»(0), x1(0), -+, %o (0)). If we suppose that the distribution of
(0), x1(0), - -+, x%w(0)) agrees with the limiting distribution (6), then
{v(2), xa(t), -+, x»(t)} becomes a stationary process for which »(¢) has the
same distribution for all ¢ = 0, namely, P{v(t) = k} = Pyfork =10,1,.---,m
and all £ = 0.

We note that in some of the papers mentioned above only { P} has been found.
F. Pollaczek [8], K. Lundkvist [6] and A.Y. Khinchin [4] proved only Erlang’s
formula (3). C. Palm [7], L. Kosten [5], and B. A. Sevastyanov [9] proved also
(6). Actually they interpreted xi(f), -+, x(t) as the lengths of the past
durations of the holding times in progress at time ¢. The interpretation used in
this paper has also been used by S. Erlander [2].

As far as the proof of (6) is concerned, it consists of two parts. First, the
ergodicity of the process should be proved. This is based on the use of rather deep
theorems. Second, it requires the solution of a system of integral equations and
the proof of the existence and the uniqueness of the solution. Most of the proofs
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mentioned above are intuitive and contain heuristic reasoning. From the mathe-
matical point of view the proof of B. A. Sevastyanov [9] is the most satis-
factory.

There is one thing that is worth special mention. The probability (3) is usually
interpreted as the probability that an arriving call finds & lines busy in a station-
ary process. Let us denote by v, the number of lines that the nth arriving call finds
busy. If we suppose that the process {»(¢), x1(£), - - - , x»(¢)} is stationary, then
the distribution of v, depends on 7, that is, {»,} is not a stationary sequence. If we
want to be exact, the latter interpretation of probability (3) fails. However, in
most of the applications, our interest is in finding the probability that an arriving
call finds k lines busy, or, in particular, all the m lines busy.

In what follows we shall study the limiting distribution of », as n — «. By
choosing a suitable initial distribution we shall define a process for which », has
the same distribution for alln = 1, 2, - - - , that is, for which {»,} is a stationary
sequence.

It turns out that if we investigate the distribution of », (n = 1, 2, - - -) instead
of v()(0 = t < ), then everything becomes very simple. To prove the er-
godicity of {v,} we need to refer only to an elementary theorem of recurrent events
and to find the limiting distribution of v, as n — « we need to use only integra-
tion by parts.

It is interesting to note that by this shift of attention from the time-dependent
behavior of the process to the arrival-dependent behavior, all mathematical diffi-
culties disappear.

2. General holding times. Consider the mathematical model of telephone
traffic formulated at the beginning of the Introduction. Let v, be the number of
lines busy immediately before the arrival of the nth call. If », =k
(k=1,2,---,m), thenlet (xa, -+, xax) be a random permutation of the re-
maining lengths of the k holding times in progress at time 7, . We suppose that
all the k! permutations are equally probable. Now we shall prove that the follow-
ing theorem holds.

TrEOREM. We have

(8) limn-wo P{Vn = k, Xn1 > 1 y * "y Xnk > xk} = Pk l;=1 [1 - H*(xt)]

fork=0,1,---anday = 0,2, =0, --- , 20 = 0, where

(9) Py = [(M)* /B[220 (M) /(GO

fork=0,1,---,mand

(10) H*z) = o™ [3[1 — Hw)]du for z 20,
=0 for = <O0.

The limit (8) is independent of the initial state.
Proor. The vector sequence & = (Vn, X1, *** 5 Xawm), (® = 1,2, ---) is a
discrete parameter Markov process. First we shall show that the distribution de-
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fined by (8) is a stationary distribution of the process, that is, if we assume that
£, has the distribution (8), then it follows that £,,1 has the same distribution.
(8) is indeed a stationary distribution, if the following equations hold:

(11) Po= Py [§ H(y)e ™Ndy + -+ + Poos [§ [H* ()" H(y)e N dy
+ P [T IH*(y)]"¢ 7\ dy,
andfork=1,2,--- ,manda; 20,2, =0, -+ , 2, = 0,
Pl — H'(m)] -+ [1 — H*(x)]
=k 'Pea [5 1 — H' @ + )] --- [1 — H* (2 + )]
ARl — H(ze + )Ll — H* (s + y)] e 1 dy
(12) 4+ -+ Pua [l — H'(m + )] -+ [1 — H (@ + 9)]
ACEOHH (" H (y) 4+ T GEDE ()
Sl = H(z + )l — H (@ + y)] e\ dy
+Pu(P) J5 (1 — H (w4 )] -+ [1 — H* (@ + )JH* ()" "N dy

where Py(k = 0,1, - -+ , m) is defined by (9).

In obtaining the right hand side of (11) we took into consideration that the
event that the (n + 1)st call finds no busy line can occur in the following ways:
Tnp1 — Tn = Yy where0 < y < ,v, = rwherer = 0,1, - - - ,m and the remaining
lengths of the current holding times at 7, and the length of the holding time
beginning at 7, (if r < m) are all <y.

In obtaining the right hand side of (12) we took into consideration that the
event that the (n + 1)st call finds k lines busy and the remaining lengths of the
current holding times at time 7,41 are greater thanz,, x., - - - , zx respectively, can
occur in the following ways: 7,u — 7» = y Where 0 = y < o, », = r where
r=%k— 1,k ---, mand among the remaining lengths of the current holding
times at time 7, and the length of the holding time beginning at v, (if r < m) k
are greater than z; + y, --- , 2x + y respectively and all the others are <y.

Now we have to check whether the left hand sides of (11) and (12) are equal
to the corresponding right hand sides or not. It is easy to show that both (11) and
(12) hold foranym = 1,2, --- andx; = 0, - - - , Z» = 0. It will be convenient to

use the following abbreviations for fixed z; = 0, - -+ , zm = 0,
(13) A(y) =1 = H*@m 4+ )] -+~ [1 — H'(z; + y)]
ifj=12,---,m, and

(14) Bi(y) = [H*(y))’
forj =0,1,2, ---. Then we have

(15) dA;(y)/dy = —A;(y)a” Zia (1 — H(z: + y)I1 — H* (x4 )7,
and
(16) dB;(y)/dy = jl1 — H(y)le 'Bja(y).
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By using the above notation, (11) and (12) can be written in the following
equivalent forms:
(17) 1= [§H@e ™\ dy + -+ + ()" [(m — 1)
J§ B () H(y)e "N dy + (3a)™(m) ™ [5{Bn(y)e ™\ dy
and fork = 1,2, ... ,m,
() (k1) 7'44(0)
= — ()" (k)T [T (dAe(y)/dy)e™ dy + -
(18) + ()" (m — DN [T 1) Ar(y) Buioa () H(y)
— ok (i) (dAx(y)/dy) Bmi(y)le ™\ dy
+ )™ (m) (@) [T Ar(y) Bk (y)e ™\ dy.
First, we prove (17). If m = 1, then (17) reduces to
(19) e [5 Bi(y)e™Ndy = [T[1 — H(y)le ™\dy = « [7 (dBi(y)/dy)e ™\ dy,

which can be seen to be true by integrating by parts. Now we shall prove by mathe-
matieal induction that (17) is true for all m = 1, 2, --- . Suppose that (17) is
trueform (m = 1,2, - --). The difference between the right hand side of (17) for
m + 1 and for m is

(20)  (\a)™[(m + DU Bua(y)eNdy — [T (dBua(y)/dy)e ™ dy] = 0,

which follows by integrating by parts. Thus (17) holds also for m + 1. Accord-
ingly (17) is true forallm = 1,2, --- .
Second, we prove (18). If m = £k, then (18) reduces to

(21)  (Ma)*(k1)7'4x(0)
= ) (B)TLT Ae(y)e N dy — [T (dAwy)/dy)e™ dy)

which is evidently true. Now we shall prove by mathematical induction that (18)
is true for all m = k, k + 1, --- . Suppose that (18) is true for m (m = k,
k + 1, ---). The difference between the right hand side of (18) for m + 1 and
m is

()\a)mﬂ[(m + 1) !]—1[1-:» Ak(y)Bmﬂ-k(y)e‘}‘”)\ dy
(22) — [ (d44(y)/dy) Busss(y)e™ dy
— [§ Ax(y) (dBmus(y)/dy)e™ dy] = 0

which follows again by integrating by parts. Thus (18) holds also for m + 1.
Accordingly (18) is trueforallm =k, k + 1, --- .

We can conclude that £ = (vn , Xn1, == * y Xmws) (7 = 1,2, -+ -) has a stationary
distribution defined by (8). If we suppose that £ has the distribution defined by
(8), then every &, (n = 1, 2, -+ -) will have the same distribution as & .
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We observe that the event that an arriving call finds all the m lines free is a
recurrent event. This event is aperiodic and it occurs at the nth arrival if », = 0.
Consequently,

(23) limp,e P{v, = 0}

exists, and is independent of the initial state. If, in particular, {£,} is the station-
ary sequence considered above, then we have seen that P{», = 0} = P, for all
n = 1,2, --- . Thus it follows that the limit (23) is necessarily P, . Accordingly,
the recurrent event is persistent, and the mean recurrence time is 1/P,. (See W.
Feller [3] Chapter XIII.) This fact implies that the limiting distribution of &, is
independent of the initial distribution. For any time when an arriving call finds
all the m lines free, the future stochastic behavior of the process is the same inde-
pendently of the past. In a particular case we found the limiting distribution of &, ,
namely for the stationary process defined above. Hence, regardless of the initial
distribution, £, has the limiting distribution (8). This completes the proof of the
Theorem.

Evidently (8) is the unique stationary distribution of {£,}. We note that {£,}
becomes a stationary sequence if we suppose that the distribution of
(V(O); XI(O); ) XV(O)(O)) is as follows: P{V(O) = 0} = 0;

P{(0) =k x(0) > 21, --+, x(0) > m}
(24) = K7'Pra[l — H¥(x)] -+ [1 — H*(a)]
a1 = H@)l — H (2]
fork =12 ---,m — land
P{»(0) = m, x1(0) > @1, -+, xm(0) > Tu}
1 — H*@)] - [1 — H*(a)]
Am Py 27 1 — H(z)J1 — H*(z)]™ + Pa}.

In this case the probability that the nth arriving call finds k& lines busy is given
by P, (k=0,1,---,m) foreveryn = 1,2, --- .

(25)

3. Exponential holding times. If we suppose that the holding times have an
exponential distribution

(26) Hz) =1—¢* if 220,

=0 if <0,

and », denotes the number of busy lines immediately before the arrival of the nth
call, then we can see easily that {v.}] is a Markov chain. This Markov
chain is homogeneous, irreducible and aperiodic. The transition probabilities
P{v,1 = k|va = j} = pjr can be expressed as follows:

(27) Dk = j']‘c'l) f;o (1 _ e—;w)j-{-l—ke—lc,me—)\z)\ de

forj=0,1,---,m — 1and pmir = Pm-ir.
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In this case the limiting distribution limy. P{v, = k} = P, (k=0,1, --- ,m)
exists, is independent of the initial distribution and {P;} is the only stationary
distribution. Now we are going to find {P;}. We note that if we know the binomial
moments

(28) B, = > (NP
forr = 0,1, ---, m, then {P;} can be obtained by
(29) P, = 20 (=) (DB, (k=0,1,---,m).

For the determination of the binomial moments By, B:, - - - , B, we can deduce
a recurrence formula. If v, = j and 7,41 — 7, = z, then »,4; has a Bernoulli dis-
tribution B(j + 1, ¢ *) forj = 0,1, ---, m — 1 and B(m, ¢ **) forj = m.
Thus

E{(")] v =3}
(30) =M S Nde = PN+ ) if =01, ,m— 1,
=M [T Nde = ONN+ ) i j=m.
If {»,} has a stationary distribution {P;}, then E{(*)} = B, for all

n = 1,2, ---.Then by (30) we obtain that
(31) (A + mu)B, = B, + AB,.1 — M;%1)Bn,
or, in a simpler form,
(32) ruB, = MBr1 — AN(,21)Bm
forr =1,2, .-, m.
If we put (32) into (29) and we use (28), then we can write that
(33) Py = Nuk)™'Pi
fork =1,2, --- ,m, whence it follows that
(34) Py = (M) /K025 (V)G 7T
fork = 0, 1, --- , m. This is in agreement with (9) because now & = 1/u is the

expectation of the holding times.

We note that if we assume that P{»(0) = 0} = 0, P{»(0) = k} = P;_; for
k=1,2---,m— 1and P{»(0) = m} = Pnp_y + P,, then {r,} becomes a
stationary Markov chain for which P{v, = k} = P, (k = 0,1, --- , m) for all
n=1,2, .- .Inthiscase {»(t),0 = { < «} is not a stationary Markov process.
Conversely, if {»(¢),0 = ¢ < o} is a stationary Markov process, then {»,} is not
a stationary sequence.

4. Infinitely many lines. Suppose that in the telephone exchange every ar-
riving call realizes a connection without delay, that is, there is no lost call. In
this case m; the number of available lines, is infinite. Denote by v, the number of
busy lines immediately before the arrival of the nth call. The distribution of »,
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can easily be found. If at time ¢ = 0 there is no busy line, then we have
(35) P{Vn+1 =k }
= N ()T [T e[ H(w) du]"™{[3 [1 — H(u)] du}*

In case of any other initial state, (35) needs only obvious modifications. Regard-
less of the initial distribution we have the following limit:

(36) limpsw Piv, = &} = e (\a)*(k)™
fork=0,1,2,---.
If v, = k, then let xu, -+, Xax be a random permutation of the remaining

lengths of the & holding times in progress at the arrival of the nth call. Suppose
that all the k! permutations are equally probable. If we suppose that at time

= 0 there is no busy line, then forz; = 0, - - - , 7z = 0 we have
(37) Plomis = k, Xosra > 81, -+, Xosre > 24}
= GNP @) [T e ™ H(u) dul”™*{TTiw [ 11 — H(u + )] du} de,
whence
(38) limp.o Pfvn = k) X1 > 21, -+, Xuk > T4}

= 06 [l [t — H* (@)

where H*(z) is defined by (10). If we consider an arbitrary initial distribution,
then (37) needs only obvious modifications and (38) remains valid regardless of
the initial distribution.
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