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QUASI-STATIONARY BEHAVIOUR OF A LEFT-CONTINUOUS
RANDOM WALK

By D. J. DaLgY!
Unaversity of Washington

1. Introduction. Consider a random walk {S,} (» = 0, 1, - - -) on the integers
{--+,=1,0,1, ---} for which Sy = 1 and

(1.1) pr{Se1 = Sn + k| S} = pr (all m, k)
such that
(1.2) p1>0, p=0(Fk=—2 -3, ), omap =1

The main object of this note is to study the limits as n — « of

(1.3) a;" = pr{S, = j|min (S1, ---,8,) > 0,8 = 1}

when

(1.4) 0<m=14 D ikp <1,

the limits being zero when m = 1. In other words, if after a long time the process
has not yet visited the set {- - - , —1, 0} what (if any) is its asymptotic behaviour?

An extensive discussion of such questions in the context of Markov chains on a
countable state space is given in papers by Seneta and others, the most refined
results being given in Seneta and Vere-Jones (1966). This note may be regarded
as an illustration of their work in the case of a moderately simple Markov chain,
or as an addendum to what is already known on left-continuous simple random
walks. To simplify our discussion, we assume that

(1.5) {S.} is aperiodie, i.e., ged {jip;a > 0} = 1.

In the trivial case that p_; + po = land p1 < 1,a" = 1ifj = 1land =0
otherwise, so to eliminate this exception we assume further that

(1-6) D1 + Do < 1.
With this notation and
(1.7) f(s) = Zmaps™ (sl = 1),

we shall prove
TueorEM 1. For a left-continuous aperiodic random walk {S.} with mean

step-length m — 1 < 0,
liMpse @ = liMpoe pr {Se = 7|8, >0 (r =1, ---,n), S = 1}
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exists and equals a; . Either
(1) f(z) isnot analyticatz = landa; =0 (j = 1,2, --+);or
(i) f(2) isanalyticatz = 1,a; > 0 (j = 1,2, --), D i a; = 1, and

(18) A(s) = 2imas’ = (R — Ds/[Rf(s) — 8]  (Is] = 1),
where the positive constant R satisfies 1 < R < m™" and is defined by
(1.9) = so/f(s0) = l/f (s0) < 1/m,

sy being the positive root (if any) of the equation sf'(s) = f(s) and otherwise is
the radius of convergence of the power seres f(s).

2. Motivation and discussion. Defining sequences of random variables {N,}
and {Z,} (n = 0,1, ---) by means of

(2.1) No 0, Zn = SN,,, Nn+l = Nn + Zn;

it is known (cf. Spitzer (1964) p. 234 and Harris (1963) Chapter I) that {Z,}
is a Galton-Watson branching process with offspring distribution {f;} given by

(2°2) fi = Pi—1 (.7 = O) 1: ot ')'
The mean of the offspring distribution equals m as at (1.4), and when m < 1,
Yaglom’s theorem in its refined version (Heathcote, Seneta, and Vere-Jones
(1967)) states that the limits g; as n — o« of

(2.3) 9" =pr{Z, =jl|Z. > 0,Z = 1}
= pr{Sy, = j|min (Si, -+, Sy,) > 0,80 = 1}

exist and form a probability distribution on {1, 2, - - -}, the generating function
G(s) = 2.7 g;5 being the unique probability generating function solution with
@(0) = 0 of the equation

(24) 1 = G(f(s)) = m(l — G(s)).

There is a superficial resemblance between ¢;” in the second form of (2.3) and
a;" in (1.3), and originally I had hoped that knowledge of the limits a; would
shed more light on the nature of the distribution {g,}. Such was not to be the
case, as is shown by comparison of Theorem 1 and Yaglom’s theorem, and is
further exemplified in the last section of this note.

The present work should be regarded then as a contribution to the study of
the quasi-stationarity features of a left-continuous random walk, a special case
of which (simple random walk) may be found in Seneta and Vere-Jones (1966).
It is pertinent therefore to enquire further concerning the convergence prop-
erties of

(2'5) pjn=pI'{Sn=j,Sr>0(7'=1,“’,72—1)]80:1},

and in particular, the radii of convergence of the power series

(26) Pi(z) = 2 7-opi"2" (4

1,2, )
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and the related power series
(2.7) Pi(z) = 25=0pr {Sn = j| 8o = ¢}2".

These questions are related to other work of Vere-Jones (1962), (1967) whose
results apply immediately to the Markov chains {S,’} and {S,}, where

(2.8) (8.} denotes the process {S,} until its first exit from the set {1, 2, - - -}.

Vere-Jones shows that the transition probability generating functions of an
irreducible Markov chain have a common circle of convergence, on which circle
either all or none of the generating functions converge everywhere. Using his
terminology, we shall prove the following two theorems.

TueorEM 2. The power series P;(z) (j = 1,2, --+) converge on their common
circle of convergence |2| = R, where R is defined in Theorem 1 with R = 1 = s,
if f(2) is not analytic at z = 1. Thus, {S,'} is R-transient.

TueorREM 3. The power series P;j(z) (4,7 = 1,2, -+ -) converge on their common
circle of convergence |z| = R = so/f(s0) tf and only if
(2.9) sof (s0) < f(s0)-

If (2.9) holds, then {8,} is R-transient; otherwise, sof (ss) = f(s0) and {S,} s
R-null-recurrent.

Theorem 1 can be regarded as stating the conditions for the existence of a
non-trivial non-negative left R-invariant vector (a;) with 2 a; < o for the one-
step sub-stochastic transition matrix

(2.10) P = (ps) = (pi~s) (t,j=1,2--+)

of the Markov chain {S,'}. Our last theorem complements Theorem 1.

Tueorem 4. With so as in Theorem 1 and B = sy = 1 in case (1) of that theorem,
(b)) = (jso™) 4s a mon-trivial non-ncgative right R-subinvariant vector for the
transition matriz P, being right R-invariant if and only if sof (s0) = f(s0). When
so = 1, the vector (a;) witha; = 1(j = 1,2, --+) is a left R-superinvariant vector
for Pwith Y ima) = o = D 7aa/b;; whenso > 1, D jmab; = .

3. Proof of Theorem 1. The key steps in the proof rely on the left-continuity
property of {S,} and on Kemeny’s (1959) individual ratio limit theorem for
random walks (ef. also Stone (1967)). Setting

q(2) = 201"
(3.1) = > napr{S, =0,8>0(r=1,---,n—1)|8 = 1}"
(lel = 1),

it is known (e.g. Spitzer (1964), p. 234) that w = ¢(2) is the unique root in
|lw] < 1 of

(3.2) ¢ =w/flw)  (ju] <1).
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Also, because the walk is left-continuous,
(3'3) gnt1 = P-1 Pr {Sn = 1781‘ >0 (1" =1, y v — 1) ISO = 1} = p—lpln
where p," is defined at (2.1), so

(34) Pi(2) = q(2)/p-rz.
Defining
(3.5) Qn = Qo1 + Quia + -+, (n=0,1,--),

the quantities a;" which we wish to study can be written in the form
(86) 4" = p"Q. " = p//palp” + p" A+ --2) (G =12 -)

The quantities a;""" and a;” are related by the forward Chapman-Kolmogorov
equation, namely, from

p = D i v
there follows forj = 1,2, ---
(3.7) paau = ppin/@n = pi"/Qut1)(@u1/Qa) — i piapi”/Qa.
Thus to prove the existence of lim,.« a;", it suffices to prove the existence of
(3.8) o = limpwa”  and  p = limMpsew Qui1/Qn.

From the assumption that {S,} is aperiodic, we have that p" > 0 for all
sufficiently large n, so for such # we can write from (3.6) with 7 = 1 that

(3-9) (p—laln)_‘l =147+ ralnr + -+
where
(3.10) rn = p"/pi"

Considering (3.9), we assert that
(3.11) limg,eai” exists if and only if img.er, = r exists, 0<r=1.

To justify the assertion, observe that b, = (p_a™) " satisfies b, = 1 4 73bpy1,
and lim,.. b, exists if and only if lim,.. a;" exists, interpreting b, — o when
" — 0. Then r, = (b, — 1)/b,ya (which is defined for all sufficiently large n),
and the convergence of a;" implies the convergence of r, ; we note that ;" — 0
implies that 7, — 1. Conversely, if r, — r, then for arbitrarily small ¢ > 0 and

for all sufficiently large n,
(p—laln)—l S14+ G-+ —e'+ - =1/0 —7+¢),

soifr,—r=1,paa6" >0 (n— »).If r <1, then when ¢ is such that r < r
+ ¢ < 1, we have

(P <1+ (r+e)+ 4+ + - =1/(1—1—¢
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for all sufficiently large n. Hence, in both cases, if 7, — r, we have proved (3.11),
and indeed more, namely

(3.12) limpaepoae” = 1 — limasers

when either side exists.
Now for a left-continuous random walk it happens that

(3.13) G =pr{8 =08>0@(r=1-,n—1)][8 =1}
=pr{S. =0[S =1}/n

(e.g. Spitzer (1964), p. 234), so (for all sufficiently large n)

(38.14) 14 = popt""/p-1p1" = Qura/qnt .

(n + 1) pr {Sur2 = 0[S = 1}/(n + 2) pr {Sars = 0[S = 1}.

We now appeal to Kemeny’s (1959) generalization of the Chung and Erdés
individual ratio limit theorem for aperiodic random walks; this shows that

(3.15)  liMpae pr {Sps = 0[S0 = 1}/pr {Surs = 0[S = 1} = f(2(0))/h(0)

where A(¢) is the functional inverse of the strictly increasing function

(3.16) g(s) = (sf'(s) — £(8))/1(s) (0=s<s),
where s; is the radius of convergence of f(s), and the range of definition of A(-) is
made (— o, ») by defining for ¢ < g(0) = —1, h(¢) = h(g(0)) = 0, and, if

lim, 1., g(s) = g(ss — 0) < o, for ¢t = g(s1 — 0), a(t) = hglst — 0)) = &
= lim sup {s:f(s) < »,s > 0}. We find £(0) as follows. If f(s) — = ass— s,
then there exists so in (0, ;) such that

(3.17) sof (80) — f(s0) = 0 = g(so),
in which case 2(0) = s, and
(3.18) F(h(0))/h(0) = f(s0)/s0 = f'(s0)-

If f(s) = f(s1 — 0) < © (s— s1), and hence f(s; — 0) = f(s1) because f(-)
has non-negative coefficients, there may still exist so in (0, s;] such that (3.17) is
satisfied, so (3.18) would again be true; if not, then sif (s1) < f(s1), B(0) = s,
and f(2(0))/h(0) = f(s1)/s1. Thus, with s defined as in the theorem, and re-
calling (3.14), we have that

(3.19) rn— 1 = f(s0)/50 Z [ (30) Z m,

the last inequality following from g(1) = m — 1 < 0 and hence A(0) = 1. If
s > 1, since g(s) is continuous and strictly increasing in (0, &) with g(1) =
m—1<0,wehaves, > 1andsof(s) < so.If sy = 1thenso = = landr =1,
so we have that » < 1 if and only if f(2) is analytic at z = 1, which by (3.12)
proves that a; > 0 if and only if f(2) is analytic at z = 1.

Next, by (3.3) and (3.6), P = P—1p1"/Qn = Qui1/Qn = 1 — Qn11/Qn s
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so the convergence of p_ja;," to 1 — r implies that @.+1/Q, — r(n — =), and then
by (3.8) we have proved the existence of the limits a; forj = 2,3, - - - . Further-
more, these limits satisfy (from (3.7))

(3.20) ra; = D i1 i,

witha; =0(j=1,2,---) whenr = 1 and a¢; = 0, a; > 0 when r < 1. Since
ged {j:pj1 > 0} = 1, the matrix P = (px) = (po—y) (4, b = 1,2, ---) is irre-
ducible, and therefore for r < 1, the non-trivial non-negative left-eigenvector
(a1, a2, ---) has every element strictly positive (e.g. Seneta and Vere-Jones
(1966), p. 408). Also by Fatouw’s lemma, 4 = > j4a; < 1, and to show that
equality holds, we sum over 7 = 1, 2, --- in (3.20), obtaining r4 = 4 — pia
= A — 1+ r,s0 when 7 > 1 we have A = 1. Forming the generating function
A(s) = 2 Paas'(|s| < 1) from (3.20) yields (1.12) on identifying R in (1.12)
with 77", and hence (1.13). Theorem 1 is proved.

Observe that the inequality B < 1/m has a probabilistic interpretation, namely
that if ® > 1, then

1<A4’'1) =R1 —m)/(R—1)
and hence Rm < 1. Trivially, B < 1/m when B = 1.
4. Proof of Theorems 2, 3 and 4. By Vere-Jones’ (1962) work we know that

none or all of P;(z) (7 = 1,2, --+) remain finite asz T R, so it suffices to show
that lim, ;- P1(2) < «, ie., by (3.4) that
(4.1) lim, 1z q(2) < .

Let {s,}] be a monotone increasing positive sequence converging to s,. Then
2, = s/f(s,) is a monotone increasing sequence converging to so/f(s)) = R,
50 q(z,) = s, — 8¢ < » asz, — R, provided that ¢(z) is in fact the inverse in
0 < w < sof 2 = w/f(w). But this is readily seen by noting, first that ¢(z),
being a power series with non-negative coefficients, has its first singularity on the
positive axis, and then that the range of definition of ¢(z) can be extended by
analytic continuation from |z| < 1 to a neighbourhood of that part of the posi-
tive axis corresponding to 1 < w < w, provided only that f(w) is analytic and
(w/f(w))" does not vanish on [1, wp), i.e., provided 1 < w < 8. Hence (4.1),
and Theorem 2 is proved.

In proving Theorem 3 we again use Vere-Jones’ (1962) result in asserting that
either none or all of the generating functions P;;(z) converge on their common
circle of convergence z = R; this ¢s the circle of convergence because by (3.13)
it coincides with the circles of convergence of the generating functions P;(z).
Consider next the left-continuous random walk {S,*} with one-step transition
probabilities

DI = Di-i = Dimiso’ T /f(80) = 86’ ‘Piiso/f(s0).

Then the generating function P;(z) of the transition probabilities pr {S,* =
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7180* = 1} is given by
Pii(z) = s’ "Pi(zso/f(s0)).
Clearly E(2°7" 7" | 8y*) = f(si2)/2f(s0), s0
BE(S™ — 80" [80%) = —1 + sof (0) /f(s0)-

Consequently lim,1; P¥j(z), which converges if and only if the one-dimensional
random walk {S,*} is transient, is finite only if sof’ (s0) 5 f(so), and since sof (80)
= f(so), we obtain the assertion of the theorem. The walk {S,*} is necessarily
null, so when sof’(s0) = f(s0), the walk {S,} is R-null-recurrent.

The proof of Theorem 4 consists of the statement,

R 2 5apabs = [/f(s)] Ziapis(G — ¢ + 1 + 4 — D’
= [0 /f(s0)]lsof (80) + (¢ = D)f(s0)] = bs

with equality holding if and only if sof’ (so) = f(so). The rest of the theorem is
proved as easily, the only part needing explanation being the statement that
> %iab; = o: this sum equals lim,.,, 4'(s), which equals infinity because
A(s) — oo for s — so (ef. (1.8) and (1.9)). Indeed, if we had D ab; < «, we
should have a contradiction of {S,’} being R-transient, for by Lemma 1 (iii)
of Seneta and Vere-Jones (1966), if for the irreducible matrix (p.;), (a;) is a
non-trivial non-negative left R-invariant vector and (b;) is a non-trivial non-
negative right R-subinvariant vector for which Y a,b; < o, then the matrix
is R-positive, and conversely.

6. Example. To illustrate case (ii) of Theorem 1, suppose that
(51)  f(s) =a + bs/(1 — ¢s) 0<abc<l;b=(1—a)(l—=2¢).

To ensure that m < 1 all that we require of @ and cis that 1 > a > ¢ > 0. Noting
that f(s) is analytic in |s| < s; = ¢ and that f(s) — % as s — &, we have
first to find sy, the root in (1, ¢™') of

bs/(1 — ¢s)* = a + bs/(1 — cs).
We find that

1! (a4+c=1),
l{ac — [ac(l — a)(1 — &)} /c(a + ¢ — 1)| (a + ¢ = 1).

We do not give R in terms of a and ¢ except when a + ¢ = 1, in which case {p;}
is a geometric distribution rather than a modified geometric distribution; when
a=1—¢,R=1/4c(1 — ¢),whichis >1 because ¢ > ¢ > 0 and hence 2¢ < 1.
Not even with @ = 1 — cis {a;} a geometric or modified geometric distribution;
rather it is related to the negative binomial in this special case. These results are
more complicated algebraically than the corresponding results concerning {g;}
for the embedded branching process, for which G(s) = (a — ¢)s/(a — ¢s) and

So

Il
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so {g;} is always a geometric distribution on {1, 2, ---}. It can be verified that
both G'(1) < A’(1) and @’(1) > A’(1) are possible by suitable choice of a and c.
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