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THE STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL
MARKOV PROCESSES!
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1. Introduction. We shall consider a time homogeneous Markov process
Xo, X1, --- with state space an abstract measurable space (X, ®), where the
o-field ® is assumed generated by a countable collection of subsets of X and {x}
is assumed to be in ® for every « ¢ X. Forn = 1 the n-step transition probability
function is denoted as P" (z, E). Forn = 0 we define P°(z, E) = Ix(z), the indi-
cator function of the set E. The following recurrence condition will be assumed
throughout. )

Conprrion (C). There exists a o-finite measure ¢, ¢ (X) > 0, such that for
every B e®, ¢(E) > 0 implies Prob {X, ¢ E i.0./Xy = x} = 1 for all z¢ X,
where “i.0.” means ‘“‘infinitely often’. This recurrence condition was first im-
posed by Harris [2] and the following result was established :

(i) There exists a o-finite measure 7 such that ¢ is absolutely continuous with
respect to w and forevery Ec ®,n = 1, °

1.1) w(E) = [ n(dz)P"(z, E).

(The domain of integration will be understood to be X when none is mentioned.)
Such measure 7 is unique modulo a constant multiplier.

@ii) = (&) > 0implies Prob {X, ¢ Fi.o0./ X, = z} = 1 for all z.

A measure satisfying (1.1) is usually called an invariant measure.

Orey [5] showed that there exists a unique integer d, which is the number of
“cyclic sets” of the process. If d = 1 we shall call the process aperiodic, otherwise
periodic. Suppose X = {0, 1, 2, - - -} and ¢ is the counting measure, then Con-
dition (C) gives us an ‘‘irreducible recurrent Markov chain.” If for any %, j,
k, h ¢ X, and any integer m

(1.2) lim, P (4, §)/P" (k, k) = = (j)/x (h)

holds, then we say the “strong ratio limit property’’ holds for the chain. Obvi-
ously if the chain is periodic (1.2) cannot be true. Even if d = 1, a counter-
example in [1] shows that (1.2) need not hold for an irreducible recurrent Markov
chain. Orey showed [6] that a necessary and sufficient condition for (1.2) to hold
in this special situation is that P"** (0, 0)/P"(0,0) — 1 asn — . Our aim is to
prove results similar to (1.2) when X is quite general and Condition (C) holds.
The conditions that we impose and the methods that we use are natural analogues
of those used by Orey [6] and Pruitt [7] in the discrete situation. Orey’s result
mentioned above for the discrete situation follows directly as a special case of our
Theorem 2 given below.
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Before stating our results it is necessary to introduce some notation. f"(z, y)
will denote the Radon-Nikodym derivative of the absolutely continuous part of
P"(z, E') with respect to = (the invariant measure).

DeriniTION 1.1. Let 8 denote the class of sets A € ® of positive w-measure such
that for some n (depending on A ) infezes yea f* (x, y) > 0.

Orey [5] showed that 8 is nonempty. It is also known [4] that X can be written
as a countable union of sets in 8 plus a 7-null set. If d = 1 (aperiodic case) then
the union of two sets in § is again in 8. This is also given in [4]. Since d = 1 is
necessary for the strong ratio limit property, we shall from now on assume, in
addition to Condition (C), that d = 1.

REeMARK. It is a simple matter to check that a set in 8 must have finite r-meas-
ure and that a subset of a set in § is again in § if it has positive w-measure.

ConpitioN (F). There exists a set ' ¢ 8 and a point 6 ¢ F' such that for any
z € F, any measurable subset F of F

lim, (P"" (2, B)/P"©, F)) = = (E)/m (F).

Remark. Notice that Condition (F) is equivalent to requiring that for any
integer m, any z ¢ F, and any measurable subset F of F

lim,, (P"™" (z, E)/P" @, F)) = = (E)/m (F).

The following main results will be established in the next section.
TueoreM 1. If Condition (F) holds and

lim sup, (P""(z, F)/P*(6,F)) < 1
for x & 8, then for all z, y € S and every integer m

lim, (P™™ (z, @)/P"(y, H)) = =(G)/=(H)

for any sets G, H in 8.

Remagk. It will be clear from its proof that Theorem 1 remains valid if » is
replaced by n;, everywhere in its statement, {n;} being an increasing sequence of
integers tending to 4 .

TrroreEM 2. If Condition (F) holds, then for any sets G, H in § and every
integer m

P"™(z, G)/P" (y, H) — = (G)/m (H)

i w X w-measure on sets of finite # X w-measure, where = X w denotes the prod-

uct of T on (X x X, ® x ®). Precisely this means, givene > 0and Re® x ®

withw x 7 (R) < o,

lim,7 x =({(z, y) e R:[P"™ (@, G)/P"(y, H) — =(@)/x(H)| > ¢ = 0.
NoraTtion. For any probability measure u write | u(dy)P"(y, E) = P" (4, E).

TrEOREM 3. A necessary and sufficient condition in order that for any probability
measures u and v, any integer m and any sets G and H in §,

lim, (P™*™(u, @)/P" (v, H)) = = (G)/m(H),
is that Condition (F) be satisfied and that there exist positve integers My and M, such
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that for alln = My and all x ¢ X
1.3) P""'(x, F)/P"6,F) < M,.

REMARK. Strong ratio limit property under Condition (C) has been considered
by Levitan [4]. Our results and proofs seem to be quite different. We make no

attempt here to compare them with the results in [4].
We introduce the following notation which will be needed in the proofs.

PP (@, A) = Prob{X: F, -+ , X, eF, X, e A|Xo =z} for n= 2.
= Pz, A) for n = 1.

2. Proofs. We start with some lemmas. Lemma 2.1 (in a weaker form) can be
found in [4]. The following proof is much shorter.

LemMA 2.1. For any sets F, G in $ there exist positive integers j and M such that
forallze X andm = 1,

(@) #P" (@, G) = M X ia oP"(, F),

(b) P"(zx, G) < M-P" (, F).

Proor. We mentioned in Section 1 that if d = 1 then the union of two sets

{0 8 is again in S. Hence F u(Ge8. Hence there is an integer j such that

infngUG,ygFUG Ff(x,y) > 0.Pick e > 0 so that e-w(F) =< 1 and
infzerue,verue f' (z, y) 2 e
Then for any z ¢ X,
i rP (@, F) 2 P, F) 2 [rn(@y)f (@, y) Z en(F).
Thus for z ¢ X,
Yia P (@, F) 2 2 [or pP" (@, dy) P (y, F)
em(F) eP™ (x, G\F).
Hence e¢-7(F)#P" (&, G) £ DiorP™* (2, F), since we picked ¢ so that
er(F) S 1. Weset M = (ex(F)) ™" to get (a).
To show (b) we see that
Pz, F) z [« P"(x, dy)P’(y, F).
But forye G, P(y, F) = [ f (y,2)mw(dz) 2 e (F). Hence
P, F) =z en (F)P"(z, G)

for all z ¢ X. Again set M = (e-w (F)) ™.
LemMA 2.2. Condition (F) implies that for any bounded ®-measurable function
f, x e F, and any integer m

@.1) lim, [» P™" (2, dy)f(y)/P" 6, F) = [ (@) @)/ (F).

Proor. If f = Iy, the indicator function of some E & ®, then for z e F/ (2.1)
follows from Condition (F'). Hence (2.1) holds for linear combinations of indi-

%
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cator functions. It is enough to prove (2.1) for non-negative f. Let f; f, where
fiis a linear combination of indicator functions of sets in ®. Then for j = 1 we

have
lim, ([ P"™ (z, dy)f;()/P"©, F)) = [rx(dy)f;(y)/m(F).

Since f is bounded we can pick f; so that f; -f uniformly. Then
|[¢ P (@, dy)f @)/P" @, F) — [rm(dy)f @)/m (F)
S |[r P77 (=, dy)f@)/P" 6, F) — [» P"™(z, dy)fiy)/P"@, F)]
+ |[2 PP (z, dy)f; ()/P" 6, F) — [rm(dy)f;(y)/x(F)|
+ e @)s@)/xE) ~ [em@y)f @)/xEF).

Pick j sufficiently large so that for all y ¢ F we have [f;(y) — f(y)| £ ¢/3. Then
n can clearly be picked large enough so that for x ¢ F/ the first and the second
terms on the right side of the inequality each is less than ¢/3. This finishes the

proof.
Lemma 2.3. Condition (F) ¢mplies that for any G e ® and any x ¢ X
(2.2) lim inf, (P"*"(z, G)/P" 6, F)) = = (Q)/x (F)

holds for any integer m. (If # (@) = + o then = (@)/w (F) is interpreted as + « ).

Proor. Clearly it is enough to establish (2.2) for sets @ of finite w-measure.
The following decomposition formula is easily established. The arguments are
essentially the same as in [1] for the discrete case.

P (2, G) = #P" (2, @) + 200 [5 P (z, dy)
[T [2 PTTT (Y, de) hPA e,y G
Hence for » sufficiently large we have
23) P, Q) 2 X [r 2P (5, &)Xt [2 "M (g, d2) P (2, )]
= sy(x, m, n; @), say.

We will show that limy lim,, (sy (z, m, n; G)/P"* (@, F)) exists for all integers m,
all z ¢ X and equals = (G)/= (F'). This fact will be needed later and is certainly
enough to prove the lemma. By Lemma 2.2 we have

lim, ([ P"™ ™ (y, dz) #P*(2,G)/P" (8, F)) = [¢w(d2) «P* (2, G)/x (F)
for y ¢ F. Using this fact we immediately conclude that for every N
lim, sx(z, m, n; G)/P"@, F)
= (#(F) (V=1 e P’ (2, F)) - (Q_i=1 [ w(d2) #P*(2, @)).
Hence
limy lim, sy (x, m, n; G)/P" 6, F)
= @) QP (=, F)) (i [rw(de) nP (2, G)).
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But Condition (C) implies that Y, =P’ (2, F) = 1, because the expression is
simply the probability of eventually hitting F starting from z. Also,

Do [rw(de) #P (2, @) = 7 (G) (see Harris [2]).

This proves the assertion.
Proor or TaEOREM 1. It is enough to show that under the condition of
Theorem 1 for any z € A and any integer m we have

lim sup, P**" (x, G)/P" 6, F) < =(G)/x (F).
The result then follows from Lemma 2.3 and similar arguments for H. We write
(24) P (x, G) = sw(x, m,n; G) + ry(x, m, n; G)

where the first term of the right is defined already, the second term is the re-
mainder. For z £ S we have lim, (P*™ (z, F)/P"(®, F)) = 1 because of Lemma,
2.3 and the additional condition of Theorem 1. Hence if we have F in place of G
in (2.4) and we divide through by P" (6, F) we conclude that for z £ S

(2.5) limy lim, rx (x, m, n; F)/P" 6, F) = 0,
because we have already shown in the proof of Lemma 2.3 that
limy lim,, (sw(z, m, n; F)/P"@,F)) = 1
for all . On the other hand,
lim sup, P"*" (z, @)/P" (9, F) < lim sup, sy (z, m, n; G)/P" (6, F)
+ lim sup, ry (xz, m, n; G)/P" @, F) for all N.

Hence we have by Lemma 2.3 as we let N — « on the right side,
lim sup, P**" (z, G)/P" (8, F)

< 7(@)/m(F) + lim supy (lim sup, rx (z, m, n; G)/P"(6, F)).

It is thus enough to show that the last term equals 0 for z ¢ S. By Lemma 2.1 (a)
we have for G ¢ $ an integer j and a positive number M such that

#P" (@, G) < M D jea P (2, F)

for all z ¢ X and all m = 1. Using this fact we conclude after some simple arith-
metic that

rx(x, m,n; G)/P"0,F) < M > iiry(x,m + k, n;F)/P"®, F).
Hence
lim supy (lim sup, 7~ (z, m, n; G)/P" 6, F))
< M > i, limsupy (lim sup,r~(@, m + k,n; F)/P*0, F)) = 0.

This finishes the proof of Theorem 1.



STRONG RATIO LIMIT PROPERTY FOR SOME GENERAL MARKOV PROCESSES 991

Proor oF THEOREM 2. Let ¢, (z) = P (z, F)/P" (9, F). Let us assume that
every subsequence of {¢,} has a further subsequence coverging to 1 a.e. (v). Then
we are done, because if a subsequence {¢.,} contains a further subsequence
{¢ny} Which converges to 1 a.e. (r), wherelet N be the exceptional =-null set, then
by the remark after Theorem 1 we have for (z,y)e (X — N) x (X — N) and
G, Hes

lim,y P~ (2, @)/P™ (y, H) = = (G)/m (H).

This clearly finishes the proof provided we prove the assumption about {¢, (2)}.
We have

(26) 1=P"@,F)/P"6,F) = [P°@® d)P @ F)/P"6F).

By Lemma 2.3 we have lim inf, P" " (y, F)/P" (6, F') = 1 for all y. It is easy to
conclude from (2.6) and this fact that P" " (y, F)/P" (9, F') converges to 1 in
P™ (9, dy)-measure. But as a consequence of Condition (F) we have
P (6, F)/P" (6, F) — 1 asn — «, and hence we conclude that ¢, (x) — 1in
P™ (6, dy)-measure. Since 1, was arbltrary we have that ¢, (z) — 11in p° (@, dy)-

measure for every k. Let {n:} be any sequence of integers /- «. Then there exists
a subsequence {7} 5= such that eah — Lave. (P9, dy)). Let {n:®}x © {mc}s

so that go(» — 1 ae. (P*(0, dy)) as lc — oo, We proceed in this manner and con-

struct the dlagonal subsequence {nk( )

en®> — 1 ae. (P (6, dy)) for r=1,2---

}e=1 . Then we have

Let N = {x:¢. (z) - 1}. Then P'(§, N) = 0 forr = 1, 2,---. Hence
Prob {Hitting N eventually | X, = 6} = 0. This meansw(N) = 0 as a consequence
of (ii) of Harris’ result mentioned in Section 1. Thus we have demonstrated that
every subsequence of {¢,} has a further subsequence that converges to 1 a.e. ().
This establishes our result.

Proor or TueEorEM 3. The necessity of the conditions is almost obvious. Con-
dition (F) is clearly necessary. If the second requirement is violated, then there
exist sequences of integers {nx} and {M;} tending to infinity and a sequence {;}
in X such that

Pz, , F)/P*@,F) = My, E=1.

We can clearly pick these sequences so that M, = 2 Let “ be the probability
measure which puts all the mass in the {z;} with u ({xk} ) = 1/2"and let» ({6} ) =1.
Then

P (u, F)/P™(, F) 2 27 - P (i, F)/P™ 6, F) 2
This shows necessity.
To prove sufficiency we first assume that lim, (P""(z, F)/P* (0, F)) = 1 for
all z ¢ X. Then Theorem 1 applies and we have for any G € 8, all z ¢ X, and any
integer m

2.7) lim, (P*™ (z, G)/P"(,F)) = = (G)/x (F).
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Lemma 2.1 (b) along with the condition (1.3) now yield the fact that for every
m there is an integer M such that forall « ¢ X and all sufficiently large n we have

P (x, G)/P"(,F) < M.
This allows us to apply the dominated convergence theorem to (2.7) and we get
lim, (P™*" (s, G)/P" @, F)) = = (G)/x (F).
The rest is now obvious. It thus remains to show that the conditions of the theorem
imply
lim, (P""'(z, F)/P"(@, F)) = 1 forall zeX.

A theorem of Jamsion and Orey [3] says that under Condition (C) if d = 1 then
|1P" (4, -) — P"(v, )| — 0 asn — o, where ||-|| denotes the total variation of
a finite signed measure. Now,

\lP"* (z, F) — P8, F)I/P" (6, F)|
< [P (@, dy) — P™@, dy)|| P* ™ (y, F)/P" (6, F).

We now use condition (1.3) and the fact that P*" @, F)/P" (6, F) — 1 (conse-
quence of Condition (F)) to conclude that for all sufficiently large n (depending
on 7o) the right side of the above inequality is dominated by

2M, ||P"* (, dy) — P™ (0, dy)].
Hence
lim sup, [P (z, F) — P" (0, F)I/P"®, F)| < 2M,|[P™"(z, dy) — P™(, dy)]!.

But the left side does not depend on 7y and so by the Jamison-Orey theorem,
upon letting n, to tend to 4+ «, we conclude that it must be equal to 0. This
finishes the proof.
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