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WEAK APPROACHABILITY IN A TWO-PERSON GAME!

By Tien-Fane Hou®

Unaversity of California, Berkeley

1. Introduction. Let M = |m;;| be a 2X2 matrix whose elements m;; are
probability distributions on the Borel sets of a closed bounded convex subset X
of Euclidean 2-space. We associate with M/ a game between two players, I and
II, with the following infinite sequence of engagements: At the nth engagement,
n = 1,2, -+, player I selects a number p, and player II selects a number g,
from the unit interval (each selection is made without either player knowing the
choice of the other player), a point ¥, ¢ X is selected according to the distribu-
tion

(1.1) pagemu + pa(l — gu)mz + (I — pa)gama + (1 — pa) (1 — gu)mez,

and then Y, , p, and ¢, are announced to both players.

A strategy for player I is a function P defined on the set of all # tuples (Y1, p1,
@3 Ya, Pa,gn)yn = 1,2, -+, with values P(Yi, p1, q15 -+ 5 Ya, Puy Gn)
= Pnu1 in the unit interval, and py = P (&), where & is the empty sequence, is
simply a point in the unit interval. A strategy @ for player II is similar: @ (Y1, p1,
@3 Y, Pry@n) = @a1,0 = oy = 1, and 1 = Q () is a point in the unit
interval. For a given M, each pair P, @ of strategies determines a sequence of
random variables Y1, Y, --- in X.

In this paper we investigate the controllability of the behavior of the random
variable Yy = .1 Y,/N for each N, especially N large. For a given M and a
set S in 2-space, can one of the players guarantee that ¥ is in or arbitrarily near
S, with probability approaching 1 as N tends to infinite?

We paraphrase here the following definitions given by Blackwell [1]: For a
given M, a set S in 2-space is said to be weakly approachable in M by I (IT) if
for every » > 0 there is an N, such that, for every N = N, there is a strategy
P* for I (Q™ for IT) such that

(1.2) Prob {oy > v} < v for all Q(P),

where 8y = 6(¥Yy, S) denotes the distance of the point ¥y from S, and Y7,
.-+, Yy are the variables determined by P* Q(Q%, P). The set S is weakly
excludable in M by I(II) if there exists a A > 0 such that for every » > 0
there is an Nq such that for every N = N, there is a strategy P for I (Q* for IT)
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790 TIEN-FANG HOU
with
(1.3) Prob {6y < A} < » for all Q(P).

In terms of the above definitions, we investigate the collection of sets in 2-space
which are weakly approachable by I(II) and the collection of sets which are
weakly excludable by I (IT). The solution of a special case (mu = m = (0, 0),
ma = (1,0), me = (1, 1)) has been mentioned by Blackwell [1]. In this paper
we consider the general case.

It is clear that the weak approachability and the weak excludability for a set
S are the same for its closure; hence, we may assume that S is closed. Clearly
each superset of a weakly approachable set is weakly approachable, each subset
of a weakly excludable set is weakly excludable, and no set is weakly approachable
by one player and also Weakly excludable by the other player. For any palr of
disjoint closed sets S, S’, if S is weakly approachable by a player, then S is
weakly excludable by the same player. Thus any condition for weak approach-
ability implies a condition for weak excludability, and we may focus our atten-
tion only on weak approachability.

For each matrix M, let M be the matrix whose elements 7; are the expecta-
tions of the distributions m; . We write M = a, e = b, M = ¢, and Mgy = d
as a matter of convenience. For each p, 0 < p < 1, let R (p) be the convex hull of
the points pa + (1 — p)cand pb + (1 — p)d. Foreach ¢, 0 < ¢ = 1, let T(q)
be the convex hull of the points ga + (1 — ¢)b and ¢¢ + (1 — ¢q)d. Let Q" be
the convex hull of the points a, b, ¢, d, and let @ be the union of R (p) for all p;
in fact, Q is also the union of T (q) for all ¢ and is a subset of Q*

For a given M Wlth a convex €, which means that the quadrilateral abdc is
convex and @ = ¥, it turns out that every set in 2-space is either weakly ap-
proachable by one player or weakly excludable by the other player (Theorems 2
and 4). There exists a collection of sets &* such that a set i 1n 2-space is weakly
approachable by one player if and only if it contains a set of &* (Theorems 3 and
5). Sufficient conditions for weak approachability are given in Section 2 and
Section 3, and necessary conditions are given in Section 4.

Sufficient conditions for weak approachability for matrices with nonconvex Q
are introduced in Section 5, Section 6, and Section 7.

ReMARK. For a matrix of degenerate probability distributions, that is M = M
almost everywhere, we neglect the null set and write M = M.

We introduce the following example to illustrate some ideas of this paper.

Exampre 1. Let M = M,a = (3,1),b = (0,1),¢c = (1,0) and d = (0,0).

Every continuous graph from the (line) segment b d to the segment ac in the
trapezoid abdc is weakly approachable by player I, provided the slope is bounded
between —1 and 42 (slopes of the two diagonals of the trapezoid) (Theorem 1).
However, many nonconnected graphs are also weakly approachable by I. For

example, the set By u B,, where B, is the segment (0, 3) (7%, ) and Be is the
segment (3, 2) (%, %), is weakly approachable by I (Theorem 2). For every N,
player I has a strategy which guarantees that Yiy € Bi u By, as follows: p, = 0
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for1 =n < Nandp, = 1for N < n = 2N, so that Yo = (u, 3);ifu < §,
P = 0for 2N < n = 3N, then Ysv e By ;and if u > % pn=1for2N < n = 3N,
then Y3N€Bz.

2. Preliminary sufficient condition for the case @ = @*. Throughout Sectlons
2, 3, and 4, it is assumed that the quadrilateral abdc is convex (@ = Q™).

Except for the special case in Lemma 10, in which @ has empty interior, we
may assume d = (0,0),b = (0,b*),b” = 0,d" > 0, ¢” > 0, where ”, v’ are the
z- and y-coordinates of the point w = (0°, ) in 2-space.

Let F be the graph of some continuous function f which satisfies that

(i) thereis a point u; = (us", f(us")) e T (1),

(i) fis defined and (z, f(z)) eQfor all 0 < z = u/5

(i) px = (& — W)/ £ (@) — f(@))/ @ — 21) < a’/a® = p* for all
0 < 21 < 2 £ u/, where px and p”* are the slopes of the two diagonals bc and
da,

(iv) F = {(z,f(2)):0 =z = u'};
and let & denote the collection of all such subsets F of Q. Then we have the

following theorem.

TuEOREM 1. If a set S in 2-space contains an F, F ¢ &, then S is weakly approach-
able by player 1 and he has a pure strategy (i.e., p» = 0 or 1 for all n).

We begin by showing that this theorem holds for those A/ with degenerate
distributions, that is M = M. Let

(2.1) wn = 2(@n, @n) = Pagn@ + Pa(l — ¢a)b
+ @ =pa)gc+ A —pu)(A —qu)d

be the point in © chosen by the two players at the nth engagement with p., ¢.
as their strategies, and let @, = D 7 wi/n. For a fixed positive integer N, let
My = Moy = M and

(2.2) M, = Mux = || nés/N + (N — n)ig;/N ||
_||@n bn foreach 1 < n £ N.
cn da

We define @, = Qu,x, Ba (p), T.(q),and z,(p,¢),0 =n = N,and0 = p, ¢ = 1,
with respect to M, in the same way that we define @, R(p), T (¢) with respect
to M as follows:

(2.3) R.(») = {elpan+ 1 —p)ea] + 1 — @)[pbn+ (1 — ) du]:0 =
(24) T.(q) = {algan + (1 — )bl + A — @)fgea + (1 —q)du]:0 S
(25) Q, = U0§p§1Rn(p) = U0§Q§1 Tn(Q))

IIA

1,
1,

I\
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and
(2.6) z.(p, q) = pgan + (1 — @b + 1 — p)ge. + (1 — p)(A — ¢) dn,

where @y = a, by = b, ¢co = ¢, dy = d, Roy(p) = R(p), To(g) = T(q), @ = Q
and 20(p, ¢) = 2(p, q). For a given @,, 1 < n < N, Q, is the conditional range
of oy and R, (p)(T.(q)) is the conditional range of @y if pn = p(gn = ¢) for
n <m = N.z,(p, q) is the point in @, chosen by the two players if they play one
engagement with J/, and adopt p, ¢ as their strategies.

Lemma 1. If we denote Mo,y by Moy—m, 0 < m < N, then we have

(2.7) ]iln = MnN = Mn—mN—m

forallm < n = N, that is, M, can be determined by Mm, p;and q; form < 1 < n.
Proor. Since

Mumym = ||[(n — m)omn/(N — m)
+ (N — n)(maw/N + (N — m)my;/N)/ (N — m)],
where @mn = D omi12n(Di, ¢:)/ (m — m) € R, ; we have
Momvom = |1@n/N + (N — 0)iis/N|| = M. Q.E.D.

COROLLARY 1. 2, = Q,,x 18 monotonically decreasing to the point &y as n tends
toN.

Proor. Since (no,/N + (N — n)fy/N)eQand @, C Qforalll =n = N
and 1 =< 4,7 < 2, we have
(2-8) Qn = Qn—m,I\/’—m C Q0,1\/'—m = Qm

forall0 < m < n < N by Lemma 1 and Qy = oy by definition. Q.E.D.
CoROLLARY 2. For each 1 < n < N, we have

2.9) Max, weq, 8 (@, @) < k(N — n)/N
and
(210) maXogyp, 11<15(zn—1 (p) Q)7 Zn(p, Q)) é k/N7

where b = MaX, e 8 (0, o) s the dzameter of Q.
Proor. Since 3. (p, ¢), 20, ) = (N — n)bG, ), 2@, ¢))/N,

2 (P 9) = 21D, @) + EPas ) — 20, 0))/N, and 8@ (Pn, gn), 2P, ) =
for all0 < p, ', P, 4, ¢, = < 1, the corollary follows immediately. Q.E.D.

LEMMA 2 IfFT,(u) = & (FS = F n S and & is an empty set) for some
FeF,1<n =<N,and0 = u =1, then

(211) B(Tn(l-")) F) = mln)\=00r16(zn()\; ,u')r F)?

where 2,(0, ) and 2, (1, u) are the vertexes of T, (u).
Proor. Suppose n < N and this lemma does not hold. Then there exists a

A\* with 0 < \* < 1 such that
3(Ta(u), F) = 8 (\*, 1), F) < mimeoor1 8@ (A, 1), F).
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Let s = (5% f(s")) be the closest point in F to v = 2, (\*, 1). Since there exists an
open neighborhood of the point v in 7', (1), which is a segment, the segment s
must be perpendicular to 7', (u).

Transform the given space linearly to a new 2-space such that

(212) 1), = (O, O) and zn, (1, ll') = (0) 6(7)7 Zn (1) “)))7

where w’®, " are the z- and y-coordinates of the image point o’ = (v, w?)
of w in the new space. Thus s’ = (—&(, s), 0) or (3(v, s), 0). The convexity of
quadrilateral © and the definition of F imply that s,”* < s, for each pair of points
s1, 2 F with &° < 8"

Suppose 8 = (—8(v, s), 0) and let T, (1) be the image of T, (u) in the new
space. Then there exists a A > 0 such that
sa= (s+ A, f(s° + A)) & F and either 8 (T (n), 5a) = 6 (T (), sa") < 8(v,9),
which is a contradiction, or

SA, = (—6(1)7 S)’ —6(0, zn(()) #))) or (_3(7), 8)) 6(7)’ zn(l, “)))7

which implies miny—oor1 8 2 (\, 1), sa) = 8 (v, s) and contradicts the assumption.
For s’ = (5(v, s), 0), the argument is similar. Q.E.D.
Lemma 3. For each triple M = M, F 5, and N, there exists a pure sirategy
Jor 1 such that

(2.13) 8y = maXoze<18(T(g), F) = k/N

foralll £ n = N and for all Q.

Proor. Foreach 1 < n < N, let n’, n' be the last pair of nonnegative integers
less than n if any such that pyoys = 1, priga = 0. For each 2z, (\, ¢), A = O or 1,
let v,(\, q¢) be the point in R, (A) such that the segment v,(\, @)z (), @) is

parallel to the segment duo duoys OF bnibaiya according as X = 0 or 1. For each
0<g=<1landX=0orl,let

2.14) T () = {eza(, @) + (1 — a)va(, ):0 £ o < 1}
and T} (¢) = & if pn = Nforall1 < m < n. Since dyo < doy1, b

p* = (dhosr — dno)/(dnoyn — dno) £ o, and —w = (Onn — bu)/

lIA

x
bn1+1 )

(741 — b21) = p,, We have
(2.15) FTS gq) = &  forall 0<¢=1
if
FT.Mq) # & forsome 0 =<¢g=<1 A=0orl.

In Q, each continuous graph from 7' (0) to T' (1) intersects every continuous graph
from R (0) to R (1). If we let p;, = 0, then F[T1(¢) u T+' (¢)] # & forall0 < ¢ < 1.
Assume that

F[T.(q)u TnO(Q) u Tnl(Q)] #* forall 0 <¢g=1.
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If FT,'(g) # < for some 0 < ¢ < 1, then
FT.%q) = & and FiT.(9) u T (9] = &  forall 0= ¢g=1;

and if we let poy1 = 1, then Uo<oz: Th11(q) © Uoges Tw'(g) and

FlTwi(q) u Ton(@) u Thia(g)] = &  forall 0 =g =1
If FT,'(g) = & forall0 < ¢ < 1 and we let p,1 = 0, then

Uogost Tria (@) © Uogazi T’ (0)
and
FIToi (@) u Tosa(g)u Trn(@)] # & forall 0=¢g=1

By induction, for each 1 = n < N we have
(2.16) F[T.(q) u T(@) u T ()] # &  forall 0 = ¢ = 1;
hence, there exists a A\, = 0 or 1 such that
(2.17) FIT.(Qu T ()] # &  forall 0<¢=1
By Lemma 2 and Corollary 2, we have

8, = MAaAXo<g<1,FTy(0)=F {miny—gor1 6 (N, 9), F)}

IIA

maXoéqgl,FT):»”(q);éQ 8@ (s ), FTn)m @)
< max (§(dno, dnoy1), 8 (bur, bary1)) = k/N,
where 6, = 0if FT,(q) 5 & forall0 = ¢ £ 1. Q.E.D.

Therefore, 8 (@, F) = 65 < k/N — 0 as N — « by Corollary 1 and Theorem
1 follows for the case M = M.

ExampLE 2. Let M be defined asin Example 1 and F = { (z,f(x)):0 =z < &},
where f(z) = 2¢ + for0 <z < }andf(z) = § —zforf =z = {

A weak approachable strategy for player I (according to Lemma 3) is described
as follows: Let p1 = 0; and foreach 1 <n < N, N Z 2,let pya = Oifc,” = §
and f(c.") = ¢ or f(d,°) = d., and let pnp1 = 1 otherwise; then 8, = 2l/N
foralll =n < N.

LevMMA 4. For each v > 0, there exists a positive integer N o such that

(2.18) Prob {8(¥y, ay) > »/2  forsome N = N} <y,
where

wn=Ea|p1, @1, Y15 -+ Doty Guty Va5 Dny Gn)
E(Yn|pn; ¢n)
Pagat + Pa(l — ga)b + (1 — Pa)gac + (1 — pa) (1 = ¢a)d
for each m = 1 and E(Y | Z) denotes the conditional expectation of Y given Z.

I

(2.19)

I
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Proor. Let K be the diameter of X and (u, v) represent the inner product of
the vectors w and v. For each n > 1, since \
0(Y,a,0) = K forall welX,
3(Yn,an) S 6((n — 1)V s/ + wn/n, @) + 6(¥Va, (n — 1)V y/n + wo/n)
< 8(Yo, @n1) + K/n,

8 (Ya, @) Z 8(Vaa, Guaa) — 2K/n,
O (Va, @) = (0 — 1) (Yo, dna)/n” + 8 (Va, @)/

+ 2 — 1NV ps — @n1, Yo — wn)/n’,
we have
(220) [6(YV,, @) — 6(Va1, @na)| < 2K/n,

B{8" (Y, @) [ D1y @1, Yi5 00 5 Pns G}
< (0 = 1) (T, Gn)/n’ + Ko/,
E§*(Yn, @)l £ (n — 1)’E[8* (Yo, na)]/n" + K'/n.
By induction, we have
(221) E[* (Y., @) < Kn and Prob {6(¥,, @) = A} = K°/(nA®)
for eachn = 1 and A > 0. Hence a
> Prob {8(Poe, om) = A} < (K¥/AY) Xaa1/m? < w

and
(2.22) Prob {lim sup, 6 (Ym2, @m2) = A} = 0

for each A > 0 by Borel-Cantelli lemma.

For each integer n with m* < n < (m + 1), we have

(2.23) 16(Vn, @n) — 6(Vme, om2)|
S D 8V, @en) — 8(¥i, &)| < 4K/m
by (2.20). Thus 6(¥,, @) converges to 0 almost everywhere. Q.E.D.

Proor oF TrEOREM 1. For each » > 0, let No(») = max (Ny, 2k/»). For
each N = No(v),let p, = Qor1lforl < n =< N depending on (w1, -, wn1)
as in Lemma 3, then 6 (ox, S) = 6(on, F) = v/2, where w, is defined in (2.19).
Since
(2.24) oy = 8(Yw,8) = 6(¥w, an) + 8w, S),
we have Prob {6y > »} < v for all @ by Lemma 4. Q.E.D.

3. Sufficient condition for the case @ = Q*. For each pairweQand0 < X £ 1,
define V(w, N\), Rvwn (p), and Tyea(¢) from the matrix M (w, \) =
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N + (@ — M)y as we defined @, R (p), and T'(g) from M respectively. We
omit the arguments from V (w, A) and simply write it as V. Denote

(3.1) 9 ={VieeQ 0 <\ < 1},

(3.2) (V) = {F(V):F 5},

where F (V) = {\o + (1 — \)o":0” ¢ F} is an F-type set with respect to V
(instead of ). For each closed set S C @, let

(33) 8s' = 6(8, T(0), & =8(S,T(1)),

and Is, rs be the closest pointsin S to 7'(0), T (1) respectively. Define

(34) & ={B:B={(z,f(x):0<a=<z=<B=u” forsome F in &
and some 0 < a < 8 =< us'}}; ‘

(3.5) &« = {B:Beé&,lzeT0),r5eT(1)} =

(3.6) & = {D:D = B, U By},

where the following conditions are satisfied:

(l) B1 5 B2 & 8 631 832 ) 631 = 632 ,
(ii) there ex1sts a Vied such that 7z, & Ty, (1), ls,eTv,(0), and
BiVy, B;Vie &' (V1) [Remark: &' (Vi) = {B(V1):Be&x 1, where B(V1) =

B(Vi(w,\)) = fAw + (1 — N 10" e B}];

(3.7) & = {D:De& lpeTO),roeT()}.
Suppose we have completed the constructions of &, &+, -+ , &, &« with
m = 3; let

38) & ={D:D=UrB,=[U{BJu[U%:iB.J, some 1=t=m— 1},

where the followmg conditions are satisfied:

(i) B,eg forall 1 < u < m, [Ui B ] € & (there exist Vi, -+, Via
associated with By, - -+, B; by the definition of an &' set), [ Ut+1 u] e et
(there exist Vigr, -+, Vm_l associated with B, -, Bm), 05, = 63,+1,
63& = Bgm i

(ii) there exists a V.ed such that 7z, ¢ Tv,(1), ls,,, € Tv, (0),
Ui B ]V; e 8 (V,) for some1 < ' = t, and [U% BV ¢ &% (V,) for some
12" =m—1t

(iii) for each pairs, jwithl < ¢ <t <j < m — 1, there exists a V¢
such that

Viei D [UiVJu[UinBl, Ty, ;(0) D Ty, (0) or Tv,(0)

according as V; & Vior Vi € Vi, Ty, ;1) D Ty;(1) or TV,(I) accord-
ingas V; EV,or V,C Ve,and Vi D Viwrp foralll =4 < i st=2j =
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7= m — 1;and let
(3.9) & ={D:De€lpeT (), roeT()}.

An example of & -set is shown in Figure 1.

Fia. 1

TaroreM 2. If a set S in 2-space contains a set of & = Un_y &+, then player 1
has a pure strategy such that S is weakly approachable by him.
LemMA 5. For a given M = M and a D ¢ &, I has a pure strategy such that

(3.10) 8, = maxo<e<16(Tn(g), D) £ k/N forall 1 =n =< N.

Proor. From the definition of & in (3.6) and (3.7), we have D = Byu B,
with By, By e &', ls, e T(0), r5, & T(1), 75, & Ty,(1), s, € Ty, (0), and B,Vy,
B,V1 e &' (V1) for some Vi e &, If we let

F = [.D ~ V1]U [(CL', 1)1” -+ (113 — vf)(vf’ — vl”)/(vz’” — le)):le <z = sz],

where v; = BiTv, (0) and v; = ByT'y, (1), then F is an element of §. As indicated
in Lemma 3, I has a pure strategy associated with this F for the first n, engage-
ments, 7, is the first # such that V; ¢ Q. , such that

FIT.()uT ()] # & forall 0<g¢ =1,
FT, ™ (@)= & forall 0 < ¢ =<1, and maxe<e<1 0 (T (q), F) < k/N
for alln < m;, where A\, = 0 or 1. Since V1 C Q,,_1, we have

Vl[TnO(Q) U Tnl Q] =g
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forall0 £ ¢ < 1and n < ny ; that is, p., 1 = n =< m, is independent of DV1.
Therefore, in relation to the first n; choices of player I as above, the set D ~ V;
is equivalent to the set F and to the set D u V1, and

0, < maxo<e<16(Tn(q), F) = k/N forall n < mny.

At n = n;, we have one of the following two cases.
1) ,,Ty,(u) = K foru =0orl.
In this case we have 6%,,“ = 65, and

BT () u T (qQ)uTe (@) # & forall 0<¢g=1 for p

or oy, = 85 and

Bi[T.,(q) u Ts,(q) u T, (q)] # & forall 0 <¢g=<1 for p=1;

hence, the set B, or B; is equivalent to an F set (in the sense of Lemma
3) for all n = n; . As indicated in Lemma 3, player I has a pure strategy associ-
ated with B; such that 8, < maxo<e<1 6(Tx(g), B:) < k/N forallmy = n = N,
where 7 = 2 or 1 according as 4 = Oor 1.

(2) Ty, () #= & forp = 0and 1, 2Ry, ) = & for A = Oor 1.

Let p. = A for all n with n; < n < na, where 0 is the first n > n; such that
Q.Tv,(u) = & for u = 0 or 1. In this case we have @Ry, (1 — \) # & for all
m < n<mnand R,(\) C R, () for alln, < n = n,. Hence,

DuViT, () =& forall 0=¢=1,

maXeer; 8 (@, @) = MaXeery,0 8 (@, B.(\)) = k/N,

0,

maXo<g<i B(Tn (Q), F) = maxogqgl,FTzl(q)iéQ ) (znl O‘) Q)) FT);H (Q))
< /N,

8, < max {maxeer, & (@, ®), Maxo<e<1 8 (T (), F)} = k/N

forall ni = n < ng; and
Uocez: T (@) € Uososa Thi(g)  forall m <n < n.

Forn = n, , we use the same argument asin (1) to complete the proof. Q.E.D.

We may rewrite the above strategy for player I for the first n™ engagements,
n* is the first n such that @,Ty, (u) = & for u = 0 or 1, as follows. For each
n < n¥ if QRy, (1) = & or[D~ VAT, (q) #= & for some 0 < ¢ < 1, we let
Pnsr = 1; otherwise, we let pny1 = 0. Clearly, this part of the strategy depends
only on the triple By ~ V1, By ~ V1, and V1.

For a given n < n*, the conditions required for player I to play the next
n* — n engagements as in Lemma 5 are as follows:

G) @.Tv,(u) # & forp = 0and 1;

(i) (a) if QRvy,(\) = & for X = 0 or 1, then LRy, 1 —\) # & and

R.(\) C R,,(\), where n; is the first n such that @.Bv, \) = &;
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or
(b) if @, D Vi, then [Du Vi][T.(q) u T.'(q) u T, (q)] # & for all
0=¢=1

For each D = U7 B, e 8", m = 2, there exists a D’ = U} B/ ¢ &4” such that
the triple Bt ~ Vi1 m1, Bn ~ Viim, Viima is exactly equal to the triple
B/ ~ V', By ~ V{, V{ for D’. Therefore, player I can achieve the same result
as in Lemma 5 and (i) and (ii) hold for all n < n™ with respect to the triple
Bi ~ Viima, Bn ~ Vitma, Viima, where n* is the first n such that
T, () = & forp = 0or 1.

LemMa 6. If we assume that M = M, and suppose that for each

= U" B/« 8*m',
some 2 < m’ < m, there exists a pure stmtegy for I, wzth the ﬁrst ™ choices made

dependmg on the triple B, ~ V. dmi—1, B, ~ Vt' Lmi—1 s Vt, 1,m—1 as tn Lemma 5
such that

(3.11) maxo<qe<1 (T, (¢), D) < k/N  forall 1 <n <N,

where n*' is the first n such that Qn'TV'l,,l,m,_l W) =< for w =0 or 1.
Then for each D = UTB; e &% there exists a pure strategy for I, with the first n*
choices made depending on the triple By ~ Viima, Bon ~ Viima, Viima as in
Lemma 5, such that

(3.12) 6, = maxo<<18(T.(g), D) = k/N forall 1 =n =N,

where n* is the first n such that Ty, (w) = Fforp=0o0rl.

Proor. As indicated in the last paragraph, player I has a pure strategy as in
Lemma 5 for the first n* engagements such that (i) and (i) hold for alln < n*
with respect to the triple By ~ Vi1m—1, Bn ~ Viimi1, Viima ; therefore,

o, = k/N forall n < n*

We have one of the following two cases.

1) QuTv, () # & for p = 0 and 1. Since V;,,: = V. by definition in (3.8),
we can find a smallest integer ¢ with 1 < ¢ =< ¢ and a largest integer j with
t<j=<m-—1suchthat G+ 1) —<¢+1=m <m,

Quly,,, (W) =&  for pn
and then 02, < 80+, 05y, = Oor-

Player I may pay his attention only to U™ B, , an Sm'-set, for the future en-
gagements because of the following argument. If @Ry, (\) = & for A = 0
or1, then @uRy, (1 — X)) # & and R.»(\) C R,, (\) by Lemma 5, where n; is
the first » such that Q.Rv,, . ,(A\) = & and is also the first » such that
Q”RVt,i,j()\) = J.

If @« D Vy,; we have either ¢ = 1 or B; C V;1,ma and either j = m — 1
or Bjy1 © Vigm. Since (i) and (ii) hold for n = n* — 1 for the triple
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Bi~Viima,Bn~Viimi, Vitmi, and pe is chosen according to Lemma 5,
we have

[B:U Biau Vi [T (q) U Tns(@) u Tus(@)] # & forall 0<g=1

The above results are exactly the cond1t1ons (i) and (i) w1th respect to the
tmple B ~ Vi L1, Boy ~ Viyam, Vg for n = n* < n*, where
Vt’lm’—l = V“], m =j+2—-1i< m, and Bl, B, e & with Iz, e T(0),
B, {w W =5} = B,, 7, € T(1), and By {w:e® < 7’B,+1} = Bju. We have
B'u [U,+1B]UB,,,: = D' e and 4, < k/N for all n* < n < N by hy-
pothesis.

2) (a) 2Ty, (1) = &: We have 8h+ = 85, and Ul = [Ui BJu
[Ut41 B, e & for some 1 < ¢ < t associated with thls &' set by definition.
Then elther there exists a smallest integerz with 1 < ¢ < ¢’ and a largest integer
jwitht <j <t — 1such thatm’ =j+2 — i <t < mand

QuTyr,, . (w) = & for u=20 and 1,

and the remaining proof follows from (1); or @uTy,, () = & for u = 0 or 1,
and we may repeat the argument of (2) for a lower order set. In the case of
¢t = 1, there exists a pure strategy for I such that

8, < maxo<q<18(Tx(q), B1) = k/N forall n* <n <N

as in Lemma 5.

(b) T, (0) = &: the argument is similar to (a). Q.E.D.

Proor or TurorEM 2. By Lemma 5, Lemma 6, and induction, if we assume
that M = M, then for each De & = U,._; &% there exists a pure strategy for
player I such that

8, = MaXo<g<10(Tx(q), D) = k/N forall n < N.

By Lemma 4, the proof of the theorem follows as in Theorem 1. Q.E.D.
TuEOREM 3. Let &* {D } be the collection of sets in 2-space generated by &
such that, for each D* & & there exists a sequence of sets {D.} belonging to & with

(3.13) 8*(D,) — 0 as n-—> o,

where 8 (D) = MaXaen, o+ 8 (w0, D*). If a set S in 2-space contains aD*, then S
s weakly approachable by player I, and he has a pure strategy.

Proor. For a given D* ¢ &* and a » > 0, let D.» be the set of & such that
8% (D) = v/2.

According to Theorem 2, D, is weakly approachable by player I and he has a
pure strategy; therefore, there is an No(v) such that, for every N = No(v) there
is a pure strategy for I such that P{é (Y, Du) > v/2} < v/2 < vfor all Q. Since

§(Py,D*) S 6(Tx,Dw) + 8" (Dw) = 8(Yy , Duw) + »/2,
we have P{oy = 6(Yy,D*) > v} < for all Q. Q.E.D.



WEAK APPROACHABILITY IN A TWO-PERSON GAME 801

4. Necessary condition for the case & = Q*.

TrrorEM 4. If S is a set in 2-space such that SD 5= & for all D ¢ &, then player
II has a pure strategy such that S is weakly approachable by him; that is, S <s not
weakly excludable by player 1.

Proor. We begin by showing that this theorem holds if / = M. For each
1=n <N,N = 1,letq, = 0or 1; and let n°, n' be the last pair of nonnegative
integers less than n if any such that g1 = 1, gaiy1 = 0. For each n°, n', and
D, e8(2) = an, let D,(0) be any left-extension set of D, such that D, (0) is a
continuous graph and a subset of some F (Qu.0) € F (o) with Ip,q) & Tro(0) and
o0 € DT (0), and let D, (1) be any right-extension set of D, such that D, (1)
is a continuous graph and a subset of some F (@a1) £ F (1) with Ip ) € DT, (1)
and rp,ay € Tn1 (1).

LemMma 7. Given D,’, D,” ¢ a,, , if player 11 uses a pure strategy, then

(4.1) D) uD,(g.)uD, uD,” 1 — q.) = DuyuD,i(g)

for some Dy 1€ opy .
7 n . 7 V4 —
Proor or Lemma 7. D,,, D, & a,, imply that D,” u D,,” e a, andn' ™ = n — 1;
therefore,

(4.2) D,”uD,”(1 — q.)eans, D,)uD,”uD,”(1 — ¢q.) = Dpycan,

and D, (g,) is a left- (for ¢, = 0) or a right- (for ¢, = 1) extension set of this
D,,_1 by definition. Q.E.D.

LemMa 8. For each M = M and a set S in 2-space with SD # & for all D ¢ &,
player 11 has a pure strategy with the following property for all 1 < n < N: If there
exists a D,*(u) for some D,* ea, such that S[D,*uD,*(u)] = &, then
S[D,uD,(1 — )] # & for all D, € a, and D,(1 — p), where u = 0 or 1.

Proor or Lemma 8. If 8D,, # & forall D,yean, 1 < m < N, we may con-
sider an (N — m)-engagement game associated with M ,, and carry on the proof
form =n =< N.

Thus we may assume that there exists at least one D, € a,, such that SD, = &
foralll < n < N. Let

an=0 and ¢ = 1.

If S[D;u D:(1)] # & for all D; € as and D2 (1), we let ¢; = 1; otherwise, we let
¢s = 0. In the latter case, we have S[D.* u D,* (1)] = & for some D,* & o, and
some Dy*(1) for D,*. Since for any pair of Dieas and Dy(0) for D,
D.*uD,*(1)uDyuDy(0) = DiuD;(1) = D for some Dy ey and D €8 by
Lemma 7, and 8D # & by assumption, we must have S[D,u D:(0)] # & for
all Dy & as and D; (0).
The following properties are used in reference to player II’s strategy for n < N;
(i) there exists a D,*(0) for some D,* & a, such that S[D,* u D,*(0)] = &;
(ii) there exists a D,* (1) for some D,* ¢ a, such that S[D,* u D,*(1)] = &;
(iii) player II chooses ¢.41 = 0 (or 1) only if (i) (or (ii)) does not hold;
(iv) property (iii) occurs and (i) (or (ii)) implies that (ii) (or (i)) does not
hold.
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If we assume that property (iv) holds forn = 4 — 1, the (z 4 1)th choice of
player II is one of the following:

(1) If ¢; = 0 and (i) does not hold for n = ¢, then player II chooses giy1 = 0.

(2) If ¢; = 0 and (i) holds for n = ¢, then player II chooses ¢i41 = 1. (ii) does
not hold for n = ¢ by Lemma 7 and the assumption of ¢; = 0.

(3) If ¢; = 1 and (ii) does not hold for n = 1, then player II chooses ¢:41 = 1.

(4) If ¢; = 1 and (ii) holds for n = 4, then player II chooses gi11 = 0. (i) does
not hold for n = ¢ by Lemma 7 and the assumption of ¢; = 1.

The above results show that (iv) holds for n = <.
Since (iv) holds for n = 2, the induction is complete and the lemma follows.
Q.E.D.

Lemma 9. Theorem 4 holds if M = M.

Proor oF LEMMA 9. Since Dy = @y = Qx by Corollary 1 and SDx(0) = & or
SDy(1) # & by Lemma 8, we have

oy = 0(Dw, S[D~x(0) U Dy(1)]) £ k/N.
The lemma follows with No(v) = k/» for each » > 0. Q.E.D.

Theorem 4 follows from Lemmas 4 and 9 as in Theorem 1. Q.E.D.

Lemma 10. If @ = @ with empty interior, each set S in 2-space s either weakly
approachable by one player or weakly excludable by the other player.

Proor. The condition implies that a, b, ¢, and d are colinear. By Blackwell’s
Theorem 4 [1], if M = M, then S is either approachable by one player or ex-
cludable by the other player.

Approachability implies weak approachability and excludability implies weak
excludability by their definitions [1]. Q.E.D.

REMARK. Lemma, 10 can be proved by a similar argument as in Theorem 1.

THEOREM 5. A set S in 2-space is weakly approachable by player 1 if and only if
S contains a set of &%,

Proor. Suppose S does not contain any D¥e&* that is, 8°(D) =
MaXeen_s 0 (@, S) = A for all D ¢ & for some A > 0. If we let

S = {wptwpeD ~ 8 and 8(wp,S) = 87 (D) for each D ¢¢&}

then 6(S, ') = A and S’ is weakly approachable by player II according to
Theorem 4. Therefore, S is not weakly approachable by player I. The proof is
completed by using Theorem 3. Q.E.D.

5.0 =< Q*and a = dor b = c. For the case @ # Q¥ there exist 0 = p, ?,q,
¢ = 1 such that z(p, q¢) = (', ¢') and p # p or q # ¢'; and there exist
0<pp,p,¢d¢ = lsuchthat0 < p < p” <p = landz(p,q)andz(®’, ),
are in the same half plane of R*(p"), aline of X and a superset of B (»"); where
z(p, ¢) was defined in (2.1). Therefore, the technique in the previous sections
could not be applied directly.

In this section we may assume that @ = d = (0, 0), b* < 0, ¢© > 0,
¢/ = —bY/b° = p,and 0 < p < o hence

5.1) z(p,q) =21 —4¢q, 1 —p) forall 0 =p, ¢= 1



WEAK APPROACHABILITY IN A TWO-PERSON GAME 803

Let A be a continuous graph and a subset of @ such that

(5.2) A= {z(\(u), n):0 =p =1},
where
(5.3) Aup) =1 — p

We introduce A (1) here that most definitions and results in this section can be
carried over to the next two sections. Let § = {F} denote the collection of all 7,
subsets of 2, such that each F is the graph of some continuous function f which

satisfies that
(i) there are points v; = (v/°, f(v/°)) e T(0) and u; = (us°, f(u,°)) € T(1),
(i) fis defined and (z, f(z)) e @ for all v;° < z < u/°,
(iii) there is a point ¢, = (4", (")) € A with v/° = ¢ < u/,
iv) —p = (f@) — f@))/(zs — 1) < pforallv <o < 25 < us”,
V) F={(@f@®) =z=u.

Then we have the following theorem for weak approachability.

y

b (o,1)

uf

a=d (1.0)
Fra. 2

THEOREM 6. If a set S in 2-space contains an F of F, then S is weakly approach-

able by player 1. B
Proor. We may assume that ¥ = M by Lemma 4. For each0 < n = N s

N =1, let
(54) A, = {zn()‘(ﬂ)) p):0 = b= 1})
where 2, (p, ¢) was defined in (2.6). For each 0 < n < N, let A,(u),0=pu=1,
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be the ray of X with vertex z, (A (u), u) such that 4, (u) is perpendicular to the
segment R, (A (1)) at 2, (A (u), u) from below (wrt the y-coordinate), hence
(65) An(u) = {0rwe X, o =2 (), ) — o — 2"\ (), 1)),

and o = 2./ (\(), )},
where
(56) o = 'O, 1) — (), OI/E (A (), 1) — 2"\ (u), 0)]

is the slope of R(\ ()) and 2,(p, ¢) = (" (p, 4), 2."(p, @)); and let 4, be the
subset of X such that it contains every point of and below the graph
A,(0)uA,uA,(1), hence

(5.7) Q,C A4,.

Lemma 11. For a point woe An, 0 < n < N, let 2,(\(u0), wo) be the closest
point in A, to wo, then the segment woz.(N(uo),uo) 48 perpendicular to the segment
Ro(M(w0)) at 2o (A (o), o), that is wo € Ay (uo), and then

(5.8) A, = Uocu<1 An(u).

Proor oF LEMMA 11. A = A, is the graph of a convex function f defined for
Z(\0),0) =b" =z = =2"(\(1), 1) which satisfies
(5.9) AE AW, 8) = 20w, w) = —p(l = w)'° + pa'c"
and has derivative
(510) " =["(\(), 1) — 2"\ (w), 0))/" (A (k), 1) — 2" (A (), 0)]

= pluc® + (1 — p)b’)/[uc® — (1 — w)b’]

atz = Z(\(u), p) = (1 — p)b° + u'cfor0 < p < 1.

(5.10) is a continuous increasing function of u for 0 = p = 1 (and of z for
b* < z < ) with —p < p* < pandisequal to the slopeof R(\(u)) = R(1 — u).
Hence, B (A (u)) is a segment of the tangent to A at (A (u), u) and z(A (u), p) is
the closest point in A to every point of Ao(u) by the convexity of A. The con-
tinuity of the derivative of fy in (5.10) implies that Uo<u<1 4o(u) = 4o.

For 1 < n < N, the argument is similar (rescaling). Q.E.D.

Lemma 12. For a given &, = v 2(pi, q:)/ne Ao, 1 £ n < N, let 2(A(un), pa)
be the closest point in A to &, and ppy1 = A (un), then

(5.11) 5 (m1, A) £ (0% (@n, A) + &Y/ (0 + 1).

Foragivenwe Ay ,0 < n < N, let 2,(\(un), 1ta) e the closest point in A, to w and
Dnt1 = N (un), then

(5.12) 8wy, Anp1) < (0, An) + E/N)E.
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Proor or LEmMMa 12. Since
8 (&ng1, 2N (1n), kn))
= %% (@n, 2\ (un), 1a))/ (@ + 1) + 8 (@ns1, 2N (a), 1a))/ (0 + 1
< (0% (@n, A) + )/ (n + 1)
and

é (w, Zntl O‘ (F‘n)) M ) )

8% (@, 2n(\(tn)y #n)) + 0% (@nt1s 2(\(n)y a))/NT
< (o, An) + K/N?)?

by Lemma 11 and Corollary 2, we have (5.11) and (5.12). Q.E.D.

LemMa 13. The set A s weakly approachable by player. 1.

Proor orF LEmMa 13. Since w1 & Ao, 8 (w1, A) < k, and R(\(u)) C A, for all
0 <pu=1;wehave dppaedo,l £n < N,if @,eAdoand ppi1 = A(ua) as in
Lemma 12. Hence

(5.13) 8(@n,A) < k/n*  forall 1=n =N

by Lemma 12 and induction. Let No(v) = ,kz/ »* for every » > 0, then the lemma
follows.

LevMA 14. For a given ama = D mi12n(Di, ¢i)/(n — m) & An and a point
2aN(1), 1) € AnAn, s50me 0 = m <n =N, let 2 (A (un), un) be the closest point in
A 10 Gom,n and let e, be the point tn A, such that the segment z. (N (1), W)em.n 18
parallel to the segment 2,(N(un), tn)2m(A(n) pn) @NA €m,n 8 closer to 2, (N (u), 1)
than other point in A,, with same property, then

(514) 6(zn()\(u), ,u); efn,n) = 5(,2,,,()\ (Ilfn), l/"n), zmo‘ (:un), ”’n))
If piyr = MNws) for m < @ < n, then
(5.15) 5(2a(M(), 1), ) < k(n — m)*/N.

Proor oF LEMMA 14. Foreach 0 < p < 1,2, (A (1), 1) is a point of the segment
Om,n2n(N (), 1),
(5.16) 8@ (N(), 1), 2n (A (1), 1)) = (0 — M8 @mn , 2m (N (1), )/ (N — m),

and the segment z,(A(un), un)2a(AN(u), w) is parallel to the segment
ZnNan), tn)2m(A(w), w). If we let s* be the point of z,(A(un), pn)2m(N(u), 1)
such that the segment z,(A(x), u)s* is parallel to z,(A(un), #n)2n(A(tin), un), then

8 (@n (A (1), u), §) = 8 @n (A (un), pn), 2 (A (Hn), un))

by the property of a parallelogram.

mn € Am , 2n(N (1), 1) € AmAn , and the convexity of A, imply that e, nexists
and is a point of z,(A(u), x)s*. Hence, (5.14) follows.

Since the diameter of @, is k(N — m)/N by Corollary 2 and pi1 = A (us) for
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m < 7 < n, we have
(5.17) 6(mi, Am) = k(N — m)/[NG — m)}] for m < i Zn

by a similar argument as in Lemma 13 and we have (5.15) by (5.14) and (5.16).
Q.E.D.

CoROLLARY 3. Foreach0 = m < n < Nand0 £ u = 1, let
Com(u) = {azn()\(l-‘)y uw) + (1 — a)e"m,n:() S ae< 1 if
(5.18) Oy 2n(N(u), p) € An and emn # 2.(\(), u)

= otherwise

and

(5.19) Com = Unzuzs Con(u)

then

(5.20) MaXucc,,, 8 (@, An) = 8@n(\(1n), tn), 2m (A (n), 1a))

by Lemma 14 if Cp,p = & and 2, (N (un ), wn) 8 the closest point in Ay, t0 &, n

For a given F ¢ &, we describe a weak approachable strategy for player I for
each N as follows:

(1) Let p1 = A(mo), where 2(\ (uo), mo) € FA, then 6 (F, A;) < k/N.

(2) FCom = &, FA,, # &, and 6 (FA, , An) < km*/N,0 < m < N. (We let
Co0 = J; hence, the hypothesis is true for m = 0.)

Let 2, (A (um ), um) be the closest point in A,, to FA, and pny1 = A (un), then
8(F, Amy1) < k(m + 1)}/N by Lemma 12. For the decision of p,,m + 1 < n <
m’ + 1 and some m’ < N, we adopt one of the following three procedures in (3)
associated with three possible conditions.

(3a) FCpn #= & form < n < m'. We have @mne A, by definition. Let
2m (N (un ), 1) be the closest point in A, t0 &m,n and Pry1 = A (u,) form < n = m’,
then

(5.21) §(F, An) < MaXeerc,,, 8 (0, An) < knt/N
by Corollary 3. If FCp w41 # &, then (5.21) holds for n = m’ + 1; and if
FCpmy1 = &, then FCy o1 = &,

0(F, Awy1) < maXeen,,’ 6(w, Anq1) = k/N, and

8(F, Amrg1) = 8(FAmg1, Awryr) if FApwpn &= &

by the hypothesis of FCy,,» = &, the definition of F, and Corollary 2.
(8b) FCpyn = & and FA, # & form < n £ m'. FCy,1 = & and
FC,1, = & imply FCo,, = ; hence,

(5.22) FCyn =& forall m<n=m
Let 2,(\(u), un) be the closest point in A, to FA, and p,u = A(u.) for
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m < n = m, then 8(FA,, A,) < 6(Sa—1, A,) by the definition of F and FA,
# &, and 8(F, A,) < 8(FA,, A,) < kn'/N by Lemma 12, where s,_; is the
closest point in FA,_; to A,y .

Be) FCpmir = & and FAnmy = . We have FCy i1 = & asin (2b). (The
condition FCpmi1 = & can be replaced by FCo i1 = &.) This condition may
hold only if 0 < 8 < 7/2, (= — 6) is the counterclockwise angle from 7'(1) to
R(1), (ie, 0 < p < 1 in this section) and one of the following two conditions
holds.

(3e-1) uy e FT (1), the right vertex of F, is a point above the ray A,.1(0) and
below the line

(5.23) Rnp(A(0)) = {wiwe X, 0’ = p'lo” — 2m1(A(0), 0)] + 2 (A (0), 0)}
which is a superset of R,.1 (A (0)); that is
(5.24) (" — 2Zm1(1,0))/p + 2mea1(1,0) < u”

< pEmi1(L,0) — u”) + znya (1, 0).

(3¢c-2) vy, the left vertex of F, is a point above the ray A, (1) and below the
line

(6.25) Rua(A(1)) = {wiwe X, o’ = p'o” — znia(A(1), 1)] + 2ha (N (1), 1)}
Suppose that (3e-1) holds, then
(5.26) 5(us, Ruia(A(0))) < 8(F, Anyr) < k(m + 1)Y/N.
Let p, = A(0) = 1form +1<n <m 4+ 1= N, then
(5.27) 8(F, An) < 8(us, Rni1(A(0)))/ (sin6)
< kn*/ (N sin6) forall m+4+1<n=N.

If (3c¢-2) holds and we let p, = MN(1) form 4+ 1 < n < N, then the result of
(5.27) holds by the same argument.

(4a) (3a) holds and =’ + 1 < N. We choose pn42 according to (3a) if
FCpmi1 # & (veplacing m’ by m’ + 1); according to (2) if FCp iy = & and
FA, 1 # &, and according to (3¢) if FCp i1 = & and FA, 1 = .

(4b) (3b) holds. Then pi+1 Was selected according to (2).

(5) By induction, we have

(5.28) 5(F,A,) < kn'/N  forall 0Sn <N

if (3¢) never holds and 3 (¥, A,) < kn'/(N sin ) for all 0 £ n < N otherwise.
Let No(») = ¥*/ (vsin6)’if 0 < p < 1 and No(») = k*/+* otherwise, for every
v > 0, then the proof of Theorem 6 is completed. Q.E.D.
ExamprLE 3. Let

(07 0) (_%7 1)
(1,%)(0,0)

IIA
8
lIA
|
oo}

2x¢/3 + % for —%
(1 —2x)/3 for —%

IA
8

IIA
[N

and f(z) = {
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be exhibited in Figure 2, then A = { (z, 20 — 102/3 — 8(6 — 2)W):—E <z =1}
and F = {(z,f(x)): —3% < 2 < 1} is weakly approachable by player I as follows
Foreach N = 1, letz,,(l — fin , kn), 0 £ m < m < N, be the closest point in A, to
(—1, ) (the closest point in F to A,) and payn = 1 — w.(p1 = %), Where
(m 4+ 1) is the first ¢ = 1 such that

£ > min {2/(1, 0) — 3("(1, 0) + %)/2, 2°(0, 1) + 3@ (0, 1) + §)/2};
and let p, = 1if & > 2%u1(1, 0) — 3(@nu(1, 0) + %)/2 and p, = 0 if
5> 2%10,1) + 3(@Emu(0,1) + %)/2form +1<n = N.
COROLLARY 4. The set S in Theorem 6 is also weakly approachable by player II.
Proov. Since
(5.29) @ q) =2n(1 — ¢, 1 —p)

we have this corollary if we let gnya = 1 — A(un) = pn for0 = n < N.
Q.E.D.

6. 2 # * and T(0)T(1) # & or R(O)R(1) = &. We may assume that
RO)R(1) = (0,0),d" ¢ > 0,b° < 0,a°/ (@ — b") £ /(" — &), @ — a’)/
(@ —b") = (¢" — d")/ (" — d&) = p,and 0 < p < «; hence

(6.1) 0,0) = T(W)TW") forsome 0=4 =4 <1,
6.2) TW)cR(@A), and T@")CRO).
For 1’ < u”, let

Ap) =1 for 0=y

(6.3) = w—u)/W—u") for Wsu=y
=0 for W' sw=1

and
(6.4) A = ew), w)ie ==,

and define § = {F} as in Section 5 except the replacement of A by A¥ in (iii),
then we have a similar theorem.

TaroreM 7. If a set S in 2-space contains an F of &, then S is weakly ap-
proachable by player 1.

Proor. We may assume that = M by Lemma 4. For each N = 1, let
An, An(u) for0 < p < 1, An, and Cp,» be defined by substituting (6. 3) to b4),
(5.5), (5.8), and (5.19). An example of M and F is shown in Figure 3.

Lemma 15. In case of @ &€ A4, let A, 0 < n < N, be the subset of X such that 7t
contains every point of and below the graph A, (0) U A, u A, (1), where A, ‘0)isa
superset of T, (0) and a ray of X with vertex b, = 2.(1,0). If An,0 = m < N,
is replaced by A, in Lemma 14 and Corollary 3, then the results still hold.
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Proor or LEMMA 15. Since our assumptions of this section imply that @, C 4.,
0 < n < N, if and only if 7(0) < 4, we have

(6.5) 42D 4,0 Q.

The proof of (5.14) is still valid. For (5. 15) and (5.20), we need to prove
(5.17) for the addltlonal case that &m,i1 € [Am’ ~ Ay] and 6 (@m,i1, An) =
E(N —m)/[N@—m — 1)}, m + 1 < ¢ £ N. In this additional case, 2, (A (0), 0)
= 2n(1,0) = bn is the closest point in A, t0 &m,—1 and the counterclockwise
angle from the segment &m,:1bm to Rn(1) is greater than =/2. If we let

pi = Auiz1) = N(0) = 1, then
(6.6) 8 (@omi,An) < [ —m — 1) @mics, An) + (N — m)B/N/ (G — m)
< k(N — m)/[NG — m)}]. QE.D.
From the definition of F, we have the following facts for 0 < n < N: If there
exists a point se F{z.(A\(u), #):0 = n < ©’}, then
R.(0){(z, f(x))ivf = v =8} = I

if there exists points s, ¢ FA, ) s eFR,(0), and 8" < s5°, then there exists a pomt
ss € FT, (1) such that 8" < 8" < s5"; if there exists a point s & F{z, (\ (u), ) o<
w = 1}, then R,(1){ (z, f(=)):s" £ o £ 4/} = &; and if there exist points

sie FA,, sse FR,(1), and s,° < s°, then there exists a point s; ¢ FT,(0) such

that & = 8" = 5"
Based on the above analysis, Lemma 12, and Lemma 15 (2 ¢ 4) or Corollary
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3 (@ C A), we have the proof of this theorem as in Theorem 6 (9 is replaced by
61in (3¢ — 1) and by 6, in (3¢ — 2), where 7 — 6, and 7 — 0 are the counter-
clockwise angles from 7 (1) to R(1) and from R(0) to 7'(0) respectively).
Q.E.D.

REeMARK. The sets Uoco<w T(g) and U,r<,<1 T (q) are convex sets; there-
fore, we may construct a collection of weakly approachable sets in Uo<,<. T'(q)
for player IT (g, = 0 or u’) and a collection of weakly approachable sets in
U, <¢<1 T (g) for player IT (g, = 4" or 1) in a similar manner as in Theorems
1 and 2. The set U, <,<.» T (¢) has the same shape as € in Section 5; hence, we
may construct a collection of weakly approachable sets in U, <. T () for
player IT (u’ £ ¢. < #”) in a similar manner as in Theorem 6.

TaEOREM 8. If in addition ¢/ (" — d°) = a°/(a" — b"), then every set in
2-space 1s either weakly approachable by one player or weakly excludable by the
other player, and we may construct a collection of sets e* in 2-space such that a
set S 1s weakly approachable by player 1 if and only if S contains an element of &*.

Proovr. In this case, we have

(6.7) 0<py =4 =0/ —a) =d/( - ) <1,
(6.8) tp = A" =T@) =R0O)R®A) = (0,0),

and € is the union of two convex sets Uo<o<w T'(¢) and U, <4<1 T (q).
A(u") cannot be uniquely determined by (6.3) and we need the following ad-
justment. For each 0 = n < N, let

(69) An(/",) = U0§p§1 A, (Mp,)y

where A, (up ) = {wiwe X, " = t,° — p? (o — &), and o’ < 8,7}, p* = [ (p, 1)
— &, 0/ (p, 1) — & (p, 0)], and t, = Ta(u); for each we A, (uy') (or
Oum€Anup ), n < m < N), we say that 2,(\ (up ), &') is the closest point in
Ay t0 @ (OF @m), Where A(u, ) = p; then every F of & (defined in Theorem 7)
is weakly approachable by player I as in Theorem 7. The necessary condition
for weakly approachability is given in the following lemma.

Lemma 16. If ¢/ (" — d°) = a°/(a® — b") and S is a set in 2-space such that
SF % & for all F ¢ F (defined in Theorem 7), then S ¢s weakly approachable by

player 11,

Proor oF LEmMMmA 16. Since ¢y = (0, 0) for all F ¢ &, we have either
(6.10) S{(x, f))iv/ =z 20} # & for all Feg
or

S{(z, f@)):0 =z = u} #& forall Fes.

Assuming the first case, we let ¢,41 = 0if 6 (¢,, S) > k/N or ¢up1 = u if 8 (ta, S)
< k/N for0 = n < N, where t, = T, («') and ty = t;. The graph of the line
segments fofy, tla, *** , tw_ily is a subset of { (z, f(z)):v;" < @ < 0} for some
F ¢ &; hence, there exists an 1 < n* < N which is the first n such that & (£, S)
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< k/N. If we let ¢, = o for all n* < n < N, then we have t, = t, for
alln®* < n < N and

(6.11) 5(@n, 8) = 8(tv, S) < k/N.

The proof of the second case is similar. Q.E.D.
Generate &* from & similar as &* from & in Theorem 3, then Theorem 8 follows
from Theorem 7 and Lemma 16 as in Theorem 5. Q.E.D.

7.2 = 05 T(0)T(1) = & and R(O)R(1) = <. In this case, one element of
M is an interior point of the convex hull of the other elements of M. We may
assume that a is this particular element, d = (0, 0), " = 0,5" > 0, and ¢® > 0;
hence,

(7.1) a=2(1,1) =20\, s) forsome 0< )\, < 1.
Let
(72) ) =1 for 0 =A<
=1—QA=\N)A—=4u)/a—=2) for =r=1
and '
(7.3) A* = {z(\, (V)10 = N = 1;

and define § = {F} as in Section 5 except the replacement of A by A* in (iii)
and the replacement of condition (iv) by

(74) px = (@ = b")/a" = (f(@:) — f(m))/ (@2 — 1)
20N, 1)/, 1) = p*
for all v, £ &1 < 2 = uy", where v = 0 in this section.

TaroREM 9. If a set S in 2-space contains an F of F, then S is weakly approach-

able by player 1. }
Proor. We may assume that M/ = M by Lemma 4. For each 0 < n < N,

N = 1, let

s A

(75) Nu) =1 for 0=u=y
=N+ @ =-wA=N)/A=4) for J=p=1,

(7.6) Ap = {za(\(u), 1):0 = p = 1},

(1.7) A =z k(V)):0 =\ S 1)

and foreach0 = n < N, let A,(u) for0 = p £ 1, 4,, Cupnforn < m £ N,
and A, be defined as in Section 6. An example of M/ and F is shown in Figure 4.

From the definition of F, we have the following facts for each 0 < n < N:
If there exists a point s € F{z, (A (u), 1):0 < u < 1}, then B,(0){ (z, f(x)):0 =
r £ § = & and F{z,(0, ¢):0 £ ¢ < 4} = &; and if there exists
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sieF{zn(N(u), 1):0 = u < 1} and, s,e FR,(0), then there exists a point

ss& FT,(1) such that s £ &° =< s

Based on the above analysis, Theorems 1, 6, and 7, player I may play a strategy
as follows: Foreach0 < n < N, if FC,,, # & for some 0 < m < n (as indicated
in Section 5 (3a)) or 8 (F, A,) < 8(F, A,*), then I chooses pn+1 with respect to
A or A, as in Theorems 6 and 7; otherwise, I chooses p,y1 = 0 as in Theorem 1.
Then results similar to Section 5 (5) (with respect to A, u A,* instead of A,)
can be obtained as in Theorem 6. Q.E.D.

Remarks. (i) If we fix the points b, ¢, d and move point a toward the line
segment bc, then z(\’, 1) and 2(1, u') tend to point a, and & tends to the collec-
tion of weakly approachable sets § in Section 2; therefore, we conjecture that
we may construct a collection of weakly approachable sets & for this case as in
Section 3.

(i) Let a, b, ¢ be fixed and move point d toward a. Then z(\’, 1) tends to ¢
and z(1, u') tends to b (i.e,, A" and »’ tend to 0), and we have the case of Sec-
tion 5.

(iii) Weakly approachable sets for player II are similar.
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