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LINEAR FUNCTIONS OF ORDER STATISTICS!

By STEPHEN MACK STIGLER?

Unaversity of California, Berkeley

0. Introduction and summary. The purpose of this paper is to investigate
the asymptotic normality of linear combinations of order statisties; that is, to
find conditions under which a statistic of the form S, = > 7= cixX i has a limit-
ing normal distribution as n» becomes infinite, where the c.,’s are constants and
Xin, Xon, +++, Xan are the observations of a sample of size n, ordered by in-
creasing magnitude. Aside from the sample mean (the case where the weights
¢in are all equal to 1/n), the first proof of asymptotic normality within this class
was by Smirnov in 1935 [19], who considered the case that nonzero weight is
attached to at most two percentiles. In 1946, Mosteller [13] extended this to the
case of several percentiles, and coined the phrase ‘“systematic statistic’’ to
describe S, . Since the publication in 1955 of a paper by Jung [11] concerned with
finding optimal weights for S, in certain estimation problems, interest in proving
its asymptotic normality under more general conditions has grown. For example,
Weiss in [21] proved that S, has a limiting normal distribution when no weight is
attached to the observations below the pth sample percentile and above the gth
sample percentile, p < g, and the remaining observations are weighted according
to a function J by ¢i, = J (¢/(n + 1)), where J is assumed to have a bounded
derivative between p and g.

Within the past few years, several notable attempts have been made to prove
the asymptotic normality of S, under more general conditions on the weights
and underlying distribution. These attempts have employed three essentially
different methods. In [1] Bickel used an invariance principle for order statistics to
prove asymptotic normality when D icin Cin cONnVerges to a function J (t) of
bounded variation and the underlying distribution ¥ has a continuous density,
positive on the support of . His method was quite successful in dealing with
statistics which put no weight on observations below the pth and above the gth
sample percentile, p < g, but in other cases he did not allow the more extreme
observations to be weighted more than in the sample mean. More recently in
[17], Shorack used a more high powered version of the same approach to obtain
a stronger result, allowing much more weight on the extremes. Chernoff, Gast-
wirth, and Johns, in [3], employed a device of Rényi [14] and expressed S, as a
linear combination of independent, exponentially distributed random variables
plus a remainder term; they then showed that the sum of independent variables
has a limiting normal distribution and the remainder is asymptotically negligible
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in the sense that it tends to zero in probability as n tends to infinity. They proved
asymptotic normality if the c.,’s give substantial weight to only a fixed number of
percentiles and obey certain boundedness conditions elsewhere, and F has
a density which is continuous outside a set of measure zero, bounded away from
zero on the interior of the support of ', and smooth in the tails. A different ap-
proach is used by Govindarajulu in [7]. He adopted a version due to LeCam of
the method of Chernoff and Savage [4], which was used by Govindarajulu,
LeCam, and Raghavachari in [8] to prove asymptotic normality of linear rank
statistics, and for the case ¢ = J (¢/(n + 1)) he expressed S, as a linear combi-
nation of independent random variables plus a remainder term. Then if J is
absolutely continuous and both it and its derivative satisfy certain boundedness
conditions at zero and one, the remainder term tends to zero in probability and S,
has a limiting normal distribution. While his conditions on the weights are very
restrictive (for example he does not allow substantial weight to be put on sample
percentiles), his conditions on the underlying distribution are the weakest yet
obtained, requiring only that the inverse of ¥ does not grow very rapidly at zero
or one. Recently in [12], Moore gave a short proof of asymptotic normality, also
along the lines of Chernoff and Savage [4], which permits quite general ¥, but
again at the expense of stringent conditions on J.

In this investigation we use yet another method of attacking this problem.
Using a procedure due to Hijek [9], who applied it to linear rank statistics, we
will represent the statistic S, as a linear combination of independent random
variables, to which the usual central limit theory can be applied, plus a remainder
term, and then, under quite general conditions on the weights, prove that the
remainder converges to zero tn mean square, rather than in the weaker sense of
convergence in probability as in [3], [7], and [12]. This is accomplished by first
approximating the statistic 7, = Y i=" cXin by a sum of independent random
variables, where b, is a sequence of integers tending to infinity slower than n but
faster than logn as » increases, and then finding conditions under which 7,
approximates S, in mean square. The result is essentially stronger than that of
Bickel, in that much more weight is allowed on the extreme observations; how-
ever, a smoothness condition on the distribution similar to that of Chernoff,
Gastwirth, and Johns is required. For statistics of the form 7', the result is
essentially stronger than that of Chernoff, Gastwirth, and Johns, although slightly
more restrictive conditions are required to prove mean square equivalence of T,
and S, . We treat a much more general class of weights than does Govindarajulu
or Moore, but our conditions on the underlying distribution are stronger than
their conditions.

In the course of the proof we derive asymptotic expressions for the covariances
of the order statistics and the variance of S, . For the case of the variance of a
single order statistic X, , the result is proved under weaker conditions on F
and for a wider range of < than by Sen [16], Van Zwet [20], Bickel [1], or Blom
[2], although the speed of convergence is slower than in [16], [20], or [2]. The
asymptotic expression for covariances is similarly improved over Blom [2].
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The first section of the paper describes the method to be used and states two
previously known propositions which will be useful in the following sections.
Section two contains the calculation of an approximation for an order statistic
by a sum of independent random variables and an exact expression for the
covariance of two such approximations. Asymptotic expressions for this co-
variance and the covariance of two order statistics are derived in section three,
as well as an expression for the variance of S, . Section four contains the proof
of the asymptotic normality of S, when the extremes are not included and no
weight is allowed for 2/(n 4 1) near a point where the derivative of the inverse of
I’ misbehaves, and conditions are given under which these restrictions can be
dropped. Finally, in section five we discuss the limitations of the method used
and extend the results to the slightly more general class of statistics of the form
Ec,—nh (Xin), also considered in [3], [7], and [17].

1. Preliminaries. Let X;, X;, - -+, X, be a random sample of size n from a
population having a continuous cumulative distribution function F (z) anda
density f(z) with respect to Lebesgue measure. Let X1, < X5, < -+ £ X
denote the order statistics of the sample. For 0 < ¢t < 1 let F'(t) =
min {z:F (x) = ¢}, an inverse of F(z), and denote ¢ (t) = (d/d)F () =
1/f(F7(t)) when it exists. Let p; = 3/(n + 1). We shall consider statistics of
the form

(1.1) 8w = D i1cinXin,

where {ci}, 1 < 7 =< n,n = 1, is a double sequence of known constants. Our
method of attack shall basically be that used by H4jek [9] in proving the asymp-
totic normality of simple linear rank statistics under alternatives; that is, we
shall find that linear combination of independent random variables (denoted
S, and called the projection of S,) which most closely approximates S, in the
sense of mean square, show that S, and S, are asymptotically equivalent
in mean square, and prove that S, is asymptotically normally distributed
(ES.,3*(S,)). To this end we shall need the following simple propositions.

ProrositioN 1. (Héjek [9].) Let Xy, Xo, -+, X, be independent random
variables and § be the Hilbert space of a.s. equivalence classes of square tntegrable
statistics depending on X1, -+, X,. Let £ be the closed linear subspace of F
consisting of statistics of the form L = 22;1 1:(X;), where the l; are functions such
that E18 (X;) < . Then if S € &, the projection of S on £ is given by

(1.2) S=r,EES|X:) — (n— 1)ES.
Thus

(1.3) ES = ES

and

(1.4) EE —8) = +(8) — *(S).

The importance of Proposition 1 is that (1.2) permits the straight forward
calculation of the approximating statistic S, in terms of the original random
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variables X1, - -+ , X, , and (1.4) reduces the problem of proving the mean square
equivalence of S, and S, to that of obtaining asymptotic expressions for the
variances of S, and S, separately.

Since Proposition 1 requires the existence of the second moment of S,, the
following proposition, essentially due to Bickel [1], is of interest.

ProrosiTioN 2. The following four statements are equivalent:

(i) There exists some ¢ > 0 such that

limgas 2|l — F (z) + F(—2)] = 0.

(ii) For any finite number k > 0, there exists a finite r = r(k, F') such that if
r <4< n—r, then E|Xu|* < .
(iii) There exists a finite 7 > 0 such that

lime,o SF(s) = limesy (1 — 8)F'(s)
(iv) There exists a finite m = 0 such that
fiv @)@ — w)]"du < o.

The equivalence of (i)-(iii) is contained in the proof of Bickel’s Theorem
2.2(a). The equivalence of (i) and (iv) is trivial. Throughout this paper we shall
assume that (i) holds.

2. The projection of an order statistic. We shall now proceed to calculate an
explicit expression for the projection S, of S, = > _iw1 ¢inXin . It follows from the
linearity of the projection operator that S, = D i= cwXin. Thus it shall be
sufficient to find the projections X, of the X, .

Let U;, denote the 7th order statistic of a random sample of size n from a uni-
form [0, 1] distribution, and let ¢:, (w) denote the density of U, ; that is,

(2.1) gin (@) = n(CCHuTHA — w)" 0<u<l.

Then Xin and F'(Us,) have the same distribution, and in particular, X, =
JoF™ () gim (u) du.

LeMMma 1. There is some ng = no(F) such that for i = noandn — ¢+ 1 = ny,
(2.2) Xiw = 27" 2pa [T Y W)gin(w) du + nEXigma — (n — 1)EX,.

Proor. Leti = noandn — ¢ + 1 = no, where nois such that all of the integrals
in this proof are convergent, which is possible by Proposition 2. Note that if
o’ (Xi) < o we can take ng = 1, in which case we will interpret EXo,,1 = 0.

Now X: = min (Xi,n—l , Xn) — min (Xi-l,n,-l ’ Xn) + Xi—l,n-—l and
CEXm|Xe)) = LEXin|Xa)),k=1,2,---,n — 1,50 to prove the lemma
we need only show that E[min (Xin—1, X,) — min (Xiama, Xa)|Xa] =
7t [T (u)gin (w) du. But

E[mm (X,',n_l y Xn) — min (X,',.l,n_l , Xn) IXn)
= [{5F 7 W) [gin1(®) — g a1 )] du + X [, [gin-1(0) — gicna(u)] du
=0 [0 (w)gim (u) du

Il
e
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by integration by parts, since
(d/du)gin W) = ngiana1®) — gina ()] Q.E.D.

The principal usefulness of Lemma 1 is that it permits us to find a tractable
expression for the covariance of the projections of two order statistics. Let us
denote

23) K@w,v) =y¢@@®)|min (u,v) — uv] for 0 <wu,v<l.

Let gin () be as defined above (2.1).
LemMA 2. Let 2, j, and n be integers such that X ;, and X j, exist and are given by
(2.2). Then

(2.4) neov (X, Xin) = [5 [ K (u, 0)gin (u)yim () du db,

Proor. By Lemma 1 and the fact that Xy, ---, X, are independent, iden-
tically distributed, we have

(25) n cov X, Xin) = cov (JT¥ P @)gin(u) du, [§F0%(@)gin(v) dv).
Now
E{[§90 ¢ (u)gin w) du- [§70 Y (0)gsm (v) o)
= E{[o [o¥ @) (0)gin ®)gin (0 )] tmaxcun<rexp) du dv}
= [0 [ov )Y (0)gin w)gsn (@)L — max (u, v)] du dv
by Fubini’s theorem, and similarly
B{75V Y (w)gin (u) du} - E{ [757 ¥ (0)gin (0) do)
= [0 [o 0 @ )9 (@)gin @) (1 = w) (1 = v) dudo.

Since 1 — max (u,v) — (1 — %)(1 — ») = min (u, v) — uv, these expressions
together with (2.5) prove the lemma. Q.E.D.

3. Asymptotic expressions for covariances. In this section we shall derive
asymptotic expressions for the covariances of order statistics and the covariances
of projections of order statistics. The derivation of these expressions shall make
much use of the following lemmas. Let ¢in(u) be given by (2.1) and K (u, v)
by (2.3).

LemMA 3. Let fin(w) = (n — 1) ¢ " P*/(k — 1)! for u = 0. Then for
any € > 0 there exists an M > 0 depending only on e such that g, (w) = Mfum(u)
forallu =2 0,7 = (1 — e)n.

Proor. It suffices to find a constant M > 0 such that g (u)/fin(w) = M
all0 < u < 1.

NoW gin (u)/fin(u) = [n}/(n — ©)! (n — 1)A — u)"¢” ™" is maximized
where (1 — u)" %™ " is maximized, which upon differentiating we see to be
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atuo = (¢ — 1)/(n — 1). Thus we need only bound
Gin o) /fin(ue) = [0}/ (n — ©)! (n — 1) ][0 — 9)/(0 — D"
< [n/(n — )ln/(n — 1" by Stirling’s formula
<4t forn > L Q.E.D.

Lemma 4. Let h(u) be a positive function such that for some k = 0,
Jor)u@ — w)fdu < . Let b, be any sequence of integers such that b, — o,
bn/n — 0 asn — . Then for any m = 0 there exists A = N(m, k) > 0 such that

(3.1) 2" [ 520 b (u)gin (u) du — 0

uniformly for b, < ¢ = n — b,, where .

B,(@) =[G —1)/(n—1) = Ndu(n —1)7, G = 1)/(n — 1) + Ndu(n — 1)7],
and dy=[min C— 1,n — % — 1) log n]’.

Proor. We will show that (3.1) holds uniformly for b, < 7 < n/2, the lemma
will then follow by symmetry. Let us denote B,(3) = [vYa, va ], and let
do = [(@ — 1) log n]". Let ,

Ay = 0" [{"h)gim(w)du and A, = 2" [ hW)gim(u) du.

Let n be large enough so that b, > & + 1. In what follows, C' will be used as a
generic constant, independent of ¢ for b, < 7 < n/2. By Lemma 3 we have

Ay £ On" [P hu)fin(u) du < O™ [T hu)ufip,n (u) du.

Since fix,» () is monotonically increasing foru < (¢ — k — 1)/(n — 1), we
have that for A d, > F,

Ap £ OV ™ (va) [Eh @)U du £ C0™ it 0 (v2).

From Stirling’s formula it follows that fi s, (v») < Cn(1 — Nd,/ (G — 1)) M.
Using the inequality that for 0 < a < 7, (1 — a/r)" < exp {—a — d*/2},
we see

A, < O™ exp {— (L)Y/20G — 1)}

— OoprtEn (x2/2)}

exp {—log n
— Cnm+k+l—)\2/2

It can be shown through similar arguments that 4, =< OB Thys
n" [ B2 (i) h(u)gmu)du < O™ ™% and the lemma follows upon taking
A =3(m + k + 2)". QE.D.

We shall also need the following definitions and notation.

ConoprrioN T. We say the function ¢ (u) satisfies condition T at a point p € [0, 1]
if (a) for any € > O there exist > 0 and 0 < g < 1 such that for any ui, us € (0, 1)
satisfying 0 < qg(p — u2) < p—wm < p—U S1000< qluz — p) < wx —
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p<ur—p =T, [Yu)/Yw) — 1] < eholds, and (b) there existy > 0, M > 0,
a = 0 such that for 0 < |p — u| < v,ue (0,1),¢(u) = M|lu — p|* holds.

RemaRK. Part (a) of this condition says that if ¥ (u) tends to infinity or to
zero as % T porwu | p then it does not oscillate too wildly; roughly speaking it
behaves as a power of |[u — p|. Part (b) saysy (u) cannot approach zero faster
than some power of |u — p| as 4 — p. In particular, (a) is satisfied if for some
e>0,yw) = |p —ul for0 < |p — u| < e and some finite b, or if limy, ¥ (u)
and lim,,,¥ (u) exist and are finite and nonzero, or more generally if ¥ (u)
is regularly varying in the sense of Karamata asu T pandu | p (see Cibisov
[5] or Feller [6]).

Let us denote by D; the set of all discontinuities of ¢, and let

Dy={xe[0,1]:¥m > 0,¢ > 0{y:¢(y) = m}n{y:|r = y| < eand x = y} # &},
Dy ={ze[0,1:Vm>0,e>0{y:¢(y) <m}n{y:lzr — y| <eandzx = y} = J}.

For any sets A, B C [0, 1] we shall write A* = {ye[0, 1]:3 z ¢ A with |z — y| < ¢}
and p(4, B) = infoeayes [v — y|. Let pi = 3/ (n + 1), p; = j/(n + 1).

TuEOREM 1. Let € and M be any positive numbers, and let B be any subset of
[0, 1]. Assume there exists some o > 0 such that limg. |z|*[l — F (z) + F (—z)] = 0.
Then

(1) If condition T holds uniformly for all points tn B* n (D, u D3), and for
any & > 0, ¢ is of bounded variation on B n (DS’)°, then for any sequence of in-
tegers {b,} such that b,/logn — » andb, /n— 0asn — «,

(3.2) n cov (Xin, Xin)/K(pi,p;) = 1+ o(1)
and
(3.3) ncov (X, Xin)/K (@i, pi) =1+ o(1)

uniformly for p;, pjin Bn [b,/n, 1 — b,/n] such that p({p;, p;}, (D1u D3) n (0, 1))
> Mn " log n.

(i) If pi — p and p; — ¢, p, g€ (0, 1), and f satisfies a Holder condition of
order s £ 1 in an e-neighborhood of F~'(p) and an e-neighborhood of F~(q), then
(3.2) and (3.3) hold with o(1) replaced by O(n™), if fF(F ' (p)) = 0
and f(F'(q)) # 0.

Proor. Let n be large enough such that nHlog n)! < ¢, and for b, =< 7,
j£n — ba,cov (Xin, X;n) exists and is given by Lemma 2 and cov (X, Xj»)
exists. Let A, = {p e Ba[ba/n,1 — by/nl:p(p, D1uDs)n (0,1)) = Mn* log n}.
Let B,(¢,j) = B,.(¢) x B.(j), where B, () is given by Lemma 4.

We shall first prove Theorem 1 for the projections of the order statistics.
Let pi, pje A, . Now

SUPG, e, i) {[/pi — 1], Jo/p; — 1]} — 0 uniformly for p:, pje 4.,
and since by Lemma 2
ncov (X, Xin)/K (pi, pi) — 1

= [0 Jo[K (u, v)/K (pi, i) — 1lgin (u)gin(v) dudv,
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we will by condition 7" have proved (i) if we show
(34) I [ suciine [K (u, 0)/K (ps, i) — 1gin ()gin @) dudo — 0

uniformly for p;, pje An. But [ [s,6.0egin(w)gim (@) dudv — 0 uniformly by
Lemma 4, and by Condition 7 and the hypothesis of the theorem,

K@i, p)I " = 2’ @@, @) = o'
and K (u, v) < ¢ (u)y (@), so
[ [sine (K (u, v)/K (pi, p;))gin u)gim @) du dv
<0 [ [saine G@W@) @Y ®;))gin@)gin@) du do
< On [ ayne ¥ W)gim (W) du + [5,0c ¥ W)gin () du]

which tends to zero uniformly by Lemma 4.

We next prove (ii) for projections. Under the given conditions, |K (u, v) —
K (uo,v0)| = Cllu — uo|® + |0 — wo|’] for some constant C and (u, v) and (w0, v0)
in some neighborhood of (p, ¢). It is enough to show n cov (X, Xjm) —
K (i, p;) = Om™"™). As in the proof of (i), it follows from Lemma 4 that we

need only show
J Joutin 1K (u, ) = K @3, pi)lgin )gin @) dudo = O (™).
But
J [ 1K (uy 0) = K (i, p3)lgin (w)gin (v) dudo
< C [ [y (lw = " + o = pif)gin w)gin (v) du o
< Clfs (w — pi)’gan () dul”® + C[fs @ — p)gin(v) d]"”
Clpi(1 — pi)/(n + 2))* 4+ Cp;(1 — p;)/(n + 2))"
0(m™"),

and (ii) is proved.

It remains to prove Theorem 1 for the order statistics themselves. We recall
that F'(U:,) has the same distribution as X, where Ui, is the ¢th order
statistic of a sample of size n from a uniform [0, 1] distribution, and (F(Us),
F'(U;,)) has the same joint distribution as (X, X;»). We shall denote the
joint density of (Ui, Uj) by, for ¢ < 7,

Giin (U, v)
35) =hy/G—1IG—4—D'@n — N0 — )1 = o)
for 0Z2u=<v=1l
=0 otherwise,

and as before, the density of Us, by gin(v). Assume without loss of generality
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that s < jand 7z = n — 7 + 1. Let p;, p; € An. Now
oV (Xin, Xjn) = cov (Xin — F ' (ps), Xjn — F (p;)),

and we claim that both
(3.6) nB[(F'(Uin) — F ()@ (Up) — F ' (0;))s,.0cllK (i, pi)
and
B.7) nE[F ' (Uwn) — F @) s,anBlEF " (Um) — F ' ®:))s,6.0c]

(K (pi, )
are O(n™") uniformly for p:, p;je A.. As noted previously, for p:, p; € 4.,
K (ps, p;)] " < On®*?, thus it follows from the Schwarz inequality, Proposi-
tion 2 (iii), and Lemma 4 that (3.6) is uniformly O(n ™). Similarly, by Proposition
2 (iii) and Lemma 4, (3.7) is uniformly O (n ).

Now for large n, ¥ exists and is continuous on B, (¢, j) for p;, pj € 4., so by
the mean value theorem, F~'(u) — F ' (p;) = (u — p«)¥0:(u)), where 0;(u)
is some point between w and p;, for u £ B,(¢). Let us denote ¢;(w) = ¢ (6:(u)),
and define ¥:(p;) = ¢ (p:). We note that on B, (7), ¥:(u) satisfies condition 7'
with the same uniformity as does ¢ (1), if p; e A.. Also, for z = j,

(n+ 2)E(Uin — pi) (Ui — p;) = ps(L — pj),
and from (3.6) with F~'(z) = z, it follows that
i — P (0 + 2)E[(Usn — pi) (Uin — pi)5,00¢] = O@7).

We shall now consider two cases. Let R be a very large, but fixed, number.

Case 1. We first show that (3.3) holds uniformly for p;, p; & A., p: = pj,
j/i £ R. By (3.6) and (3.7) it is enough to show that
(3.8) [pi(1 — p)I "nE{Usw — ps) (Ui — ps)

Wi Ua Wi (U)W @) @) — 1s,6.0}

and
(3.9) [p:(1 — pI " E[(Uin — ps) @i(Ua) W @) — 1)I5,0.5)]

E[(Usn — ;) @i (U)W @) — 1Is,6.0]
tend to zero. But it can be easily seen that (3.8) is less in absolute value than
(1 4 R) SuPu,wyenycip s W) @) (0¥ () — 1,

and (3.9) is less in absolute value than
(1 + R) supw,vez,cip Wi @)W ()™ — 1 @)y @)™ — 1],

both of which tend to zero uniformly for p;, p;e A, as n — «. Thus (3.3)
holds for Case 1.

Case 2. We will now sketch the proof that (3.3) holds uniformly for
pi, pieAn, 7/i = R, if R is chosen large enough. See [18] for details. Let us



LINEAR FUNCTIONS OF ORDER STATISTICS 779
denote T';(u, v) = [:(u); @)Y (@)Y @) — sy, and let ¢; = i/n,
g = (j — 1)/n. By (3.6) and (38.7) we can write
(n + 2) cov (Xum, X;a)IK (pi, p)] " — 1
= (n+ 2)pi(1 — p)I 7" [5 [o (w — ps) @ — p;)Tis(u, v)
“[giin (U, ©) — Gin (U)gm @) dvdo + 0 (1).

It is clear that we may exchange ¢; and ¢; for p; and p; under the integral signs
without adding more than o (1) to the expression. Thus it is sufficient to show

3.10) ap:(1 — )7 [ [ w — ¢:) (0 — ¢;)T4(w, v)
[Giin (4, 0)[gin (w)gsn @) — Lgin (u)gin (v) du do
tends to zero uniformly. Let us write

(w,v) = (@ +a)/n, G — 1+ 0b)/n),

and
hu(a,b) = (1= (@=0)/(G—i— 1)

H(=a/(n =) P+ b/ — 1))
Nowj — 7= 4R — 1) = b.(R — 1), so by Stirling’s formula we have

Giin Uy 0)[gin @W)gin @) = ((n — 3)(G — ¢ — Dn(G — 1)) ha(a, b)e"9?,

where [0 = 1/12. We claim that (3.10) tends to zero uniformly with
Gijn (U, 0)[gin ()gin ()] replaced by h,(nu — 2, no — jJ + 1), and that this
replacement adds no more than o (1) to the expression. This is accomplished by a
close study of the behavior of the function 4, (a, b). In particular, it can be shown
that (u — ¢;)(v — ¢;) (ha(a, b) — 1) = 0 throughout most of the range of
integration, and the contribution of the remainder of the range is negligible.
Thus (3.10) can be bounded in absolute value by

o(nfpi(1 — p,)I™

ST @ =)@ — pi)lgim Uy v) — gin(W)gsa(0)] dudo + o (1),
which tends to zero uniformly for p;, p; € 4. and j/2 = R, completing the proof
of Case 2, and thus of part (i).

Finally, (ii) follows directly from (3.8) and (3.9) by the Schwarz inequality,
and noting that for large enough n, some constant C, and (u, v) & B, (¢, 7),

s ) ) o)y ()] — 1] < C[l6:(w) — pil* + 16; @) — pil’]
= Cllu — pid° + o — 24l Q.E.D.
A vparticular case of Theorem 1 which is sufficient for many applications is

the following immediate corollary.
CoRrROLLARY 1.1 Assume that there exists ¢ > 0 such that

lime,o [l — F (z) + F(—2)] = 0,
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and that the density of F (), f (), 4s continuous and strictly positive on F~*{ (0, 1)}.
Then
(i) Forany é > 0,

(3.11) ncov (Xin, Xin)[K(pi, p)] " =14 0(1)
and
(3.12) ncov (Xin, Xi)[K (pi, p)] " = 1+ o(1),

uniformly for p;, p;e[6, 1 — 9].

(ii) If we also assume condition T holds at zero and at one, then for any sequence
bn such that b,/n — 0 and b,/log n — «, (3.11) and (3.12) hold uniformly for
Di, P; € [ba/ny, 1 — ba/n].

An important feature of Theorem 1 is that (3.2) and (3.3) hold uniformly
in the stated range. It is this uniformity that allows an asymptotic expression
for the variance of S, = D iw€wXu. Let

A, = {peBnfby/n,1 — b,/nliplp, D1uD;)n (0,1)) = Mn? log n}.

CoROLLARY 1.2. Assume that the conditions of Theorem 1 (i) hold and that
cin = 0fori/(n + 1) 2 A, . If for some constant C independent of n

(3.13) Dot imt et K (pi5 i) S C 2tim CincinK (pi, )
Sfor all m, then
10" (Sa)[ Do tim CincinK (i, )] = 1 4 0(1)
and n0* (8)[ 2ot i1 CincinK (i, pi) 7 =1 + o(1).
Proor. The proof is immediate, since

Ine® (Su)[2 cincinK (ps, )T — 1]
= |2 cincimn €0V (Xin, Xin)[D cincinK (s, )7 — 1]

0(1) 2 leincinl K (ps, P2 cincinK pi, )] Q.E.D.

Remark. Theorem 1 gives asymptotic expressions for the covariances of
order statistics and the covariances of projections of order statistics as long as
p; and p; are sufficiently far away from the discontinuities and zeros of
Y(@) = [f(F (z))]" (for example at a distance greater than n~* log n), and ¢
is sufficiently smooth (in the sense of condition 7') at these discontinuities and
zeros. To go from these asymptotic expressions to ones for ¢°(S,) and ¢*(S,),
where the c;,’s are zero near the discontinuities and zeros of ¢, it has been
necessary to add condition (3.13), which says essentially that the variances of
> cinXin and D |ci|Xi are of the same order. This condition would thus
exclude statistics such as T, = X — Xj,, where ¢ — 7 = o(n). However, it is
evident from (ii) of Theorem 1 that if ¢ satisfies a Holder condition of order s in a
neighborhood of the set of p/’s for which ¢;, # 0, then the C' of (3.13) may be
replaced by o (n*").

IA
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4. Asymptotic normality. In proving the asymptotic normality of the statistic
S, = D i1 ¢inXin, we shall first deal with the case that S, satisfies the conditions
of Corollary 1.2; that is, we shall assume the ¢;,’s are zero for ¢/ (n 4+ 1) near to
discontinuities and zeros of ¢ (z) = [f(F '(z))]”', and the variance of S, is of
the same order as the variance of D7 [cn|Xin . We will then proceed to extend
the theorem to more general statistics by finding conditions under which the
cinXin are asymptotically negligible in the sense of mean square for z/(n + 1)
near the discontinuities and zeros of y.

Let the set Dy, Dy, and D; be as defined previously,

A, = {peBnfbu/n, 1 — by/nlip(p, (D1u D) n (0,1)) = Mn* log n}.

We shall always assume that for n large enough, p; ¢ 4, for some 7; that is, 4,

is not virtually empty.
TuaEOREM 2. Assume that the conditions of Theorem 1 (i) hold and that ¢, = 0
for i/(m + 1) 2 A, . If for some constant C independent of n

(4.1) Do tict |emeinl K (i, p5) S C Dot ics CincinK (D4, D)

for all n, then £((S, — ES,)/o(S.)) converges o the standard normal distribution
asn— o, '

Proor. By Proposition 1, E (S, — S.)* = ¢*(S,) — ¢°(S.), and by Corollary
1.2, [0*(S,) — ¢ (8.)]/0> (Sn) — 0, so we need only prove that (S, — ES,)/o(S,)
converges to the standard normal distribution. From lemma, 1,

Sn = n—l ZI:L=1 [Zz—l Cin F(Xk) lﬁ(u)!/m (u) du + An y

where A, is non-random, and if we write Zi, = D 1=1Cin |0 % ¥ (w)gm () du,
then it will be enough to verify the Lindeberg condition for Zk—l (Zkn — EZyy).
Let F, denote the distribution function of Z, — EZ:, , and s,” the variance of
> #t Zin . Then we must show that for any ¢ > 0,

nsa” [tieizen @ dF o (2) — 0.
We will in fact show that P[|Zi, — EZia| = es,] = 0 for n sufficiently large. Now
80 = 10" (Su), and Ziw — EZin = 2 i=1Cin [0 @)gin () (u — Itrexp<ur) du,
therefore, since
lw — Irxp<al [0 — Iircep<n| [min (u, v) — wo]™
max {u 0, (1 —u)™, (1 —0)7Y,
Do tim |eicinl [0 [0 ¥ )y @)
“Gin W) gin @) — Irexp<al v — Itrxp<a| du dv
2o himt [eacinl [o [0 K (u, v)
“Jin (@) gin @) max {u, v, (1 — w)™, (1 — )7} dudv.

IIA

(Zin — EZi)’

IIA

IIA
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But
fé ffl) K (u, v)gin () g5 (v) max {u ", v, (1 —u)™", (1 — )"} dudv
[K (i, pj) max {p; ', p; Y (L—p) 7, (L — p)) ™} =14 0(1)

uniformly for p;, p;je A, by precisely the same proof as that of Theorem 1
(i) for projections, and on 4, , max {p; ", (1 — p:)™"} < n/b., so we have

(Zin — EZin)' = (1 + 0(1)) (0/bn) 257 ic1 leincin| K (pi, p;)
(1 4+ 0(1)) (/ba)C D% ic cincinK (i, i)
b, '+ 0(1))Cs,

by Corollary 1.2. Since b, — o, we then have (Zin — EZi.)’ < €', for n large
enough. Q.E.D. :

REMARK. As in the remark following Corollary 1.2 it is clear from Theorem 1
(ii) that if ¥ satisfies a Holder condition of order s in some e-neighborhood of
Ui, 4 and max,, {p: ", (1 — p:)™'} = na, ", then the C of Theorem 2 can be
replaced by min (o (a,), o (n?)).

A particular case of the above, useful in many applications, occurs when the
Cin’s come from a scores generating function J; that is, when ¢;, = J (z/(n + 1)).
Noting that then

(m+ 1) Dt cincinK iy p;) and  (n+ 1) D% |cincin| K (i, Di)

are Riemann sums over the unit square, we have from Corollary 1.2 and Theorem
2 the following immediate corollary. In this corollary and the remainder of the
paper, by “possibly improper Riemann integral” we shall mean that the integral
exists as a Lebesgue integral and is the limit of the appropriate one of these

sums.
CoOROLLARY 2.1. Assume that the conditions of Theorem 1 (i) hold and that

Cin=0fori/(n+ 1)egA, . Ifccn =J @/ (n+ 1)) fori/(n + 1) e A,, and

I

lIA

IIA

4.2) [ [sxsJ @)J (@)K (u, v) du dv
and
(4.3) [ [ s | @) @)K (u, v) du do

exist as possibly tmproper Riemann integrals and are finite and non-zero, then
£((S, — ES,)/a(S.)) converges to the standard normal distribution and
00" (Sn) = [ [axsJ W) @)K (u, v) dudvasn — .

So far we have assumed that the c;,’s put no weight on the X;,’s for </ (n 4+ 1)
near (at a distance of order less than n*logn) to discontinuities or zeros of ¥
or near (at a distance less than n'b,) to zero or one. We now turn to the problem
of finding conditions under which the c;’s are allowed to put weight on such
Xin’s, but such that they remain negligible with respect to the rest of the statistic.
Let C, = A,°nBn[b,/n,1 — b,/n].
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TaEoREM 3. Let B be a subset of [0,1], and assume that for some
a> 0, limpewz’[l — F(x) + F(—z)] = 0. Assume also that for some
e > 0, F' satisfies a Lipschitz condition on B, and for some r > 0,
076D piea, CinXin) = 7 for n sufficiently large.

@) If 07 2opiec, leal — 0 asm — oo, then

(44) o (Zmec‘n CinXin)/a'z (men CinXin) — 0.

(ii) In particular, if the Lebesgque measure of A.° n B converges to zero as n — o
and cin = J (i) (n + 1)), where the possibly improper Riemann integral [ 5 |J (u)| du
exists and s finite, then (4.4) holds.

Proor. We wish to prove that

n_lo'z(Zp@'eC’" CinXin) = n_2 Z Zpi,pjecn CinCinh COV (Xin ) Xj'n) — 0.

It is clearly enough to show that n cov (X, Xj») is uniformly bounded:for
pi, i€ Cn. Let B, (¢, j) be as defined in the proof of Theorem 1. As in that proof
we have

nE (X — F ' (ps)) Xjn — F ' (p1))
= nEB[(Xiw — F ' (p:)) Xjn — F @) 5,00] + 0(1)
S nE Ui — pd-|Um — pil-C* + 0(1) = C* + o(1),
for some constant C, by the Lipschitz condition. Similarly, WEXm — F ' (ps))
< C + oQ), and cov Xin, Xn) = cov Xin — F ' (0:), Xin — F7'(p:)) =
20 'C* + o(n™') uniformly for p;, p;eCn. Thus (i) is proved, and (ii) is

immediate. Q.E.D.
TaeorEM 4. Suppose that for some C and § > 0,

Flw)| < Clu@ —w)] ™ for 0<u< L
() If 0t 200 el 7 — 0 and w I, el 1 — pi) 0, then
(45) n_l[o'z(zz’;il ciﬂX'in) + 02 (Z:';n—bn CinXin)] — 0.

(i) Forany C, e > 0 a sequence {b,} of integers with b,/log n— « and b,/n— 0
can be found such that if |ci| < Clpi(1 — pi)] " for i < buandi = n — by, then
(4.5) holds.

Proor. We prove that n'¢” (3 1% ¢inXin) — 0, the other tail will follow by
symmetry. We claim that [F~" (u)| < Clu(1 — u)] " implies that cov (X, Xn)
< Ci(pip;) T for 4,7 < b, , Cy a constant. By the Schwarz inequality it will be
sufficient to show EX?%, < Cipi 2.

EX% = [o[F 7 (u)'gin (u) du
C [ilu@ — w)] g ) du
Con (PTG — 1 4+ 28)I'(n — 4+ 28)/T'(n — 1 + 49).

IA
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Then by Stirling’s formula, for some constant Ci , EX}, < Ci(p:)® . Thus
70 (o conXin) = 0 Do vhet CinCin €OV (Xin , Xin)
nCy 2 [cincinl i)
Ci(n™ 2l fea| pi Y,
proving (i). In the case of (ii) we have
w7 3 o] p T = w70 2t p

< ol [ du

— 1
n b, T,

IIA

]

Taking b, = [logn]* we are finished. Q.E.D. .

REMARK. In both Theorems 3 and 4 the additional restrictions on F' are to a
certain degree necessary. The Lipschitz condition in Theorem 3 says essentially
that the density f of F is bounded away from zero on the interior of the support
of F. The necessity of a condition of this type can be seen by considering f(z) = 1
for x e [—1.5, —1]u [1, 1.5], and letting u, be the sample median, », any other
percentile, and S, = n3/ ‘un + vn . Then the conclusion (4.4) does not hold.

The restriction of ' in Theorem 4 is very close to the assumption o® (X;) < o
(or alternatively [¢|F'(z)]’dr < o), which would be necessary in any case
since we are deahng with mean square convergence. The condition |ci| =
[ps(1 — p:)]" is also almost necessary, for if we have F ' (z) = (1 — z)~ g
and ¢,, = n°, then it can easily be shown that 7 ¢’ (CanXnn) tends to
r'(2) — (¢ +96) > 0.

Theorems 2, 3, and 4 together give quite general conditions under which the
statistic S, has limiting normal distribution. A special case, which is sufficient for
most applications, occurs when ¢ is continuous and positive on (0, 1).

CoroLLARY 4.1. Suppose that F possesses a continuous density f which vs strictly
positive on F~{ (0, 1)}, and that [f (F~" (w))]™" satisfies condition T at zero and one.
Assume that for some ¢ > 0, 6 > 0, C > 0, and sequence of integers b, with
b./logn -— « and b,/n — 0 as n — o the following conditions are satisfied for

all n.
(a) |F~ (u)l Clu(l — ) for 0<u<1.
() |eal < Clp:i(1 — p)I°*  for i <b, or n—1i=b,.
(c) Zﬁjiﬁn |Cm0fn| K(p:,pi) £ C 22155, cincinK (Di, ).
Then £((Sa — ES,)/c(S.)) converges to the standard normal distribution as

n — 0,

If the weights are given by ¢, = J (¢/(n 4+ 1)), then (b) and (c) can be replaced
by

®) [J@)| £ Clu@ —u)™  for 0<u<L.

) [s foJ(u)J(v)K(u, v)dudv  and  [3 [5|T @) @) K(u,v) du dv
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exist as posstbly improper Riemann integrals and are both finite and non-zero.
Then also 6" (S,) — [3 [oJ w)J @)K (u, v) du dv.

5. Extensions and limitations. In [3], [7], and [17], a more general class of
statistics than S, is considered, namely the statistics of the form

T, = Z?—l Cinh (Xin),

where £ is some known funection defined on the support of . Despite this apparent
greater generality, our Theorems 1-4 and their corollaries apply equally well to
T, , with only minor changes. The condition that there exists some ¢ > 0 such
that limg.. 21 — F (x) + F (—=z)] = 0 should be replaced by the condition that
for some € > 0, limz. o, [A(2)|°F (z) = 0 and limz.e [k (z)[*[1 — F ()] = 0, this
then implies the eventual existence of E |k (X:)|* for b, < ¢ < n — b, , butis no
longer equivalent to it in general. If we let ¢ (z) = (d/dx)h(F'(x)) when it
exists, the results remain true with y replaced by |¢| in (b) of condition T, the
definitions of D, and Dj, the function K in the left hand side of (4.1) and in (4.3),
¥ replaced by ¢ otherwise, and the obvious modifications of the statements of
(ii) of Theorem 1 and Corollaries 1.1 and 4.1. (Corollaries 1.1 and 4.1 actually do
not generalize effectively, since ¢ continuous and strictly positive on F~'{ (0, 1)}
implies that % is strictly monotone, and only serves to change the distribution
function. )

In another direction of possible extension, it might be conjectured that the
approximation of the projection S, to S, is effective in the sense of Proposition 2
whenever S, is in fact asymptotically normal, at least under suitable regularity
conditions on F. This is in fact not true even in the simple case F (x) = z. It is
well known that if F is the uniform [0, 1] distribution, X, has a limiting normal
distribution as long as k — «© and n — k — .« Also, for ¢ > j, X — Xji has
the same distribution as X,_;,, .

We will show that while in the first case the projection of X, is always effective
if k— o andn — k — o ;in the latter case if 7/n — p, j/n— p,0 < p < 1, the
projection of X, — Xj, is effective only if (¢ — j)n~? — . Theorem 1 is in-
sufficient to prove these facts, for while part (ii) shows that X, — X, is effec-
tiveif (7 —J )n_% — oo, part (i) shows only that Xy, is effective when k and n — k&
tend to infinity more rapidly than log 7.

We need the following lemma..

LeEMMA 5. If 71— « asn — «, such that (n — 7)/n stays bounded away from 0,
then

1—[2(0 — &) + 177 2k W CET/ ) = o(ifn).
This holds uniformly for © = b, , where b, is an arbitrary sequence of integers tending
to infinity.

Lemma 5 is proved by rewriting the summation as a sum of hypergeometric
probabilities and using the inequality P(|Z] = a) = o ‘E |Z|'. See [18] for
details.

We can now prove

TurOREM 5. Let b, be any sequence of integers tending to infinity as n — o, such
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that n™"b, — 0. Then in the uniform case F (x) = x, the projection X, is an effective
approximation of X, in the sense that B (X — X i)' /0" (Xim) — 0 as n — oo,
uniformly for b, <1 < n — b,.

Proor. By Proposition 1, E(Xi — Xiu)’ = ¢’ Xu) — o (Xwm), and from
Lemma 1, after using a well-known identity for the incomplete beta function,
we have

Xip =0 jaa 2 (XS (1 = XD + (20— n = 1)/(n + 1).
Since
E(Q i (DX — X" = @0 + )7 Zhe () D/ G,
and o’ (X;,) = i(n — ¢ 4+ 1)/[(n + 1)*(n + 2)], a little algebra gives us
nE X — Xiu)' = (0 —i4+1)/(n+ 1)) (1 — /@ +2))@/ (n + 1)))
— @+ )7 2 (DRI GO,

and the theorem follows from Lemma 5. Q.E.D.

We now show that although X, — X, has the same distribution as X, ;,»,
and therefore we could infer its asymptotic normality as long as¢ — j — o, the
projection is not effective if ¢ — j = o (n?).

TueorEM 6. Let F (x) = x, ¢ > j, and 2/n — p, j/n — p as n — o, where
0<p<1Thnifi—j=o(),

& (Xin — Xin) /0" (Xin — Xin) — 0.
SkETcH oF Proor. We have
¢ Xin — Xpn) =0 Xign) = C—f)0—i+j+ 1)+ 1) 0+ 2)™

Thus it is sufficient to show that n*(z — j) 70" (Xs — X;n) — 0.
By Lemma 2 we can write n° (i — 7) 7" (Xin — Xjn) = A1n — As,, where

A =n@ — 57 [T [3 K, v)(gin®) — gin@))gin®) du do,
A =n@ — 7[5 [1 K@, v)(gun@®) — gin(u))gim @) du dv,
and since ¢ (z) = 1 in this case, K (u, ») = min (4, v) — uv. Now
A =06 — )7 [ 1K@, v) — K@i, )]
“(Gin(u) — gin())gin (V) du dv
n(i =7 [ (K@, 0) = K@i, 0)]
(g () — gin())gin(v) dudv + o(1)

by Lemma 4, and making a change of variable 4 = n e+ Di, ¥ = n_%y -+ pi,
and letting gin (@) = 770 W), 9ia @) = 7 gy + p;), the first term



LINEAR FUNCTIONS OF ORDER STATISTICS 787

becomes
[ [5. W IK @7 + pi, w7y + p) — K(ps, n7y + p2)]
G = )7l @) = g @+ G = mt (4 1)gk ) de dy,

where B, is the transformed range of integration. It can then be shown in a
straightforward manner that as n — o, on B, niK®n iz + pi, n Yy +pi)
— K(p:, n7% + py)] converges to a nice integrable limit, say M (z, y). It can
also be shown that as long as (¢ — 7)n™* — 0,

G =)0l @) = gin (@ + G — )/ (0 + 1)) — @) s exp {—2"/ (207}

where o® = p(1 — p). Lemma 2.2 of Bickel [1] then allows us to use the dominated
convergence theorem to say A1, — A (p), where the function A (p) is the integral
of the limits M (z, y) and (2r) %z exp {—z /(2¢")}. In precisely the same
manner it can be seen that As, — A (p), and since 4 (p) is finite for 0 < p < 1,

the theorem is proved. Q.E.D.
REmARK. It can also be shown that the projection of X;, — X, is not effective

when i — j = O (n').
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