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THE SMIRNOV TWO SAMPLE TESTS AS RANK TESTS!
By G. P. Strck

Sandia Laboratory

1. Introduction. Small sample distributional problems associated with the
Smirnov two-sample statistics have been of very great difficulty. These statistics,
based on the maximum difference, minimum difference, and maximum absolute
difference between the empirical distribution functions of two independent sam-
ples, were proposed for the two sample problem by Smirnov in 1939. The first
two statistics are ‘“‘one-sided”” and the third is “two-sided”. Despite their appar-
ent simplicity of form it was over a decade before their distributions were found
even for equal sample sizes. These results are due to Gnedenko and Korolyuk
(1951), and independently to Drion (1952). Proofs of these first results were
based on a random walk model which has been used for most subsequent results
as well.

Closed form expressions for the distribution of the one-sided statistic have
been given by Korolyuk (1955) for the case where one sample size is an integer
multiple of the other, and by Hodges (1957) for the case where the sample
sizes differ by one. Korolyuk (1955, page 85) also gives a formula for the general
case, but it does not appear to be correct.

Expressions for the distribution of the two-sided statistic given by Korolyuk
(1955) and Blackman (1956 and correction 1958) for the integer multiple case
and by Depaix (1962) for the general case are extremely complicated and podrly
suited for computation.

However, useful algorithms do exist for computing the small sample distribu-
tions of both statistics. Massey (1951) constructed a small table for the dis-
tribution of the two-sided statisticfor 1 < m = n < 40andforl € m = n <
10 and certain other selected values of m, n < 20 (Massey (1952)); however,
Hodges (1957) could not check all of Massey’s values in the latter case. Kim
(personal communication) confirms Hodges figures and reports additional errors.
Much larger tables of this distribution have been prepared by Marliss and
Zayachkowski (1962) who tabulate the complete distribution for1 £ m < n <
20, and by Kim and Jennrich (1967) who tabulate the tail above the 80th per-
centile for 1 < m = n £ 100. In addition, Borovkov et al (1964) tabulate
the percentiles straddling the 95th, 98th, and 99th percentiles of both the one-
sided and two-sided distributions for 1 < m < n £ 50.

The limiting distributions, given by Smirnov in his original papers (Smirnov
(1939a, b)) when the ratio of the sample sizes converges to a constant bounded
away from zero and infinity, are approached most erratically (see, for example,
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1450 G. P. STECK

Hodges (1957)) which makes the study of the exact distributions (and their
approximations) more important than would otherwise be the case.

For fine summaries of results concerning the Smirnov and related statistics
see Héjek and Sidak (1967), or Barton and Mallows (1965) and Darling (1957).

It should be emphasized at this point that all of the above results assume the
usual null hypothesis of equality between the underlying distributions of the two
populations. Nothing appears to have been published concerning the distribu-
tions, asymptotic or otherwise, under alternative hypotheses. For completeness,
although they are not distributional results, it should be noted that Massey
(1950) gives a lower bound to the asymptotic power of the two-sided test and
Capon (1965) and Klotz (1967) give some asymptotic relative efficiencies.

The principal results of this paper are in two directions. First, the Smirnov
statistics are expressed explicitly in terms of the ranks of one sample and their
distributions are then expressed in terms of the joint distribution of those ranks.
Following Lehmann (1953), we are then able to derive the distribution of the
one-sided statistic when one underlying distribution is a power of the other.
This distribution is expressed as a determinant.

Second, we show that the frequency content under the null hypothesis of any
parallelepiped in the sample space of the ranks of one sample is expressible as a
determinant. This result is easily specialized to give a similar expression for the
null joint distribution of the one-sided statistics and the null distribution of the
two-sided statistic for arbitrary sample sizes.

In addition, Korolyuk’s formula for the integer multiple case is shown to hold
whenever a certain sequence of numbers is an arithmetic progression. This con-,
dition is met, for example, sufficiently far in the upper tail of the distribution for
arbitrary sample sizes and periodically all through the distribution when one
sample size is congruent to one modulo the other. This result gives Korolyuk’s
translated formula wider applicability and suggests its use as an approximation
to the exact distribution in the general case. Although it is a more complicated
approximation than the one suggested by Hodges (1957) its relative error for the
cases studied (sample sizes up to twenty-five) is usually more than an order of
magnitude smaller.

We also apply some of these results to statistics related to the Smirnov statis-
tics. First, we note certain simplifications in the computation of the null dis-
tribution of the sum of the two one-sided statistics for arbitrary sample sizes.
And, second, we show that any test based on the two sample statistic recom-
mended by Vincze (1957, 1959, 1961)' consisting of considering jointly a one-
sided statistic and the place position where that extremum first occurred is equiv-
alent to the test based on the one-sided statistic alone when the sample sizes are
relatively prime.

2. The Smirnov statistics and their distributions in terms of the ranks of one
sample and their joint distribution. Let X; = X, < --- = X,, be the order
statistics from a sample of m independent identically distributed random vari-
ables with a continuous distribution function F, and let ¥; £ Y, £ --- £ Y,
be the order statistics from a sample of n independent identically distributed
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random variables with a continuous distribution function G. Let

Fu(z) =0 2 < X, G.(2) =0 2 <Y,
=i/m X; £2< Xin =4/n Y <2< Yin
=1 Xn <2 , =1 Y. < 2

be the corresponding empirical distribution functions. Finally, let Z; < Z, =<
+++ £ Zmsn denote the ordered combined sample and let B; and S; denote the
ranks of X, and Y, respectively, in the ordered combined sample.

The Smirnov statistics are

D*(m, n) = sup, (Fu(2) — Gu(2))
D (m,n) = sup, (G.(2) — Fn(z))
D(m,n) = max (D" (m,n), D™(m,n))

and their possible values are integer multiples of 1/mn.
TaEOREM 2.1.

P(mnDY(m,n) £ 7) = P[R: = (i(m +n) — r)/m, 1
P(mnD*(m,n) < r) = P[R; > (i(m +n) —r)/m, 1 <1

The proof follows immediately from Maag and Stephens (1968 ) who observed
that

IIA
fiA

1 £ m]

IIA

m].

mnD(m, n) = sup; {(m + n)i — mRi}. »

The basic idea can also be found in Anderson (1962).
THEOREM 2.2.

P(mnD ™ (m,n) < r) =P[R, = (¢«(m+n) —n+r)/m1=1
P(mnD (m,n) <r) =P[R, < (¢(m +n) —n+r)/m,1 =7 = m].

A

m]

Proor.
D™ (m,n) = sup, (Gu(2) — Fu(2)) = sup: [(1 — Fu(z)) — (1 — Gu(2))]
= sup, (Fn(z) — Gu(2)) = D*(m, n),

where #,,, G, and D" are F,,, G, and D™, respectively, computed for the sample
ordered from largest to smallest; that.is, for Z; = Z, = -+ = Znyn -
Thus, by Theorem 2.1, letting a; = (¢(m + n) — r)/m

P(mnD ™ (m,n) < r) = P(mnD (m,n) = r)
=PRiza,Rza, Rz an)
But B; = m +n + 1 — Rp_ip1 so that
P(mnD*(m,n) £r)=PRi=m+n+1— an,
Res=sm+n+1—@apa, ,Bn=m+n+1—a)
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and hence
P(mnD™(m,n) = r) = P(Ri £ (i(m +n) —n +r)/m 1 =i m).

The second part of the theorem follows similarly. Theorems 2.3 and 2.4 follow
trivially from Theorems 2.1 and 2.2.
TaEOREM 2.3.

P(mnD*(m, n) < r, muD~(m, n) < s)
. =Pl[lim+n) —r)/m S R; < (i(m+n) —n-+s)/m1l=<1i=<ml

If one of the inequalities for D* or D™ is replaced by strict inequality then the
corresponding inequality for R; is similarly changed.
THEOREM 2.4.

P(mnD(m,n) < r)
=Plim+n) —r)/m =R, = (im+n)—n+r)/m1l=i=m]
P(mnD(m,n) < r)
= Pl[(i«(m +n) —r)/m < B; < ({(m+n) —n+r)/m, 1

In general the bounds on R; will not be integers. In fact r is a possible value of
D, D¥, or D™ if and only if at least one of the corresponding bounds of E; is an
integer. This follows since if no bound is an integer then P(mnD < r)
= P(mnD = r). Kim and Jennrich (1967) give a result equivalent to Theorem
2.4 when F' = @.

CoroLLARY 2.1. If n = mp, p an inieger greater than or equal to one, then
P(nD¥(m,n) £ 1) = P(Riz i(p+1) — 4,1 S i = m)

P(nD(m,n) =t) =Pl(p+1)—t=R:=ip+1)+t—p,1=i=<m).

CoroLLARY 2.2. The Smirnov statistics are expressible in terms of the ranks of
one sample as follows.

lIA

, < m).

mnD+(m, n) = SUP1<i<m ((m + n)z — ng)
mnD”™(m, n) = SuPicicm (MR; — (m 4+ n)i + n)
mnD(m,n) = n/2 + supi<i<m |MR; — (m + n)i + n/2|.

2.1. Summary of notation. For easy reference we collect here some of the nota-
tion used in this paper.

[x] denotes the largest integer less than or equal to z.

(@) = —[—x] denotes the smallest integer greater than or equal to z.

z! denotes I'(z + 1) for non-integer as well as integer z.

r; denotes a possible value of R; .

p denotes an integer such that in the integer multiple case n = mp.

r denotes a possible value of D*.

s denotes a possible value of D™.

a; = (i(m 4+ n) — r)/m.
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a; = max (7, [a;] + 1) denotes the larger of 7 and the smallest integer exceed-
ing a; .

bi = a;s — 1 = max ('L - 1, [az])

¢ =min (n 4+ 74+ 1, {(¢(m + n) — n + s)/m)).

h = {r/n) denotes the smallest index such that a; = 1.

k denotes the exponent in the hypothesis G* = F.

A; = Tas + ket — 2)/T(as — 1) = (bs + ki — 2)!/(bi — D).

M; = nl(T)/(n + ki)l

3. The non-null distribution of D}, . Exact formulae for P(mnD+(m, n) =
r) when G* = F. Theorem 2.1 implies

(8.1) P(mnD*(m,n) < r)
= :”,:;am Z:Zjnm_l tee Z:?;lzl P(Rl =T, Ry =1 y C R, = Tm),

where a; = (¢(m 4+ n) — r)/m as before.
Lehmann (1953) gives the following expression for the joint frequency func-
tion of the {R;} under the assumption @* = F, k& = 0,

(32) P(Ri=11,+,Rn=1,|G =F) =k"mlnl/T(n + km + 1)
JI5= Tl + 5k — VYTl + (G — 1k — 1)1

Although the following derivation is true for any k = 0, it makes statistical sense

only if 0 < k = 1, because D" is the appropriate test statistic for testing the

hypothesis F = @ against the alternative G* = F only in that case. .
Substituting (3.2) into (3.1), we begin evaluating (3.1) as follows. Let

Su(k) = 2rtEt Tlry + ik — 1)]/Tlr + (6 — 1)(k — 1)]
iy Plria + (6 — 1)(k — D)YTlria + (1 — 2)(k — 1))
C 2L T+ b — 1)/T(n)

where a; is the larger of 7 and the smallest integer exceeding a; .
Then, since

2T +a + 1)/TGE 4+ 1) = 01225 (%9 = all(7h) — (@),
we have
Su(k) = (re— 1) -+ (n+k—2)/k—(n—1)-+ (an+k—2)/k
= h(r:) — h(a1)

where ly(x) = T'(x + k — 1)/ (kT(x — 1)).
Similarly,

Sy(k) = 275=e, T(ry 4 2k — 2)/T(ry + k — 1)
'[I‘(Tg + k — 1)/kP(Tz bl 1) i hl(a1)]
= hy(r3) — ha(en),
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where
ha(z) = (2k")"T'(z + 2k — 2)/T(z — 2)
— k7'D(z + 2k — 2)/T(z + k — 2)hi(oy).
By induction
(8.3) Si(k) = hi(riy1) — hi(ei)
where
(3.4) hi(z) = T'(z + ki — 0)/Gk'T(x — ©)]
— 25A T (e + ki — )/[(6 — NETT(z + kj — 0)hy(a,).
If B;(k) = j%’h;(a;) and C; denotes B;(1)/7!, then (3.3) and (3.4) give
C(35) Si(k) = [ )T (ris1 + ki — )/T(rigs — %)
— i (DT (ripy + ki — 0)/T(rep + kj — 0)B;(k)]
and
8i(1) = (") = 2ja (0

Note from the equations for a;(x) and he(x) that h1(1) = 0 and that 42(2) = 0
if @y = 1. Repeated use of (3.4) shows that A;(¢) = 0 for all ¢ < h. Therefore
Bi(k) = 0 for 2 < h, where h = (r/n) is the smallest index such that a; = <
(ie., ai > 2).

Hence, using 7,1 = m + n + 1, (3.5) implies the following theorem.

TaEOREM 3.1.

P(mnD*(m,n) = r)

1 — P(maD*(m,n) < r)
1 — E™mWn!/T(n 4+ km + 1)Sa(k)
112 5 (7)Bi(k)/T(n + kj + 1),
where the {Bi(k)} are as defined above and are determined recursively by
(3.6a) Bi(k) = T'(as + ki — 2)/T(an — %)

— 2255 (DT (e + ki — 0)/T(as + kj — )By(k).
For the special case k = 1,
(3.7) ("‘;")P(mnp’f(m,n) r) = >, (e
where, letting b; = a; — 1 = [ai],
(87a) Ci=(¥) — 2ia(X)C;, i=h+1L,h+2-

and

(3.6)

= (.
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Specializing further to the case £ = 1, n = mp, it can be shown that, letting
r = nfi,

Cht = buaw/(h + k)-coefficient of w**™ in (1 + w + -+ + w? )"
where 8 is defined by ¢ = hp — 8,0 = 8 < p. Since Chyx = 0if kp + 8 >
(h 4+ E)(p — 1), it follows that there are at most £ — & + 1 nonzero C’s when

n = mp. In particular, if p = 1 then A = {¢{/p) = ¢, C;4, = 1 and C; = 0 for
7 > h, and (3.7) becomes,

CP(nD¥(n,n) 2 t) = (2%

as is well known.
3.1. A determinant form for P(mnD™ = r) when G* = F. Writing (3.6a) as

2 5mn (DT (e + ki — ©)/T (e + kj — ©)B;(k)
=T(a;+ ki —¢)/T(s — 1) =Adi(say)i=hh+1,---,m

and following Wald and Wolfowitz (1939), we can write B, = DA (remember
0 <k =1andthat a; = b; + 1) where A’ = (44, Anq1, -+, 4n), Bi =
(Bi(k), Byyi(k), - -+, Bu(k)), and D is a square matrix such that the element
in the (¢ — h + 1)th row and (j — A 4+ 1)th column is

dij = ()i + ki — D)/ (b +kj —4), h=4j<m
It then follows from (3.6) that
(3.1.1) P(mnDY(m,n) 2 r|G*=F)=M'D4, .
where, letting z! denote I'(z 4 1) for non-integer z as well as integer z,
M = (My, My, -+, Ma)

_ ( nl(v) nl(4%) LG >
(n =+ kR)!’ (n 4+ kh + k)’ " (n + km)!)’

But it is easily verified that
D™ —DTA\(D A\ (I 0
0 1 0 1/ \0 I
D A\(D" -DA\(D 4\ (D 4
M o)\o 1, Ao 1/~ \M o
or, multiplying the first two factors,
I 0 D A\ (D 4
MD* —-MDA)\0 1) \M o)
Taking determinants on both sides of the above enables (3.1.1) to be rewritten as

D 4
M ool

so that

(3.1.2) PmnDY(m,n) Z r|G*=F) = —
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Writing out the matrix on the right-hand side of (3.1.2) and rearranging it
slightly gives

P(mnD* Z r|G* = F) = (=)™

Ay Apa Apye e Amy An 0

1 dran  drper o0 dmaan A M,
0 1 honir o0 Amoaptr Gmapr Maa
0 0 0 o 1 dpma Maa
0 0 0 . 0 1 M,

Shorack (1967) tabulates the distribution of the Wilcoxon statistic for these
alternatives for 4 < m, n < 8. A similar tabulation of the distribution of D,
statistic was also made in order to compare the power of these two tests. The
comparison was made for randomized tests with o = .10 against alternatives:
1/k = 2,3,4,6,9, 12.

The results were that the Wilcoxon test was generally slightly more powerful.
The Smirnov test was slightly better for the larger sample sizes when 1/k was
large and m = n + 1. The differences in power never exceeded 0.05 although the
percent difference was occasionally as high as 10 percent.

4. New results for the null distributions of the Smirnov statistics. Let b, =
b < -+ Sbpande = ¢ £ - -+ = ¢ be increasing sequences of integers such
that1 — 1 = b; < ¢ =n 4+ ¢4 1. Let

di;, =0 ifi—j7>1orifec;—b; =1

= (%Y otherwise,
and let N(bs;, ---,bj;¢i, -+ ,c;) denote the number of ways X;, --- , X; can
occur in the combined sample so that b, < B, < ¢, for every ¢ < v = j. When
1 = 1 and j = m, we will denote this function by N,(b; ¢).

TaeorEM 4.1. N(by, -+« ,bm; €1, -+ ,Cn) = det (di;). This formula was
found by comparing exact expressions for the number of such arrangements
when m was up to 4 with corresponding expressions for the one-sided case. Their
similarity suggested that perhaps a determinant would provide the answer since
one had already been obtained for the one-sided case, and since one is implied
by a recurrence relation given by Kemperman (1957) for the two-sided case
when n = mp. A simple determinant was constructed to cover the cases m < 4
and the extension was obvious and checked numerically for a few cases with
m = 5. The proof came last and consisted of showing that the determinant
satisfied the recurrence relations and boundary condition required by theT fune-
tion N ,(b; ¢).

The recurrence relations are obtained by letting each b; and ¢; in turn be
changed by 1. If ¢; is increased to ¢; + 1, N,.(b; ¢) is increased by the number
of ways the event (b; < R; < ¢; all j # 4, R; = ¢;) can occur. Since the set of
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ranks with indices less than ¢ is conditionally independent, given R;, of the set
of ranks with indices greater than 7, the following difference equation holds.

NGy, - bmser, o- ¢+ 1, -, cm)

(41) =Ny, -+ ,bmscr, -+, 0m) F Ny, -+, bicser, -+ ,ciq)
N, o+ 3 bu's Citrs * vy Cm)y
where b;* = max (b;, ¢;),j = ¢ 4+ 1, -+, m. Similarly, if b; is decreased to

bi — 1, the following difference equation holds.
Ny, - ,bi— 1, bumic, - ,Cm)
=N, ,bmie, ,cm) F N, bia;a®, oo, ci)
N(bigry o bms Civny o005 Cm),

where ¢;* = min (bi, ¢;),5 = 1,2, - ,4— L.
To prove that the determinant solution satisfies (4.1) observe first that ¢; + 1
occurs only in the 7th row of the matrix and second that each element in that

row satisfies
(ci+1;£];:i;'—i—1) — (cl—?]_-iz-g—lz— ) + (ct—b]-l—]—z—l)

Thus the determinant for ¢; + 1, call it D,.(c; 4+ 1), equals the sum of two de-
terminants one of which is D, (¢;) and the other is of the form

‘(61 g>,=[A|'|CI A:(i—1) X (1 —1)

C:lm — i+ 1) X (m — 3+ 1)
where |4] = N(by, -+ ,bis; 6, -+, 1) and

"1 (Ci_?i+1) (ci—b52+2+1) . (c@ bm+m—z—l) ]
1 (ci+1—lii+1—1) (0i+1;bi+2) . (Ci+1_‘bw£’:m_":“2)
c=10 1 (0£+2—71)i+2—1) . (ci+2_bmz+'m_"'_3)
[0 0 0 e G B

The determinant of C is seen to be N(biy, «++ ,bn"; Ciz1, -+ ¢m) by the
following argument. Let ¢ = 1 denote the largest index such that ¢; — bsyq > 0.
That is, ¢ denotes the number of non-zero entries in the first row of C. The proof
is to modify C, without changing its determinant, until the first row of C is
(1000---0). At that point C itself will be changed in such a way that it
will be obvious that its determinant is the required quantity. The proof makes
repeated use of the Vandermonde convolution formula in the form of the follow-
ing lemma.
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LevMma 4.1.
1 (D) () 11 o (5
1@ 6 () ({01 (41
0 1 (1) (521) 0 01 (522)
(4.2) . ) )
(2) 000 (1)
0 0 i) 1 L0o 0 o0 1 ]
1 (D) (%) G2) ()7
13 @ (;2) %)
o1 () (34
0 0 0 OGS
[0 0 0 1 P

The proof is immediate through use of the Vandermonde convolution formula

2o (DGR = (°F°

;) a,x real.

It is convenient to have symbols for the matrices in (4.2). Let them be, from
left to right, C;(0), V;(z) and Cj(z), respectively. Note that the number of -
leading zeroes in the rows of C;(0) is irrelevant and note, too, that the determi-
nants of C;(0) and C;(z) are equal.

We will also need the inverse of V;(x); call it W;(z). It is easy to verify that

1.0 0 - (%
010 — (%)
Wiz) =11 :
000 -()
(000 --- 1
Hence, ‘
(4.3) Cy(z)Wi(z) = C;(0).

Now let V;*(z) denote a partitioned matrix (V’éx) (I)> where V;(z) is the
square matrix defined above and I is an identity matrix of some appropriate di-
mension. Define W,;*(z) similarly. Then postmultiplication of C by V,*(z) or
W i*(z) changes only the (j + 1)th column of C.

If £; = biy1 — bix; + 7 — 1 then the matrix Ch—y = C-Wy*(2) - Ws*(23) - - -
Wi i(e1) has an upper left hand ¢ X ¢ minor which has the general form of
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C;1(0) as defined in Lemma 4.1; that is, the “numerators” of the binomial co-
efficients in any row of this minor are all equal. That this is, indeed, accomplished
note that the upper left 3 X 3 principal minor of C is of the form C;(z:); hence
the corresponding minor of C-W,*(z,) is of the form C»(0) by (4.3) and the
upper left 4 X 4 minor is of the form C3(x3) which is ready for postmultiplication
by Ws*(as), and so on. Now, let y; = —(¢; — bips — j + 2), and consider
the matrix

= C;‘_IV;k_l(yq.l)~V;k_2(y,,_2) <o Va(y2) Vi(yr)-

Each of these matrix multlplications is like using (4.2) withz =7 — 1 — a;
and, since (“T*) = (;') = 0, a zero is created in the upper right element of the
product matrix.

The result of all this is that we have created a matrix C* whose determinant
is the same as that of C and which has (1 0 0 --- 0) for its first row. What are
its other elements? Each successive multiplication by W subtracted biy1 — bit;
+ 7 — 1 from the “numerators” of each binomial coefficient in the (7 + 1)th
column (5 < ¢ — 1) and each successive multiplication by V subtracted ¢; —
bis1 — 7 + 1 from each “numerator” in the (57 + 1)th column (5 < ¢ — 1).
The net result is that ¢; — biy.; is subtracted from each ‘“numerator” in the
(7 + 1)th column (j = ¢ — 1). Thus the element in the (k¥ + 1)th row and
( + 1)th column of C* is (“*+*;%%4 ™) for j < ¢. Since no V or W changed
any element in any column except the first ¢, the element in the (k¥ 4 1)th row
and (j + 1)th column is still (*+ 774%™ ) for j > g¢. Letting b¥; =
max (¢i, bitj), J = 1, 2, ,m — 1%, it follows from the definition of ¢ that”
biv; < ciforj = ¢ and b@ﬂ = ¢; for 7 > ¢. Hence biv, = ci forj < g and
bl = biy;forj > q. It then follows that [C| = N(bfs1, -+ , 0w’ Cisa, ** 5 Cm)
as desired. Thus N,.(b; ¢) = |(di;)| is seen to satisfy the required recurrence
relation on ¢, . A very similar argument shows that it also satisfies the required
recurrence relation on b; .

All that remains of the proof is to show that the determinant |(d;;)| satisfies
the boundary condition

N(by"',b; ,"',C) = (C—b—l .
WithL =¢— b — 1= m we write

Y (Y (M .. (mmy (e

1 (By (FfY oo (EEmsy o (Bpm2
[(di) | =] O 1 (By .. (Eme L3

0 0 0 M

Using a familiar result on reciprocal series (see, for example, Riordan (1958,
page 45)), we see this determinant is (—1)". (The coefficient of ¢ in
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{14+ (e + I+ -} = (1 — ¢)*). This coefficient is (%); hence
[(dii)] = (m) = (" ).
This completes the proof of the theorem since we have shown that |(d.;)| satisfies
the recurrence relations and boundary conditions required by N.(b; c).
Determinant forms for the distributions of D™, D™ and D are obtained by

proper choices of the sequences {b;} and {ci}.
In the following theorems we let [x] denote the largest integer less than or equal

to x and let (x) = —[—=] denote the smallest integer greater than or equal to x.
TuporeM 4.2. ("5")P(mnDt < r, mnD~ < s) = |(ds;)| where
di; = 0, ifte—j73>1lorci —b; = 1;
= (“TEETTY,  otherwise;

bi = max (¢ — 1, [(¢(m + n) — r)/m])
¢i=min (n + 74+ 1, ((¢(m + n) — n + s)/m)).

Moreover, if r = s the matriz (d:;) 1s symmetric about the non-principal diagonal;
that 1s, dij = dm—ji1,m—i+1 - This can be direcily verified making use of (—zx) =
—[z] ond max (—z, —y) = —min (2, y).

If » = s in Theorem 4.2 one has P(mnD < r); if s = mn + 1 one
has P(mnD™ < r) and if » = mn + 1 one has P(mnD~ < s). In the latter two
cases ¢; = n + ¢ + 1 and b; = ¢ — 1, respectively. This gives

TuporeM 4.3. ("i")P(mnDt < r) = |(ds;)| where .
di; = 0, ifi—j5>1;
= (",-:'?.',.Jrlj ), otherwise;

by = max (¢ — 1, [(¢(m + n) — r)/m]).

4.1. Eatension of a formula due to Korolyuk. Korolyuk (1955) gives a formula
for P(D(m,n) = a) when F = G for the special case n = mp. In our notation
his formula can be written as

("AMP(mDT(m, n) Z 1) = 23wt/ (n — b; + ("),
Writing m¢t = r and replacing ¢ by (#/m) = m + n — b, gives
(4.1.1) ("FMP(maDT(m,n) = r) |
= 27 (m+n = bu)/(m+n — b)("WH ().

We will show this “translated” form of Korolyuk’s formula holds for all m, =,
and r such that b, bpy1, -+, bn form an increasing arithmetic progression.
Using (3.7a) to express (4.1.1) in terms of the {C,}, one sees that the more
general form of Korolyuk’s formula is equivalent to

("M )P(mnD* (m, m) Z 1)

= 2 Ci2 i (m 4 n — bn)/(m + n — b)) (") (1)
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and the equivalence of (3.7) and (4.1.1) follows from the equalities
(412) 27 (m 4 n = bw)/(m +n — b)) ("5 (7

mtn . h .
)

m—i y 1 =

-, m.

Ifb; = 9+ pj,j = © = h, that is, if s, bpy1, * -+ , bn form an increasing
(or decreasing) arithmetic progression, then these equalities follow from a
formula (see problem 16, page 169) in Riordan (1968) using the substitutions
(Riordan’s symbol given first): k —-n — m +j,n —>m — 4, a = p — 9 + pi,
g=B8—py—>m+n—byn.

The question now arises as to when these b’s are in arithmetic progression so
that (4.1.1) is exact. This is a difficult question to answer in general, but (4.1.1)
is exact at least for the cases:

(i) any m and n when r = mn — 2n + 1,since h = m — 1 and by, by 1S
an arithmetic progression in a trivial sense;

(ii)n =mp +1,r =j(modm),1 = j =< hsince [a;] = i(p + 1) — [r/m] +
[(¢ — 7)/m] and the last term is zero for A < ¢ < mifj < h;

(iii)n =mp — 1,r = —j(modm),0 < j < h — lsince [a;] = i(p + 1) —
[r/m] — ((¢ — 7)/m) and the last term is —1forh = ¢ = mifj = h — 1.

4.2. Formulae for P(mnDt = r) when n = mp = 1. It is easy to show that
the sequence {b;}, 7 = h, - - - , m, forms no more than two arithmetic progressions
when n = mp =+ 1. In that case at most one increment in the sequence equals
(p + 1) = 1 and the others are all equal to p + 1. For example, if m = 5,
n = 16,7 = 15 then A = 1 and the 5b’s are 1, 5, 9, 13, 18; and if m = 5, n =
14, r = 17 then h = 2 and the 4 b’s are 4, 8, 11, 15.

Suppose now that n» = mp + 1 and that bn, bsy1, + * * , bare form the lower
arithmetic sequence (0 < o < m — h — 1) and bpygq1, * - * , b form the upper.
Let

E;=0b;+4+ 1, fh=it=h+a;
= b, otherwise.
Then the sequence {E.}, ¢ = h, -+, m is an arithmetic progression and
P(mnD* < r)
= P(R; > bs, all¢)
= P(R; > E;,all?)
+ 250 P(Ri > bi(i < h + 7), Rug; = Buys, Bi > E(i > h + j)).
Hence
(4.2.1) (™"P(maD* = r)
= Xk (m +n = Ba)/(m +n — B)("E(F) — 250

where, since sets of ranks above and below a given rank are conditionally inde-
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pendent and since the b’s involved with each set of ranks are in arithmetic

progression,
(4.2.2) Q;

An analogous formula for n =

= {(

'{(m+n

bt s

)_

htji—1

h+j—1
t=h

. '”'l;,:'_—hz_’;";’;«"'" )(Eh+:‘+t;."zh+i ).

P(mnD* < r) = P(R: > ds, all ©)

where

+

d5=b£,

m—h

(Bnti — bag 5=1)/ (bagi — be) (Fie2%

met?) — 20

mp — 1 would follow from

jmar1 P(Ri > di(4 < h + j), Ruyj = dnyjs
R; > bi(z > h + 7)),

=b;+1,

otherwise.

fh=i=sh+a

NED)
(m+n—En)/(m+n — Epyiys)

While apparently unrelated, (4.2.1) is reminiscent of a formula due to Hodges
(1957) for the case n = m + 1. It is also possible to interpret the Q; in (4.2.1)
as point probabilities for D*. What happens is best illustrated by an example.

In Table I we give, for each ¢ = h, &; = i(m + n) — r, b; = [t;/m] (in bold
face) and E; (in italics) for the case m = 5, n = 16, and r = 17(1)24.

Using b; = 0 plus the b’s given in Table I, we have, by Theorem 4.3,
i & & @ o
1 & @& G W
(F)Popt <1y =10 1 (N (D) ()] = 8053.
o o0 1 (D &
0o o0 o0 1 (%
TABLE I
Table of t: = i(m 4 n) — r, b; = [t:/m] (bold face) and E; (in italics) i = h, -+ , m, for
m=05,n =16, and r = 17(1)24
4
i
17 18 19 ‘ 20 21 22 23 24

2126 5 65|24 4 65|23 4 5|22 4 65|21 4 4|20 4 4|19 3 4|18 3 4
3|46 9 945 9 9|44 8 9|43 8 9|42 8 8|41 8 8|40 8 8|39 7 8
4167131366 13 136513 13|64 1213 |63 1212 (621212 |61 12 12|60 12 12
5|88 17 17 | 87 17 17 | 86 17 17 | 8517 17 | 84 16 16 | 83 16 16 | 82 16 16 | 81 16 16
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Similarly,
(F)P(8OD' < 18) = 8613,  (%)P(S0D* < 19) = 9097,
(%)P(80D* < 20) = 9657,
from which it follows that
(4.2.3) (B)P(8OD™ = 17) = 560, (5)P(80D™ = 18) = 484,
()P(80DT = 19) = 560.

These values will be compared to those given by the @’s.

Since the {b;} are in arithmetic progression for » = 17, 21, and 22, the first
term on the right-hand side of (4.2.1) is the only term and P(80D* = 17) is
given by Korolyuk’s formula. Now when » = 18 then o« = 0 but the E’s have
not changed and

(%)P(80DT = 18) = (§)P(80D" = 17) — Q.
Thus
Qo = (3)P(80D™ = 17).
But from Table I and (4.2.2) using r = 18, we find as a check that
Q =4 {(F) = H(ND) — #DE — OO(F)} = 560
which equals the appropriate value in (4.2.3), as it should.

Similarly, when 7 = 19 then a = 1, but again the E’s are the same and,
moreover, Qo when » = 19 is equal to @, when r = 18. Hence it follows that

Q = (F)P(80D™ = 18).
Again, from Table I and (4.2.2) using r = 19, we find
Q= {(3) — HD)(D}{(F) — #(D(D)} = 484

which checks with (4.2.3).
Finally, using r = 20 we can show that

Q. = (¥)P(80D* = 19).
Again, by direct computation from (4.2.2) we find

@ = {(3) — D) — 2OG}-{(D) — (D} = 560

which checks with (4.2.3).

As r continues to increase, we find P(80D" = 21) = 0 since no t;/m is an
integer and hence P(80D* = 21) = P(80D™ = 22). Both these probabilities
are given by Korolyuk’s formula with a new set of E’s. As r continues to increase
to 23 and 24 we find again @ = 0 and 1 and the new Q, and @, will be (%3 )P (80D
= 22) and (%)P(80D™ = 23), respectively.

The implication in the general case when n = mp + 1 is that Korolyuk’s
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formula will give the required probability when » = j(mod m) and j does not
exceed £, and that as r increases from such a value, say 7o, to a value such that
r = h + 17+ 1(mod m), then

Q: = P(mnD*t = ry + 7).

5.0. Application to the null distributions of related statistics.

5.1. The V. statistic. Computational problems associated with the small
sample distribution of the V., statistic when m > n and reported on by Maag
and Stephens (1968) can be simplified by applying the above results.

In our notation

MV o = mn Dy + mn Dy = n + sup {(m + n)k — mRy}
+ supx (mR, — (m + n)k}

which expresses V., in terms of the R; only. Also, following Maag and Stephens,
we can write

P(mnVu, < 1) " PmnDT =a,mnD” <r —a)
SraAPmnDt<a+1,mnD” <r—a)
- ZZZ{ P(mn DY < a,mnD” < r — a).

By Theorem 4.2

(5.1.1) NPV, < 1) = Db [dii(a)] — Dacl |d¥(a)]
where, with or without the asterisk, "
0, ifz—j7>1lorec; —b; =1;
dij(a) = es=bjti—i—1 .
("#n"),  otherwise,
and

b; = max (1 — 1, [(¢(m + n) — a — 1)/m]),

b* = max (i — 1, [(i(m + n) — a)/m])
¢i =min (n + ¢+ L {(t(m +n) —n +r — a)/m)),

Ci = C;.

The computation of the right-hand side of (5.1.1) is simplified by noting that
b; and b;* are frequently equal and by noting that one needs to sum only over
those values of @ which are possible values of mn D™. Let g denote the greatest
common divisor of m and n and consider the following cases.

Case I. g = 1. In this case m and n are relatively prime and b; # b;* if and
only if the solution in <, say %, to nt = a(mod m) is greater than or equal to
(a/n). This congruence has exactly one solution for every a. The pertinent result
is: na = b(mod m) has a solution in @ if and only if ¢ divides b, in which case
there are exactly g solutions (see, for example, Jones (1955), page 46). Thus
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for every a, b; differs from b:* for only one value of ¢ and the matrices (d;;(a))
and (df;(a)) differ only in one column. Hence |di,(a)| — |dF;(a)| = |dij(a) —
di;(a)| for every a. In order to tell which a’s are possible values of mn D™, it is
convenient to make a table of a, i(a) and (a/n). The possible values of mn D
are those values of a for which 4y(a) = {(a/n).

Hence, when m and n are relatively prime, we have expressed (™5™ )P(mnV ma
< r) as the sum of at most 7 ¢ X u determinants where u = min (m, ). While
it is still prohibitive to compute the distribution of V... by hand this way ex-
cept for p = 3 or perhaps 4, there is a significant reduction for larger u so that
computing the distribution up to say p = 25 is not out of the question.

Case II. ¢ > 1. In this case the possible values of mn D* and mnV are in-
teger multiples of g, and hence we can restrict ourselves to values of r and «
which are integer multiples of g. Here, however, the congruence n¢ = a(mod m)
has ¢ solutions when ¢ divides @ so that, in general b; # b;* for more than one
value of 7 which means we cannot subtract the matrices and then take the de-
terminant of the difference to get the difference of the determinants.

In this case ("5")P(mnVm, < r) is expressed as the difference of two sums of
no more than r/¢g u X p determinants each.

5.2. Vincze's statistics (D, R), (D™, R™). Vincze (1957, 1959, 1961 ) considers
the use of pairs of statistics (D*(n, n), R*(n, n)) and (D(n, n), R(n, n)) for
the two-sample problem, where R™ (or R) is defined as the smallest value of 4
such that DT (or D) attains its supremum at z = Z;. If it should be the case
that m and n are relatively prime, what we have shown implies that whatever
the value of D or D¥, say r, then there is exactly one solution in k to each of the*
equations

(m + n)k — mR;
n/2 + |mRy — (m 4+ n)k + n/2|

This in turn implies that in this case there is precisely one value of R (or R)
to be associated with D* (or D). Hence when m and n are relatively prime,
any test based on the statistics (D™, R™) or (D, R) is equivalent to one based
on DY or D alone.

1

r

r.
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