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1. Introduction. The purpose of this paper is to present a general theory for
the usual subjective expected utility model for decision under uncertainty. With
a set S of states of the world and a set X of consequences let F' be a set of funec-
tions on S to X. F is the set of acts. Under a set of axioms based on extraneous
measurement probabilities, a device that is used by Rubin [14], Chernoff [3],
Luce and Raiffa [9, Ch. 13], Anscombe and Aumann [1], Pratt, Raiffa, and
Schlaifer [11], Arrow [2], and Fishburn [5], we shall prove that there is a real-
valued function » on X and a finitely-additive probability measure P* on the
set of all subsets of S such that, for all f, g ¢ F,

(1) f < gif and only if Blu(f(s)), P*] < Elu(g(s)), P*].

In (1), < (“is not preferred to”) is the decision-maker’s binary preference-
indifference relation and E (y, 2) is the mathematical expectation of y with re-
spect to the probability measure .

Because we shall use extraneous measurement probabilities, (1) will be ex-
tracted from the more involved expression (2) that is presented in the next
section. The axioms we shall use to derive (2) imply that P* is uniquely dg-
termined and that « is unique up to a positive linear transformation.  may or
may not be bounded: however, it is bounded if there is a denumerable partition
of S each element of which has positive probability under P*. Our theory places
no restrictions on S and X except that they be nonempty sets with X containing
at least two elements. X may or may not have a least (most) preferred con-
sequence. In addition, no special restrictions are placed on P*. For example, if
S is infinite, it may or may not be true that P*(4) = 1 for some finite subset
A C 8, and if P*(4) < 1 for every finite A C S it may or may not be true that
S can be partitioned into an arbitrary finite number n of subsets such that
P* = 1/n for each subset. Finally, no special properties will be implied for w
apart from its uniqueness and its boundedness in the case noted above.

To indicate briefly how this differs from other theories, we note first that the
theories of Chernoff [3], Luce and Raiffa [9], Anscombe and Aumann [1], Pratt,
Raiffa, and Schlaifer [11], and Fishburn [5] assume that S is finite. The theory
presented here is a generalization of a theory in Fishburn [5]. The theory of
Davidson and Suppes [4] assumes that X is finite and implies that, if z < y
and z < w and there is no consequence between z and y or between z and w
then u (y) — u(x) = uw(w) — u(2). The theories of Ramsey [13] and Suppes [16]
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1420 PETER C. FISHBURN

place no special restrictions on S but they imply that X is infinite and that if
u(z) < u(y) then there is a z ¢ X such that u(z) = .5u(x) + .5u(y). On the
other hand Savage [15] does not restrict X in any unusual way, but his theory
requires S to be infinite and 1mphes that, for any positive integer =, there is an

n-part partition of S such that P* = 1/n on each part of the partition. Arrow
[2] also assumes this property for P*

2. Definitions and notation. @ is the set of all simple probability measures
(gambles) on X, so that if P& ® then P(Y) = 1 for some finite ¥ included in
X. The probabilities used in @ are extraneous measurement probabilities. They
can be associated with outcomes of chance devices such as dice and roulette
wheels.

With P, Qe ® and a ¢ [0, 1], aP + (1 — a)Q is the direct linear combination
of P and @ so that P 4+ (1 — «)Q is in ®. Under this interpretation, @ is a
mixture set. By Herstein and Milnor’s [7] definition, a mézture set is a set M and
an operation that assigns an element aa + (1 — a)bin M to (a,b) e M x M
and « ¢ [0, 1] in such a way that

(1a + (0)b = a
aa + (1 — a)b (1 — a)b+ aa

a(Ba+ (1 —8)b) + (1 — a)b = (aB)a + (1 — aB)b

forall @, be M and o, 8 €0, 1].

3¢ is the set of all functions on S to ®. With P ¢ 3¢, P (s) is the gamble in @
assigned to s &S by P. We shall call 3¢ the set of horse lotteries, after Anscombe
and Aumann [1]. A pseudo-operational interpretation for P goes as follows. If
Pisselected and if states obtains (to use Savage’s term) then the gamble P (s)is
used to select a consequence in X.

With P, Q3 and a € [0,1],a P+ (1 — a)Q is the direct linear combination
of P and Q so that (@P + (1 — a)Q)(s) = aP(s) + (1 — a) Q(s). Clearly,
aP + (1 — «)Q is in 3¢ when P, Q € 3C and « ¢ [0, 1]. It follows easily that 3Cisa
mixture set.

An event is any subset of S. A partition of S is a set of non-empty, disjoint
events whose union equals S. P in 3 is constant on event A if and only 1f
P(s) = P(s') forall s, s" ¢ A, in which case we write P = P on A when P(s) =
forall s A. P and Q agree on event A if and only if P(s) = Q(s) forall se 4, in
which case we write P = Q on A.

We shall apply the binary relation < to 3¢. P ~ Q if and only if P < Q and
Q < P,and P< Qif and only if P < Q and not Q < P. With P, Q ¢ ®, we define
< on @ in terms of < on 3¢ thus:

P<Qifandonlyif P < Qwhen P = Pand Q = Q on S.

With Pe ®and Q 3¢, P < Q means that P < Q when P = Pon S. P < Q,
P <@, P < Q, - are defined in similar ways.
A’ is the complement in S of event A, so that A N A° = & and 4 U 4° = 8.

I

I
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Event A is null if and only if P ~ Q whenever P, Q in 3C agree on A°.

With these definitions at hand we shall turn to a set of axioms that implies
the existence of a real function % on X and a probability measure P* on (the set
of all subsets of ) S such that, for all P, Q € 3¢,

(2) P < Qif and only if E[E (u, P(s)), P*] < E[E (u, Q(s)), P].

Expression (1) results from (2) on defining f < ¢ if and only if P < Q when
P(s)(f(s)) = Q(s)(g(s)) = 1 forall seS. When P(s)(f(s)) = 1forall seS,
E[E(u, P(5)), P"] = Eu(f(s)), P"].

3. Axioms and summary theorem. In addition to the structural assumptions
of the preceding section (® is the set of simple probability measures on X, 3¢
is the set of all functions on S to @), we shall use the following six axioms.
For all P, Q, Re 3C:

Al. < is a weak order (transitive and connected, or complete) on 3C;

A2.If P < Qand ae (0, 1) thenaP + (1 — a)R < aQ + (1 — a)R;

A3. IfP < Qand Q < RthenaP 4+ (1 —a)R< Qand Q < 8P + (1 — B)R
for some a, B¢ (0, 1);

A4. P < @ for some P, Q £ ®@;

A5. If event A isnot null, if P = Pand Q = Qon A and if P = Q on A°
then P < Qif and only if P < Q;

A6. If P(s) < Rforall se S then P < R, and if R < Q(s) for all s &S then
R < OQ. .

Axioms Al, A2, and A3 are fairly standard axioms in von Neumann-Morgen-
stern or Bernoullian expected-utility theory. A2 is an independence or sure-
thing axiom, and a defense for its adoption is similar to the defenses made by
Friedman and Savage [6], Savage [15], Raiffa [12], and others. In particular, it
can be noted that a two-stage procedure can be associated with aP 4+ (1 — a)R
whereby P is selected with probability a and R is selected with probability 1 — «
at the first stage. If P is selected at the first stage and if s obtains then P (s) is
used to select an x at the second stage. A similar remark holds for R and R (s).
If s obtains, the total probability that z will resultis aP (s) (z) + (1 — a)R(s) (z),
which equals the probability (P (s) + (1 — a)R(s)) () assigned to z by aP +
(1 — a)R when s obtains.

A3 is a typical Archimedean axiom, and A4 is similar to Savage’s P5. It fore-
closes the uninteresting possibility that all consequences are indifferent to each
other. A5 in the 3¢ context is similar in intent and structure to Savage’s P3,
which is part of his sure-thing principle. A5 says that preferences for constant
horse lotteries are the same as preferences for corresponding horse lotteries that
are constant on nonnull events and agree with one another on the complements
of these events.

The final axiom A6 is another aspect of the sure-thing principle. It is similar
to Savage’s P7 extended to horse lotteries, except that Savage’s P7 uses < where
< is used in AG.
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One final definition will be needed for our summary theorem. We shall call
P &£ 3¢ bounded if and only if there are real numbers a and b such that

P*la < E(u, P(s)) < b} = 1.

According to common usage, P*{---} is an abbreviation for P* ({s]la =
E(u, P(s)) = b}).

Summary THEOREM. A1-6 imply that there is a finitely additive probability
measure P* on the set of all subsets of S and a real functwn u on X such that (2)
holds for all P, Q & 3C. Moreover, when A1-6 hold and P* and w satisfy (2) for
all P, Q¢ 3¢, then:

(a) Every horse lottery is bounded for P* and u;

(b) Forall A C 8, P* (A) = 04 and only if event A is null;

(¢) u us bounded if there is a denumerable partition of S such that each event
in the partition has positive probabihty under P*;

(d) A probability measure Q on the set of all subsets of S and a real functum u
on X satisfy (2) in place of P* and u for all P, Q £ 3¢ if and only if Q* = P* and
there are real numbers a > 0 and b such that u' () = au(z) + b for all z e X.

4. Theorems. To establish the Summary Theorem we shall consider a series
of theorems, several of which will be proved in the ensuing sections. We shall
not prove the first theorem since it follows immediately from the expected-utility
theorem proved by Jensen [8] supplemented by Theorem 18 in Luce and Suppes
[10, p. 288].

TuEOREM 1. If M s a mixture set and < on M s a binary relation that satisfies
the direct analogues of Al, A2, and A3, then there is a real-valued function w on
M that satisfies (3) and (4) for all a, be M and a ¢ [0, 1] and is unique up to a
positive linear transformation when it has these two properties:

3) a < bifand only if w(a) £ w(d)
4) waa + (1 — a)h) = oawla) + 1 — a)wd).

The next theorem, which uses Theorem 1 in its proof, amounts to a restate-
ment of Theorems 2 and 3 in Fishburn [5]. Its proof is similar to the proofs of
those theorems and will be omitted.

TraEOREM 2. If A1-5 hold and {By, - - - , B} is a finite partition of S then there
are nonnegative numbers Pg* (By), - - - , P5*(B,) that sum to one, and there is a
real function uz on X such that, for all P;, Qi e ®, if

P=P;, and Q = Q:on B;; t1=1--,n
then
(5) P < Qifand only if D is E (us, Pi)Ps* (B:) < 21 E (us, Q)P (B:).

Moreover, when A1-5 hold and Py* and us have the stated properties then:
(a) Ps*(B:) = 04f and only if B; is null;
(b) Nonmegative numbers Qs* (By), -- -, QB* (Bn) that sum to one and a real
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function ug on X satzsfy (5) in place of P5* and us for all indicated P and Qi
and only if Qs = Ps* andus isa positive linear transformation of us .

Using this theorem we shall establish the following part of the Summary
Theorem in the next section. With

3o = {P|P e3¢ and P is constant on each event in some finite partition of S},

a horse lottery is in 3Co only if it assigns no more than a finite number of P ¢ @
to the states in S.

TuEOREM 3. Al-5 imply that there is a probability measure P* on S and a real
functwn u on X such that (2) holds for all P, Q & 3C,. Moreover, when A1-5 hold
and P* and u satisfy (2) for all P, Q € 3o, then:

(a) Forall A € 8, P*(A) = 04f and only if event A is null

) A probabzhty measure Q* on S and a real functwn u onX satzsfy (2) in
place of P* and w for all P, Q e3¢ if and only if Q* = P* and «/ is a positive
linear transformation of u.

Henceforth in this section » and P* are assumed to satisfy the conditions of
Theorem 3. Thus far we have not needed A6, which is required for the next result,
to be proved in Section 6.

TaEoREM 4. A1-6 émply that (2) holds on the set of all bounded horse lotteries.

We shall prove that all horse lotteries are bounded in two steps, the first of
which is accomplished by

TuEOREM 5. If A1-6 hold and there is a denumerable partition of S such that
each event in the partition has positive probability under P, then u on X is bounded.

Clearly, if 4 on X is bounded then all horse lotteries are bounded. Theorem 5
will be proved in Section 7. To complete the second step of the proof that all
horse lotteries are bounded, we consider first the following

ProrosiTion 1. For each positive integer n there is an n-event partition of S
such that each event in the partition has positive probability under P*.

If Proposition 1 is true then there is a denumerable partition of S for which
each event has positive probability. This is probably a well-known fact and we
shall omit an explicit proof. The second step for horse-lottery boundedness and
the final step in our proof of the Summary Theorem is noted in the following
theorem, to be proved in Section 8.

TrEOREM 6. If A1-6 hold and if Proposition 1 is false then all horse lotteries
are bounded.

5. Proof of Theorem 3. Let A1-5 hold. By considering constant horse lotteries
in ¢, it follows from (5) that if P, @ ¢ ® and if {By, +--, B,} and {Cy, -, C.}
are partitions of S then

E(us, P) < E(us, Q) if and only if E (uc, P) < E(uc, Q).

Since @ is a mixture set and A1, A2, and A3 imply that analogues of these axioms
hold on @ (or the set of constant horse lotteries), it follows from Theorem 1
that ue on X is a positive linear transformation of s . Since a positive linear
transformation of up in (5) will not affect the validity of (5), we can therefore
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delete the partition-specific subscript on u and have, in place of (5) when
P = P;and Q = Q. on B;,
(6) P < Qif and only if D> jw E (u, P:)Ps*(Bs) < Y. iaE(u, Q:)P5* (B:).
For an event A C S let
34 = {P|Pe3e and P is constant on 4 and on 4°}.

3C4 is a mixture set. Suppose each of partitions {B, - -+, B,} and {C, - - - , Cn}
contains A. Then, if P in 5, equals P, on A and P,° on A°, (6) implies that,
forall P, Qe 3C,,

P3*(A)E(u, Pa) + [1 — Pp*(4)IE (v, P.°)

S Ps (A)E(, Q) + [1 — Ps*(A)E ®, Q)
if and only if
Pc*(A)E(u, Py) + [1 — Pc*(A)IE (u, P,°)

= Po*(A)E(u, Qi) + [1 — Po*(A)]E (u, Qu°).

It then follows easily from Theorem 1 that Pp*(4) = P¢*(4). Hence we can
drop the partition-specific subscript on P* and rewrite (6) as

(7) P < Qif and only if Y i E(u, P:)P*(B:) < Y1 E(u, Q:)P*(B:).

It follows directly from Theorem 2 that P* is uniquely determined, that
P*(A) = 0 only if 4 is null, and that u is unique up to a positive linear trans=»
formation. Finite additivity for P* is easily demonstrated using partitions
{4, B, (AuB)%} and {A u B, (4 uB)"} in an analysis like that leading to )
with A n B = (.

Finally, to obtain (2) for all P, Q €3¢y, let P = P; on B; and Q = Q; on C;
for the partitions {B, - -+, B.} and {Ci, - -, C}. Applying (7) to the partition

{BinCili=1,---,n;5=1,---,m;B;nC; # &}
we obtain |
P < Qif and only if 3 ;> ; E (u, P;)P*(Bin C;)
< 2 2 E(u, Q)P*(Bin C;)
which, by finite additivity for P*, is the same as
P < Qif and only if D E (u, P;)P*(B:) = X, E(u, Q;)P*(C;).

6. Proof of Theorem 4. Since 3C is a mixture set, Theorem 1 implies that there
is a real function » on 3¢ such that, for all P, Q £ 5¢ and a ¢ [0, 1],

(8) P < Qif and only if v(P) < v(Q)
©) v(@P + (1 —a)Q) = ww(P) + (1 — ap(Q).
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Expressions (8) and (9) hold also for all P, Q in 3¢y . Letting
w(P) = E[E (u, P(s)), P*] for all P30,
it follows from Theorem 3 and
E[E (u, aP(s) + (1 — a)Q(s)), P¥]
E[aE (u, P(s)) + (1 — a)E(x, Q(s)), P*]
= aB[E (u, P(s)), P*] + (1 — «)E[E (u, Q(s)), P"]

that, for all P, Q £ 3¢ and « € [0, 1],

P < Qif and only if w(P) =< w(Q)

w@P + (1 —a)Q) =oaw(P) + 1 — a)w(Q).

Then, by Theorem 1, w on 3¢ is a positive linear transformation of the restric-
tion of v on 3Cy. By an appropriate transformation we can, with no loss in gen-
erality, specify that

(10) v(P) = ElE(u, P(s)), P"]

I

for all Pe3Cy. According to (8) the proof of Theorem 4 can be completed by
proving that (10) holds for all bounded horse lotteries.

Our first step in this direction will be to prove that if P*(A4) = 1 and if ¢
and d defined in the following expression are finite then

(11) ¢ = inf{E(u, P(s))|seA} < v(P) < sup {E(u, P(s))|secd} = d

Let Q = Pon A andc £ Q(s) =< d on A°. Since A° is null, Q ~ P and hence
v(P) =v(Q) by (8). To show that ¢ < v(Q) = d when ¢ and d are finite suppose
to the contrary that d < v(Q). With¢ < E(u, Q) < d and Q" = Q" on S let
R =0Q + (1 — a)Q with @ < 1 near enough to one so that

d<o(R) =a(Q)+ (1 —ap@)<v@).

Then R < Q by (8). But since E(u, Q(s)) £ d < v(R) it follows from (8) that
Q(s) < Rfor all s ¢S so that axiom A6 implies Q < R, a contradiction. Hence
d < v(Q) is false. By a symmetric proof, v(Q) < ¢ is false. Therefore
¢c=v(Q)=d

With P bounded let A with P*(4) = 1 be an event on which E (u, P(s)) is
bounded and let ¢ and d be defined asin (11). If ¢ = d then (10) is immediate.
Henceforth assume that ¢ < d. For notational convenience we shall take

¢ =0, d= 1.
Let Q be as defined following (11) so that v»(Q) = v(P) and "

E[E (u, Q(s)), P*] = E[E (u, P(s)), P*].
To prove that
v(Q) = E[E(u, Q(s)), P*]
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let {A1, -+, A.} be the partition (ignoring empty sets) of S defined by
Ay = {s]|0 = E(u, Q(s)) = 1/n}
A; ={s|(t—1)/n < E(u, Q(s)) < i/n} 1=2,---,n.
Let P; & ® be such that

12) CG—1)/n=E@wP;)=<im for i=1,---,n.
The existence of such P; is guaranteed by (11). Then let
(13) P,~={Q oA
P, on AS
(14) Py= D ian'P;
(15) R=>,.m — 1)™P; on A4; for ¢ = 1,---, n.

Since Py(s) = Yin "Pi(s) = n'Q(s) + (n — 1)n™ > iwi (m — 1)7'P; when
seds Po=n"'Q+ n —1)n'R,
so that, by (9) and (14),
(16) 2(Q) = 2imv(P)) — (n — 1o (R).
Since R ¢ 3¢y, (10) implies that
v(R) = 220 E @, 2opes (n — 1)7'P;)P*(4,)

= (n — 1) 220 [2o5 B (u, Py)IP*(4s).

Substituting this in (16) we have

(17) 0(Q) = 2 v(Ps) — Doim1 2oiei B (u, Py)P* (4s).
By (12), (13), and (11),
(18) G—1)/n=vlP;) Zi/n 1=1,---,n.

This is true regardless of how the P; are selected so long as they satisfy (12). In

particular, since 0 = inf {E (u, Q(s))|se S} and1 = sup {E (u, Q(s))| s S}, we

can select the P; so that either

19) E(uw,P.)=1/n, and E(u, P;) = (t — 1)/n for 7> 1

or '

(20) E(w,P;)=14/n for 1 <mn, and E(u, P,) = (n — 1)/n.
Applying (19) and the left side of (18) to (17) we get

v(Q) 2 X — 1)/n — 3(n — 1)P*(4y)

- 2i2lBl — 1) — (G — 1)/n + 1/n]P*(4s)

Fn—1) =3 — 1) + 201 G — 1)n7'P*(4s) — n'[1 — P*(41)]

= > h (G — )n'P*(4:) — 1/n.
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Applying (20) and the right side of (18) to (17) we get
v(Q) £ Xini/m — 2GS e — 1) —i/n+ (n — 1)/n]P* (4)
—1(n — 1)P*(4,)

— S P (A + w7l — P*(4,)]

< Dohyim PR (4) + 1/n.
By the definition of E, D, (i — 1)n"'P*(4;) < E[E(u, Q(s)), P*] =
> inT'P*(4;), so that

lb(Q) — E[E (u, Q(s)), P*]| = 2/n for

Therefore, v(Q) = E[E (u, Q(s)), P*].

7. Proof of Theorem B. Let A1-6 hold and let A be a denumerable partition
of Swth P*(4) > Oforall A ¢ A. {P*(4)| A ¢ A} must have a largest element,
say P*(4;). Then {P*(4)|A e A — {A:}} must have a largest element, say
P*(4,). Continuing this process we get a sequence

Ai, Ay, -+ with {41, 4s,---} =4

3

=1,2 .

and
(21) P*(41) = P*(4:) =2 P*(4s) = ---; P*(4:) >0 forall 4.

For definiteness suppose that « is unbounded above. By a linear transforma-
tion of % we can assume that [0, © ) C {E (u, P)| P e ®}. Let P;¢ ® and P ¢ 5C.
be such that

(22) E(u, P;) = P*(4,)™" i=1,2 -
P=P;, on A; t=1,2,---.
Also let Q, ¢ 3¢ be constant on each 4; (i £ n) and constant on U=, 4; with
(23) E(u, Qu(s)) = P*(A4,) " —P*4,)™"  sed;; i=1,---,n
E(w, Q.(s)) =0 seUL,14..
Letting v on 3C be as given in (8) and (9) and satisfying (10) on 3¢,
(24)  0(Quw) = X [P*(da)” — P*(4:)7IP"(40)
= P*(4.)" 2 P*(4) —n for n=1,2,--

since Q. € 3Co for each n.
By (22) and (23),

E(u, 3P (s) + 3Qa(s)) = $P*(4:)™ + 3[P*(4,)™ — P*(4:)7]
= 1P*(4,)™" forall seUT A4,
and, by (21) and (23),
Eu, 3P (s) + 1Qn(s)) = 1P*(4,)" forall seUn4..
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Therefore
3P*(4,)7 = inf {E (u, 3P (s) + $Qua(s))| s e S},

and hence, by (11), vGP + 1Q,) = 1P*(4,)", which, using (9) and (24)
implies that

P*(4,)" — P*(A,) D1 P*(A4) +n

=zn for n=1,2,---.

v(P)

v

Since this requires v (P) to be infinite we have obtained a contradiction and con-
clude that « is not unbounded above. By a symmetric proof, % is not unbounded
below. Hence, the hypotheses of Theorem 5 imply that u is bounded.

8. Proof of Theorem 6. Let A1-6 hold and assume that Proposition 1 is false.
Then there must be a (unique ) positive m for which there is an m-event partition
of 8 that has positive probability for each event and such that every partition of
S has at most m events that have positive probability.

For convenience assume that » (y) = 0 for a y ¢ X. Suppose then that Q in 3¢
is unbounded. For definiteness, assume that Q is unbounded above. Let P be ob-
tained from Q by replacing each z for which Q(s)(z) > 0 and u(z) < 0 by ¥
withu (y) = 0, forall s ¢ S. Then E (4, P(s)) = 0 for all s ¢ S and P is unbounded
above so that, for every positive integer n, .

P*(E(u, P(s)) = n} > 0.

Because no partition has more than m events with positive probability,
P*{E(u, P(s)) = n} can change no more than m times as n increases. Hence,
there is a positive integer N and an @ > 0 such that

(25) P*{E(u, P(s)) =2 n} = a forall n = N.
Let
Ew,P;,) =14 for 1=1,2, ---
and
P on {s|E(u,P(s)) = n}
Qn = {Pn on {s|E(u, P(s)) < n}
P, on {s|E(u, P(s)) = n}
“1P on (s1B@Pe)) < nl.

Then, with P, = P, on S, 3P + 3P, = 3Q, + iR,, so that with v on 3C as de-
fined by (8) and (9) and satisfying (10) for all bounded horse lotteries,

(26) vP)+n=0v(Qx) +v(R) n=12" .
Since R, is bounded, its definition, (10), and (25) imply
v(R.) = E[E (u, R.(3)), P*] = na forall n = N.
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Since Pry < Q. (s) for all s ¢ S, A6 implies that P,_1 < Q, so that
v(Qn) =2 n — 1 forall n.
These inequalities and (26) yield
v(P) Zmna —1 forall n = N,

which requires v (P) to be infinite, a contradiction. Therefore Q cannot be un-
bounded above. A symmetric proof shows that Q cannot be unbounded below.
Hence, when A1-6 hold and Proposition 1 is false, every horse lottery is bounded.
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