ON THE ASYMPTOTIC DISTRIBUTION OF A CERTAIN FUNCTIONAL OF THE WIENER PROCESS

By A. D. WYNER

Bell Telephone Laboratories

0. Summary. Let the random variable Y_N be defined by

$$Y_N = \sum_{k=1}^N W^2(k)/k^2$$
,

where W(t) is the Wiener process, the Gaussian random process with mean zero and covariance $EW(s)W(t) = \min(s, t)$. Note that $EY_N \sim \log N$. We show that for a > 1

$$\Pr[Y_N \ge a \log N] = N^{-(8a)^{-1}(a-1)^2(1+\epsilon_N)},$$

where $\epsilon_N \to 0$ as $N \to \infty$.

1. Introduction. The Wiener Process W(t) is the Gaussian random process with mean zero and covariance

$$(1.1) E[W(s)W(t)] = \min(s, t).$$

In this paper the random variable

$$(1.2) Y_N = \sum_{k=1}^N W^2(k)/k^2$$

is studied. Y_N is the signal energy in the celebrated feedback communication scheme of Schalkwijk and Kailath [3, 6]. Its expectation is

$$(1.3) E(Y_N) = \sum_{k=1}^N 1/k \sim \log N, \quad \text{as } N \to \infty.$$

We are concerned with

$$(1.4) P_N = P_N(a) = \Pr[Y_N \ge a \log N], a > 1.$$

It will be shown that as $N \to \infty$,

(1.5)
$$P_N = \exp \left\{ \left[-(a-1)^2/(8a) \right] \log N + o(\log N) \right\}$$
$$= N^{-(8a)^{-1}(a-1)^2(1+\epsilon_N)}$$

where $\epsilon_N \to 0$.

In Sections 2 and 3 of this paper upper and lower bounds respectively on P_N are obtained, each bound of the form of (1.5).

Received 23 October 1968; revised 4 March 1969.

The anonymous referee pointed out that we can write $Y_N = \sum_{i,j=1}^N A_{ij}\xi_i\xi_j$ where ξ_1 , ξ_2 , \cdots , ξ_N are standard Gaussian variates, and $A_{ij} = \sum_{\min(i,j)}^N k^{-2}$. Thus Y_N is a quadratic form in normal variates. The relevent literature, e.g. Varberg, Ann. Math. Statist. 37 (1966), and Grenander, Pollak, Slepian, SIAM J., 7 (1959), does not appear to facilitate the solution of our problem, however.

2. Upper bound on P_N . In this section we show that (for a > 1)

(2.1)
$$P_{N} = \Pr \left[Y_{N} \ge a \log N \right]$$

$$\le \left[\frac{2a}{1+a} \right]^{\frac{1}{2}} \left[1 - \frac{a-1}{4aN} \right]^{-\frac{1}{2}} N^{-(a-1)^{2}/(8a)}$$

$$\sim \left[\frac{2a}{(1+a)} \right]^{\frac{1}{2}} N^{-(a-1)^{2}/(8a)},$$

which is of the same form as (1.5).

Let us consider the random variable

$$(2.2) Y_N^* = \sum_{k=1}^N f_k W^2(k),$$

where W(t) is as above the Wiener process, and f_k is arbitrary. Note that when $f_k = 1/k^2$, ${Y_N}^* = {Y_N}$. We now calculate $\varphi(\lambda) = Ee^{\lambda {Y_N}^*}$. From (1.1) it is easy to show that the N-fold density function for the samples W(1), W(2), \cdots , W(N) of the Wiener process is $(2\pi)^{-N/2} \exp\left[-\frac{1}{2} {\bf w} B {\bf w}^i\right]$, where ${\bf w} = (w_1, w_2, \cdots, w_N)$ and B is the $N \times N$ matrix with i, jth entry b_{ij} given by

(2.3)
$$b_{ij} = 1 \quad i = j = 1, 2, \dots, N - 1,$$

$$b_{ij} = 1 \quad i = j = N,$$

$$= -1 \quad |i - j| = 1,$$

$$= 0 \quad \text{otherwise.}$$

Letting M be the $N \times N$ diagonal matrix with i, ith entry $-2\lambda f_i$ ($i = 1, 2, \dots, N$), we have

(2.4)
$$\varphi(\lambda) = Ee^{\lambda Y_N^*} = (2\pi)^{-N/2} \int \exp\left[-\frac{1}{2} w(M+B) w^t\right] dw,$$

where the integral is taken over all of N-space. Thus, provided M+B is positive definite,

(2.5)
$$\varphi(\lambda) = |M + B|^{-\frac{1}{2}} \int (2\pi)^{-N/2} |M + B|^{\frac{1}{2}} \exp\left[-\frac{1}{2} \boldsymbol{w}(M + B) \boldsymbol{w}^{t}\right] d\boldsymbol{w}$$

= $|M + B|^{-\frac{1}{2}}$.

Consider the difference equation

$$(2.6a) h_k = (2 - 2\lambda f_k)h_{k-1} - h_{k-2}, k = 2, 3, \cdots,$$

subject to the initial conditions

$$(2.6b) h_0 = 1, h_1 = (2 - 2\lambda f_1).$$

Note that h_k , $1 \le k \le N - 1$, equals the determinant of the submatrix of M + B consisting of the first k rows and columns. Further,

$$(2.7) |M + B| = h_N - h_{N-1}.$$

Also note that the condition that M+B be positive definite is equivalent to $h_k > 0 (k=1, 2, \dots, N-1)$ and |M+B| > 0.

Although for the case $f_k = 1/k^2$, it is possible to express the generating function $\sum_{k=0}^{\infty} h_k x^k$ of the solution to (2.6) in terms of hypergeometric functions [2], this approach does not appear to facilitate the solution of our problem. We therefore take the following approach: with $\lambda \geq 0$ fixed we "guess" at an $h_k(k=0, 1, 2, \cdots)$ and employ (2.6) backwards to find $f_k(k=1, 2, \cdots)$. If we are lucky and $f_k \geq 1/k^2(k=1, 2, \cdots)$, then

$$(2.8) Y_N^* \ge Y_N,$$

so that

$$(2.9) P_N = \Pr[Y_N \ge a \log N] \le \Pr[Y_N^* \ge a \log N].$$

We then make use of the well known Chebyshev-type inequality

$$(2.10) \quad \Pr\left[Y_N^* \ge a \log N\right] \le \exp\left(-\lambda a \log N\right) E e^{\lambda_{Y^*}}$$

$$= \exp (-\lambda a \log N) \varphi(\lambda) (\lambda > 0)$$

to obtain a bound on P_N . To get the tightest bound we minimize the right member of (2.10) with respect to λ (making sure, of course, that f_k remains $\geq 1/k^2$ so that (2.8) will hold).

Let λ , $0 < \lambda < \frac{1}{8}$, be fixed (it will be shown below that the tightest bound in (2.10) is always obtained with λ in this range). Let us take

$$(2.11) h_k = (k+1)^{\alpha}, \alpha = \frac{1}{2}(1+(1-8\lambda)^{\frac{1}{2}})$$

Note that with h_k so defined, M + B is positive definite. Certainly $h_0 = 1$, and if

$$(2.12) f_1 = (2 - 2^{\alpha})/(2\lambda),$$

then the second initial condition (2.6b) is also satisfied. Finally, if for $k \ge 2$,

$$(2.13) f_k = (h_k - 2h_{k-1} + h_{k-2})/((-2\lambda)h_{k-1})$$
$$= [(1 + 1/k)^{\alpha} - 2 + (1 - 1/k)^{\alpha}]/(-2\lambda),$$

the difference equation (2.6a) is also satisfied. We now show that $f_k \ge 1/k^2(k = 1, 2, \dots,)$. First consider f_1 :

$$(2.14) f_1 = (2 - 2^{\alpha})/(2\lambda) = (1 - \exp[-(1 - \alpha) \log 2])/\lambda$$

$$\geq [(1 - \alpha) \log 2] (\alpha(1 - \alpha)/2)^{-1} (1 - [(1 - \alpha) \log 2]/2)$$

$$= 2 \log 2[\alpha^{-1}(1 - (\log 2)/2) + (\log 2)/2]$$

$$\geq 2 \log 2 = 1.38 > 1,$$

where the first inequality follows from $1 - e^{-x} \ge x - x^2/2$, and the second from the fact that $\alpha < 1$. Now consider $f_k(k \ge 2)$ as given by (2.13). Using the binomial formula for $(1 \pm 1/k)^{\alpha}$ we obtain

$$f_{k} = 2/(-2\lambda)[\alpha(\alpha - 1)/(2!k^{2}) + \alpha(\alpha - 1)(\alpha - 2)(\alpha - 3)/(2.15)$$

$$(4!k^{4}) + \alpha(\alpha - 1)(\alpha - 2)(\alpha - 3)(\alpha - 4)(\alpha - 5)/(6!k^{6}) + \cdots].$$

Now by definition of α (2.11), $\alpha(\alpha - 1) = -2\lambda$ so that

$$(2.16) f_k = 1/k^2 + [2(\alpha - 2)(\alpha - 3)]/(4!k^4)$$

$$+ [2(\alpha - 2)(\alpha - 3)(\alpha - 4)(\alpha - 5)]/(6!k^6) + \cdots$$

Since $\frac{1}{2} < \alpha < 1$, the coefficients of $1/k^{2j}$ $(j \ge 1)$ are all positive, so $f_k \ge 1/k^2$ (for any $\lambda(0 < \lambda < \frac{1}{8})$). For this choice of f_k ,

$$|M + B| = h_N - h_{N-1} = (1 + N)^{\alpha} - N^{\alpha}$$

$$= N^{\alpha}[(1 + 1/N)^{\alpha} - 1]$$

$$\geq N^{\alpha}[\alpha/N + \alpha(\alpha - 1)/(2N^2)].$$

Thus

$$(2.18) \quad \varphi(\lambda) = |M + B|^{-\frac{1}{2}} \le N^{(1-\alpha)/2} [\alpha + (\alpha(\alpha - 1))/(2N)]^{-\frac{1}{2}}.$$

To determine the best choice of λ we minimize the upper bound of (2.10):

(2.19)
$$\varphi(\lambda) \exp(-\lambda a \log N) = N^{[(1-\alpha)/2]-\lambda a + \epsilon_N}.$$

where $\epsilon_N \to 0$ as $N \to \infty$. Writing $\lambda = \frac{1}{2}\alpha(1-\alpha)$ we have immediately that the minimum is obtained when $\alpha = (1+\alpha)/(2a)$. Note that with α so chosen, $0 < \lambda < \frac{1}{8}$ as required. Substitution of (2.18) and (2.10) into (2.9) yields the desired bound on P_N (2.1).

3. Lower bound on P_N . In this section we show that

(3.1a)
$$P_N = \Pr[Y_N \ge a \log N] \ge \exp[-E_0(a) \log N + o(\log N)],$$
 where

(3.1b)
$$E_0(a) = (a-1)^2/(8a).$$

3.1. Outline of derivation. For $K = 1, 2, \dots, N$, let us define the random variable

(3.2)
$$Y_{N,K} = \sum_{k=K}^{N} W^{2}(k)/k^{2}.$$

Since $Y_{N,K} \leq Y_N$,

$$(3.3) P_N = \Pr[Y_N \ge a \log N] \ge \Pr[Y_{N,K} \ge a \log N],$$

so that it will suffice to lower bound this later quantity. We will also consider the random variable (for $K = 1, 2, \dots, N$)

(3.4)
$$\hat{Y}_{N,K} = \int_{K}^{N} W^{2}(t)/t^{2} dt.$$

Our strategy is to first show that $\Pr[\hat{Y}_{N,K} \geq a \log N] \geq \exp[-E_0(a) \log N + o(\log N)]$. We then show that $\Pr[Y_{N,K} \geq a \log N]$ is "close" to $\Pr[\hat{Y}_{N,K} \geq a \log N]$ so that (3.1) follows from (3.3). Specifically we shall prove the following: Lemma 1. Let $\hat{Y}_{N,K}$ be defined by (3.4). Then with K arbitrary but fixed, and

LEMMA 1. Let $Y_{N,K}$ be defined by (3.4). Then with K arbitrary but fixed, and a > 1,

(3.5) Pr $[\hat{Y}_{N.K} \ge a \log N] \ge \exp[-E_0(a) \log N + o(\log N)]$, as $N \to \infty$, where $E_0(a)$ is defined by (3.1b).

LEMMA 2. Let $Z_{N,K} = \hat{Y}_{N,K} - Y_{N,K}$, where $\hat{Y}_{N,K}$ is defined by (3.4) and $Y_{N,K}$ is defined by (3.2). Then for any $\delta, \Lambda > 0$ there exists a $K = K(\delta, \Lambda)$ sufficiently large and a constant $c_0 = c_0(\delta, \Lambda)$ such that for $N \geq K$,

$$(3.6) \Pr\left[Z_{N,K} \ge \delta \log N\right] \le c_0 \exp\left(-\Lambda \log N\right).$$

LEMMA 3. Let $Y_{N,K}$, $\hat{Y}_{N,K}$, $Z_{N,K}$ be as in Lemmas 1 and 2. Then for any a, $\delta > 0$,

(3.7)
$$\Pr[Y_{N,K} \ge a \log N] \ge \Pr[\hat{Y}_{N,K} \ge (a+\delta) \log N] - \Pr[Z_{N,K} > \delta \log N].$$

Our final goal (3.1) now follows directly from these lemmas. Let $\delta > 0$ be fixed. From Lemma 2 we choose K large enough so that

$$(3.8) \qquad \Pr\left[Z_{N,K} \ge \delta \log N\right] \le c_0 \exp\left[-2E_0(a+\delta) \log N\right],$$

where $E_0(a + \delta)$ is defined by (3.1b). With K so chosen we have from Lemma 1

(3.9)
$$\Pr\left[\hat{Y}_{N,K} \ge (a+\delta) \log N\right]$$

$$\geq \exp \left[-E_0(a+\delta)\log N + o(\log N)\right].$$

Thus as $N \to \infty$, the entire right member of (3.7) is dominated by the first term, so that Lemma 3 yields

(3.10)
$$P_N \ge \Pr[Y_{N,K} \ge a \log N] \ge \exp[-E_0(a+\delta) \log N + o(\log N)].$$

Since this is true for all $\delta > 0$, we have

(3.11)
$$\liminf_{N\to\infty} \log P_N/\log N \ge -E_0(a+\delta) \to -E_0(a)$$
 as $\delta \to 0$,

from which (3.1) follows immediately.

Thus it remains to prove Lemmas 1–3. Before doing so we will state two additional lemmas due respectively to L. A. Shepp² and C. E. Shanon.³ We prove Lemmas 1–3 in Section 3.2.

LEMMA 4. (Shepp): Let μ be a signed measure (i.e., the difference of two measures) on [0, T] such that $\begin{bmatrix} T \\ 0 \end{bmatrix} d|\mu(t)| < \infty$, and let

$$A = E(\exp \left[-\frac{1}{2} \int_0^T W^2(t) \ d\mu(t)\right]).$$

Consider the solution g(x) (which always exists) of the integral equation⁵

(3.12)
$$g(x) = 1 + \int_x^T (t - x)g(t) d\mu(t), \quad 0 \le x \le T.$$

If
$$g(x) > 0$$
, $0 \le x \le T$, then $A = (g(0))^{-\frac{1}{2}}$.

² Reference [5], Section 18.

³ Reference [4]. Similar results can be found in Ref. [1]. Since this lemma is not available in the literature, a proof is given in the appendix.

⁴ Let $\mu = \mu^+ - \mu^-$, where μ^\pm are measures. Then $d|\mu| = d\mu^+ + d\mu^-$.

 $[\]int_a^b f(t) d\mu(t)$ will be taken as $\int_a^b f(t) d\mu(t)$ throughout this paper.

Lemma 4 immediately yields two corollaries.

Corollary 1. Let $\lambda > 0$ and let

$$B = E\{\exp \left[\lambda \int_{K}^{N} W^{2}(t) d\mu(t)\right]\},\,$$

where $1 \leq K \leq N$, and μ is a signed measure such that $\int_{K}^{N} d|\mu(t)| < \infty$. Consider the solution g(x) (which always exists) of the integral equation

(3.13)
$$g(x) = 1 - 2\lambda \int_x^N (t - x)g(t) d\mu(t), \quad K \le x \le N$$

If

$$g(x) > 0, \qquad K \le x \le N,$$

and

$$\int_{K}^{N} g(t) d\mu(t) < g(K)/(2\lambda K),$$

then

$$B = [g(K) - 2\lambda K \int_{K}^{N} g(t) d\mu(t)]^{-\frac{1}{2}}.$$

COROLLARY 2. Let $\hat{\varphi}_{N,K} = E \exp(\lambda \hat{Y}_{N,K})$ where $\hat{Y}_{N,K}$ is defined by (3.4), and $0 < \lambda < \frac{1}{8}$. Then

(3.14)
$$\hat{\varphi}_{N,K}(\lambda) = [(\alpha_{+} - \alpha_{-})^{-1}(\alpha_{+}^{2}(K/N)^{\alpha_{-}} - \alpha_{-}^{2}(K/N)^{\alpha_{+}})]^{-\frac{1}{2}},$$

where $\alpha_{\pm} = \frac{1}{2}(1 \pm (1 - 8\lambda)^{\frac{1}{2}}).$

Note that Corollary 2 follows directly from Corollary 1 on substituting $d\mu(t) = t^{-2} dt$ and observing that the integral equation (3.13) is equivalent to the differential equation $g''(x) = -2\lambda t^{-2}g(x)$, $K \leq x \leq N$, subject to g(N) = 1, g'(N) = 0.

Finally we state the Shannon result:

Lemma 5. (Shannon). Let X be a random variable and let $\gamma(\lambda) = \log Ee^{\lambda X}(\lambda > 0)$. Then for any $\xi > 0$,

$$(3.15) \quad \Pr\left[X \ge \gamma'(\lambda) - \xi(\gamma''(\lambda))^{\frac{1}{2}}\right] \\ \ge (1 - \xi^{-2}) \exp\left[\gamma(\lambda) - \lambda \gamma'(\lambda) - \lambda \xi(\gamma''(\lambda))^{\frac{1}{2}}\right].$$

- 3.2. Proofs of Lemmas 1-3.
- 3.2.1. Proof of Lemma 1. We shall use Corollary 2 to Lemma 4 which gives $\hat{\varphi}_{N,K}(\lambda) = E \exp(\lambda \hat{Y}_{N,K})$, and then use Lemma 5 to obtain Lemma 1. Letting the random variable X in Lemma 5 be $\hat{Y}_{N,K}$, a direct computation yields for $0 < \lambda < \frac{1}{8}$ and for fixed K (as $N \to \infty$):

$$\gamma(\lambda) = \log \hat{\varphi}_{N,K}(\lambda) = \frac{1}{4} \left[1 - (1 - 8\lambda)^{\frac{1}{2}} \right] \log N + o(\log N),$$

(3.16)
$$\gamma'(\lambda) = (1 - 8\lambda)^{-\frac{1}{2}} \log N + o(\log N),$$
$$\gamma''(\lambda) = O(\log N).$$

Thus from Lemma 5, for fixed $\xi > 0$ (with $\beta = (1 - 8\lambda)^{\frac{1}{2}}$,

(3.17)
$$\Pr\left[\hat{Y}_{N,K} \ge \beta^{-1} \log N - o(\log N)\right]$$

 $\ge (1 - 1/\xi^2) \exp\left\{-\left[(1 - \beta)^2/(8\beta)\right] \log N + o(\log N)\right\}.$

If we set $1/\beta = a > 1$ (which corresponds to $\lambda = ((a^2 - 1)/a^2)\frac{1}{8} < \frac{1}{8}$ as required) (3.17) becomes

(3.18)
$$\Pr\left[\hat{Y}_{N,K} \ge a \log N - o(\log N)\right]$$

$$\geq \exp \left[-(a-1)^2/(8a) \right] \log N + o(\log N).$$

To obtain Lemma 1, rewrite (3.18) as

(3.19)
$$\Pr\left[\hat{Y}_{N,K} \ge a \log N(1 + \epsilon_{1N})\right]$$
$$\ge \exp\left[-E_0(a) \log N(1 + \epsilon_{2N})\right],$$

where ϵ_{1N} , $\epsilon_{2N} \to 0$ as $N \to \infty$. Lemma 1 then follows on replacing a by $a/(1+\epsilon_{1N})$, and observing that $E_0(a/(1+\epsilon_{1N}))=E_0(a)(1+\epsilon_{3N})$ (where $\epsilon_{3N} \to 0$ as $N \to \infty$).

3.2.2. Proof of Lemma 2. Let δ , $\Lambda > 0$ be given. Let $\lambda = \Lambda/\delta$. We will show that there exists a $K = K(\lambda)$ sufficiently large and a $c_0 < \infty$ such that for all $N \ge K$, $E \exp(\lambda Z_{N,K}) \le c_0$. Thus, (as in (2.10))

(3.20)
$$\Pr\left[Z_{N,K} \geq \delta \log N\right] \leq \exp\left[-\lambda(\delta \log N)\right] E \exp\left(\lambda Z_{N,K}\right)$$
$$\leq c_0 \exp\left(-\Lambda \log N\right).$$

and we have proved the lemma.

Now note that

(3.21)
$$Z_{N,K} = \hat{Y}_{N,K} - Y_{N,K} = \int_{K}^{N} W^{2}(t) t^{-2} dt - \sum_{k=K}^{N} W^{2}(k) k^{-2}$$

= $\int_{K}^{N} W^{2}(t) d\mu_{0}(t)$,

where the signed measure $\mu_0 = \mu_0^+ - \mu_0^-$, where $d\mu_0^+(t) = t^{-2} dt (1 \le t < \infty)$, and μ_0^- assigns measure $1/k^2$ to t = k and zero elsewhere $(k = 1, 2, \cdots)$. Thus we can use Corollary 1 to Lemma 4 to estimate $E \exp(\lambda Z_{N,K})$. We will now prove a proposition about the solution to (3.13).

PROPOSITION. Let μ be a signed measure on the interval $(1, \infty)$ which is the difference of two finite measures, and for which there exists constants a_0 , b_0 , $k_0 \ge 0$ such that for $x \ge k_0$ and all $T(x \le T < \infty)$:

(3.22a) (i)
$$\int_x^T d|\mu(t)| < a_0/x$$
,

(3.22b) (ii)
$$\left| \int_{x}^{T} d\mu(t) \right| < b_0/x^2$$
.

Let $g(x) = g_{N,K}(x)$ be the solution (which always exists) of the integral equation (3.13), i.e.,

(3.23)
$$g(x) = 1 - 2\lambda \int_x^N (t - x)g(t) d\mu(t), \quad K \leq x \leq N.$$

Then for any $\epsilon > 0$, there exists a $K = K(\epsilon) > 0$ sufficiently large so that for all $N \ge K$,

$$(3.24a) (i) g_{N,K}(x) \ge 1 - \epsilon, K \le x \le N,$$

(3.24b) (ii)
$$g_{N,K}(K) - 2\lambda K \int_K^N g(t) d\mu(t) \ge 1 - \epsilon$$
.

It is readily verified that the signed measure μ_0 satisfies the hypotheses of the proposition. Hence, the proposition and Corollary 1 to Lemma 4 imply that for any $\lambda > 0$, $E \exp(\lambda Z_{N,K}) \to 1$ as $K \to \infty$ (uniformly in $N \ge K$). Thus (3.20) is valid with any $c_0 > 1$ and Lemma 2 is proved.

Proof of the Proposition. First note that from (3.23), g(x) is differentiable and

$$(3.25) g'(x) = 2\lambda \int_x^N g(t) d\mu(t), K \le x \le N.$$

Next, define for N > 0 and $1 \le t \le N$

$$\alpha_N(t) = \int_t^N d\mu(\tau),$$

and for N > 0 and $1 \le x \le t \le N$,

(3.27)
$$\beta_N(t,x) = \int_t^N (\tau - x) \, d\mu(\tau).$$

Integrating (3.27) by parts we have

$$\beta_N(t, x) = -\int_t^N (\tau - x) d\alpha_N(\tau) = (t - x)\alpha_N(t) + \int_t^N \alpha_N(\tau) d\tau.$$

Thus from (3.22b), for $t \ge k_0$,

$$|\alpha_N(t)| \le b_0/t^2$$
, and $|\beta_N(t, x)| \le 2b_0/t$.

Now rewriting the integral equation (3.23) as

$$g(x) = 1 + 2\lambda \int_x^N g(t) [\partial \beta_N(t, x)/(\partial t)] dt,$$

and integrating parts, we obtain

(3.29)
$$g(x) = 1 - 2\lambda g(x)\beta_N(x, x) - 2\lambda \int_x^N \beta_N(t, x)g'(t) dt.$$

Thus

$$(3.30) |g(x)| \le 1 + 2\lambda |g(x)| |\beta_N(x,x)| + 2\lambda \int_x^N |\beta_N(t,x)| |g'(t)| dt.$$

But from (3.25)

$$(3.31) |g'(t)| \le 2\lambda \int_{t}^{N} |g(t)| d|\mu(t)| \le 2\lambda M \int_{t}^{N} d|\mu(t)|,$$

where $M = \sup_{K \le x \le N} g(x)$. Combining (3.30) and (3.31) we have

$$|g(x)| \le 1 + 2\lambda M |\beta_N(x, x)| + 4\lambda^2 M \int_x^N |\beta_N(t, x)| \left\lceil \int_t^N d|\mu(\tau)| \right\rceil dt.$$

Finally from (3.22a) and (3.28) we have, if $K \ge k_0$.

(3.32)
$$M \leq 1 + 4\lambda M b_0 / K + 8\lambda^2 M b_0 a_0 / K = 1 + \gamma M / K,$$

where $\gamma = 4\lambda b_0 + 8\lambda^2 b_0 a_0$. Solving (3.32) for M yields

(3.33)
$$M = \sup_{K \le x \le N} |g(x)| \le (1 - \gamma/K)^{-1} =_{\text{def}} B(K),$$

provided $K \geq \gamma, k_0$.

Returning to (3.29) we can write

$$|g(x) - 1| \le 2\lambda |g(x)| |\beta_N(x, x)| + 2\lambda \int_x^N |\beta_N(t, x)g'(t)| dt.$$

Repeating the same steps as in the derivation of (3.32) we obtain when $K \ge k_0$,

$$|g(x) - 1| \le 4\lambda M b_0 / K + 8\lambda^2 M b_0 a_0 / K = \gamma M / K.$$

If in addition $K \ge \gamma$ we can apply (3.33) to obtain

$$|g(x) - 1| \le \gamma B(K)/K \to 0$$
, as $K \to \infty$.

This implies (3.24a) and the first part of the proposition is proved. To establish (3.24b), write

$$g(K) - 2\lambda K \int_{K}^{N} g(t) d\mu(t) = 1 - 2\lambda \int_{K}^{N} t g(t) d\mu(t).$$

Using $\int_t^N \tau d\mu(\tau)$ instead of $\beta_N(t, x)$ and paralleling the derivation of (3.32) we have (if $K \ge \gamma, k_0$)

$$|g(K) - 2\lambda K \int_{K}^{N} g(t) d\mu(t) - 1| \le \gamma M/K \le \gamma B(K)/K \to 0$$
, as $K \to \infty$, which implies (3.24b) and the proposition.

3.2.3. Proof of Lemma 3. For any random variables $Y_{N,K}$, $\hat{Y}_{N,K}$, and for any $a, \delta > 0$

$$\begin{split} \Pr\left[\hat{Y}_{N,K} \geq (a+\delta)\log N\right] &= \Pr\left[\hat{Y}_{N,K} \geq (a+\delta)\log N, \, Y_{N,K} \geq a\log N\right] \\ &+ \Pr\left[\hat{Y}_{N,K} \geq (a+\delta)\log N, \, Y_{N,K} < a\log N\right] \\ &\leq \Pr\left[Y_{N,K} \geq a\log N\right] + \Pr\left[Y_{N,K} - Y_{N,K} \right. \\ &\geq \delta\log N. \end{split}$$

Setting $Z_{N,K} = \hat{Y}_{N,K} - Y_{N,K}$, this is Lemma 3.

Acknowledgment. The author wishes to thank D. Slepian, S. O. Rice, H. O. Pollak, and especially L. A. Shepp for many stimulating discussions and helpful suggestions.

APPENDIX

A.1. Proof of Lemma 5.

LEMMA 5. Let X be a random variable and $\gamma(\lambda) = \log Ee^{\lambda X}(\lambda > 0)$. Then for any $\xi > 0$,

$$\Pr\left[X \geq \gamma'(\lambda) - \xi(\gamma'(\lambda))^{\frac{1}{2}}\right] \geq (1 - \xi^{-2}) \exp\left[\gamma - \lambda \gamma'(\lambda) - \lambda \xi(\gamma''(\lambda))^{\frac{1}{2}}\right].$$

Proof. (Shannon). Let X have distribution function F(x) and let $\varphi(\lambda) = Ee^{\lambda x}$. Define a new random variable \hat{X} with distribution function $G(x) = G(x, \lambda)$ given by

(A1)
$$G(x) = \varphi(\lambda)^{-1} \int_{-\infty}^{x} e^{\lambda y} dF(y),$$

for all $\lambda > 0$ such that $\varphi(\lambda) < \infty$. Note that $dG(x)/dF = e^{\lambda x}/\varphi(\lambda)$. Let $\Psi(s) = E$ exp $(s\hat{X})$ be the moment generating function for \hat{X} . Then

$$(\mathrm{A2}) \quad \Psi(s) \, = \, \int_{-\infty}^{\infty} e^{sx} \, dG(x) \, = \, \int_{-\infty}^{\infty} \left(\varphi(\lambda) \right)^{-1} \! e^{sx} e^{\lambda x} \, dF(x) \, = \, \varphi(s \, + \, \lambda) / \varphi(\lambda),$$

We can then compute the moments of \hat{X} :

(A3)
$$E\hat{X} = \Psi'(0) = \varphi'(\lambda)/\varphi(\lambda) = d \log \varphi(\lambda)/d\lambda = \gamma'(\lambda),$$

(A4)
$$E\hat{X}^2 = \Psi''(0) = \varphi''(\lambda)/\varphi(\lambda).$$

Hence the variance of \hat{X} is

(A5)
$$\sigma^2 \hat{X} = E(\hat{X} - E\hat{X})^2 = E\hat{X}^2 - (E\hat{X})^2$$
$$= \varphi''(\lambda)/\varphi(\lambda) - [\varphi'(\lambda)/\varphi(\lambda)]^2 = d(\varphi'(\lambda)/\varphi(\lambda))/d\lambda = \gamma''(\lambda).$$

Thus Chebycheff's inequality applied to \hat{X} yields

(A6)
$$\Pr\left[\beta_1 \le \hat{X} < \beta_2\right] \ge 1 - \xi^{-2}.$$

where

(A7a)
$$\beta_1 = E\hat{X} - \xi \sigma \hat{X} = \gamma' - \xi(\gamma'')^{\frac{1}{2}},$$

(A7b)
$$\beta_2 = E\hat{X} + \xi \sigma \hat{X} = \gamma' + \xi (\gamma'')^{\frac{1}{2}},$$

and $\xi > 0$. Thus

(A8)
$$\Pr[X > \beta_{1}] = \int_{\beta_{1}}^{\infty} dF(x) = \varphi(\lambda) \int_{\beta_{1}}^{\infty} e^{-\lambda x} dG(x)$$

$$\geq \varphi(\lambda) \int_{\beta_{1}}^{\beta_{2}} e^{-\lambda x} dG(x) \geq \varphi(\lambda) e^{-\lambda \beta_{2}} \Pr[\beta_{1} \leq \hat{X} \leq \beta_{2}]$$

$$\geq \exp(\gamma - \lambda \beta_{2}) (1 - \xi^{-2}).$$

Substitution of (A7) into (A8) yields the lemma.

REFERENCES

- [1] FELLER, W. (1966). An Introduction to Probability Theory and Its Applications, 2 517-520.
 Wiley, New York.
- [2] POLLAK, H. O. Private communication.
- [3] SCHALKWIJK, J. and KAILATH, T. (1966). A coding scheme for additive channels with feedback—part I: no bandwidth constraint, IEEE Trans. Information Theory IT-12 172-182.
- [4] SHANNON, C. E. (1956). Unpublished seminar notes in information theory.
- [5] Shepp, L. A. (1966). Radon-Nikodym derivatives of gaussian measures. Annals Math. Statist. 37 321-354.
- [6] WYNER, A. D. (1968). On the Schalwijk-Kailath coding scheme with a peak energy constraint. IEEE Trans. Information Theory. IT-14 128-134.