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0. Summary. Let the random variable Yy be defined by
Yv = 2 W(k)/K,

where W (t) is the Wiener process, the Gaussian random process with mean zero
and covariance EW (s)W(t) = min (s, t). Note that EYy ~ log N. We show
that fora > 1

— —1(g—1)201+
Pr{Yy=alogN]=N S ‘”),
where ey —» 0 as N — .

1. Introduction. The Wiener Process W(¢) is the Gaussian random process
with mean zero and covariance

(1.1) E[W(s)W(t)] = min (s, t).
In this paper the random variable
(1.2) Yy = 2 i Wk)/K

is studied. Yy is the signal energy in the celebrated feedback communicatidh
scheme of Schalkwijk and Kailath [3, 6]. Its expectation is

(1.3) E(Yy) = 2 %11/k~log N, asN — .
We are concerned with

(14) Py = Py(a) = Pr [Yy = alog NJ, a > 1.
It will be shown' that as N — oo,

(1.5) Py = exp {[—(a — 1)’/(8a)] log N + o(log N)}
=N~ (8a)~1(a—1)2(1+ep)

where ey — 0.
In Sections 2 and 3 of this paper upper and lower bounds respectively on Py
are obtained, each bound of the form of (1.5).

Received 23 October 1968; revised 4 March 1969.

1 The anonymous referee pointed out that we can write Yy = Zijgl Aqiitig; where
&, £, -+, £Ex are standard Gaussian variates, and 4 = Z:M(M) k2. Thus Yy is a
quadratic form in normal variates. The relevent literature, e.g. Varberg, Ann. Math. Statist.
87 (1966), and Grenander, Pollak, Slepian, SIAM J., 7 (1959), does not appear to facilitate
the solution of our problem, however.
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1410 A. D. WYNER

2. Upper bound on Py . In this section we show that (for @ > 1)
y = Pr[Yy = alog N]

2 H a—1 —%N—(a—1)2/(80)
2. =< S
@ s [ [ - %]

~ [20/(1 + a)IN~OHE,

which is of the same form as (1.5).
Let us consider the random variable

(2.2) Yy = 2 fiWi(k),

where W (t) is as above the Wiener process, and fi is arbitrary. Note that when

fi = 1/I, Yy* = Y. We now calculate o(\) = E&™", From (1.1) it is easy

to show that the N-fold density function for the samples W(1), W(2), ---,

W(N) of the Wiener process is (2r) ™" exp [—iwBw'], where w = (wy, w2,
., wy) and B is the N X N matrix with ¢, jth entry bs; given by

= 2 i:j:]_’z’...,N_l’
(2.3) bij= 1 i=j=N,
= —1 |i_.7|=17

= 0 otherwise.

Letting M be the N X N diagonal matrix with ¢, ¢th entry —2M\i(¢ = 1, 2,
.-+, N), we have *

(2.4) o(\) = E&Y = (2r) [ exp [—3w(M + B)w'] dw,

where the integral is taken over all of N-space. Thus, provided M + B is posi-
tive definite,

(2.5) o(\) = |M + B[ (2r) ™M + B|* exp [—3w(M + B)w'] dw

= |M + B[
Consider the difference equation
(2.6a) he = (2 — M dhoes — hie,  k=2,3, -,
subject to the initial conditions ‘
(2.6b) ho =1, hi= (2 —2M).

Note that b, 1 < k < N — 1, equals the determinant of the submatrix of M +
B consisting of the first k¥ rows and columns. Further,

(2.7) M + B| = hy — hy_s.

Also note that the condition that M + B be positive definite is equivalent to
e >0k =1, 2,---, N—1) and |M + B| > 0.
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Although for the case fi = 1/k%, it is possible to express the generating func-
tion D=y hiz” of the solution to (2.6) in terms of hypergeometric functions [2],
this approach does not appear to facilitate the solution of our problem. We
therefore take the following approach: with A = 0 fixed we ‘“‘guess’ at an hx(k =
0,1, 2 :--+) and employ (2.6) backwards to find fu(k = 1, 2, --+). If we are
lucky and fy = 1/k°(k = 1, 2, ---), then

(2.8) Yy = Yy,
so that
(2.9) Py =Pr[Yy = alog N] £ Pr[Yy* = alog N].

We then make use of the well known Chebyshev-type inequality
(2.10) Pr[Yy" = alog N] < exp (—\a log N)Ee™
= exp (—Ma log N)e(A) (A > 0)

to obtain a bound on Py . To get the tightest bound we minimize the right mem-
ber of (2.10) with respect to X (making sure, of course, that f; remains = 1/k°
so that (2.8) will hold).

Let \, 0 < X\ < %, be fixed (it will be shown below that the tightest bound in
(2.10) is always obtained with N in this range). Let us take

(2.11) = (k+ 1) a=231+(1—8\)

Note that with A; so defined, M 4 B is positive definite. Certainly hy = 1,
and if »
(2.12) fi= (2 —2%)/(2)),

then the second initial condition (2.6b) is also satisfied. Finally, if for k = 2
(2.13) fo = (W — 2k + he—2)/ ((—2N)hs1)
= [(1 + 1/k)* — 2 + (1 — 1/k)*1/(—=2)),

the difference equation (2.6a) is also satisfied. We now show thatf, = 1/k’(k =
1,2, ---,). First consider f; :

fi=(2—2%/(2\) = (1 — exp [ (1 — a) log 2])/)

2 [(1 — @) log 2] (a(l — a)/2)7" (1 — [(1 — a) log 2]/2)
2 log 2[a(1 — (log 2)/2) + (log 2)/2]
=2log2 =138 >1,

where the first inequality follows from 1 — ¢ ° = 2 — 2°/2, and the second
from the fact that < 1. Now consider f,(k = 2) as given by (2.13). Using
the binomial formula for (1 &= 1/k)® we obtain

fio = 2/(=20)a(a — 1)/(2") + a(a — 1)(a — 2)(a — 3)/
(2.15) (4%*) + a(a — 1)(a — 2)(a — 3)(a — 4)(a — 5)/
(61%°) + ---1.

(2.14)
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Now by definition of @ (2.11), a(e — 1) = —2X so that
(2.16) fi = 1/k* + [2(a — 2)(a — 3)]/(4K*)
+ [2(a — 2)(a — 3)(a — 4)(a — 5)I/(6") + --- .

Since 2 < & < 1, the coefficients of 1/k*(j = 1) are all positive, so fi = 1/k*
(for any M0 < N < %)). For this choice of fx,

|M+B[ = hN—'hN_l = (l-l-N)u—'Na
(2.17) = N°[(1 + 1/N)* — 1]

= N%a/N + a(a — 1)/(2N%)].
Thus

(2.18) ¢(\) = [M + B[ £ N a + (a(a — 1))/ (2N
To determine the best choice of A we minimize the upper bound of (2.10):
(2.19) o(\) exp (—a log N) = NI/ heter

where ey — 0 as N — ». Writing A = 3a(1l — @) we have immediately
that the minimum is obtained when « = (1 + a)/(2a). Note that with « so
chosen, 0 < A < # as required. Substitution of (2.18) and (2.10) into (2.9)
yields the desired bound on Py (2.1).

3. Lower bound on Py . In this section we show that
(8.1a) Py = Pr[Yy = alog N] = exp [—Eo(a) log N + o(log N)],

where

(3.1b) Eo(a) = (a — 1)*/(8a).
3.1. Outline of derivation. For K = 1, 2, --- , N, let us define the random
variable
(3.2) Yve = Yix W(k)/K.
Since Yy,x = Yy,
(3.3) Py =Pr(Yy =alogN] = Pr[Yyx = alogNJ,
so that it will suffice to lower bound this later quantity. We will also consider
the random variable (for K = 1,2, -+, N)
(3.4) Ywx = [FW()/f dt.

Our strategy is to first show that Pr [Px.x = a log N] = exp [—Eo(a) log N
+4o0(log N)]. We then show that Pr [Yy,x = a log N] is “close” to Pr [Py,x =
a log N]so that (3.1) follows from (3.3). Specifically we shall prove the following:

Lemma 1. Let Yy x be defined by (3.4). Then with K arbitrary but fized, and
a > 1,

(3.5) Pr[Yyx = alog N] = exp [—E(a)log N + o(log N)],as N — o,

where Ey(a) is defined by (3.1b).
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Lemma 2. Let Zyx = Yk — Yyx, where Yy x is defined by (3.4) and
Y,k is defined by (3.2). Then for any 8, A > 0 there exists a K = K(8, A) suffi-

ciently large and a constant co = co(8, A) such that for N = K,
(3.6) Pr[Zyx = 6log N] < coexp (—A log N).

Lemma 3. Let Yvx, Yvx, Zv.x be as in Lemmas 1 and 2. Then for any a,
8> 0,

(37) Pr[Ywx = alogN] = Pr[Vuyx = (a-+35)logN]
— Pr [Zw,x > 6log N].

Our final goal (3.1) now follows directly from these lemmas. Let 6 > 0 be
fixed. From Lemma 2 we choose K large enough so that

(3.8) Pr[Zyx = 6log N] < ¢y exp [—2Ey(a + &) log N,
where Eo(a + 8) is defined by (3.1b). With K so chosen we have from Lemma 1
(3.9) Pr[Ywyx = (a+ 6)logN]

Z exp [—Eo(a + §) log N 4+ o(log N)].

Thus as N — «, the entire right member of (3.7) is dominated by the first
term, so that Lemma 3 yields

(3.10) Py = Pr[Yyx = alog N] = exp [—Eo(a + 8) log N + o(log N)].
Since this is true for all § > 0, we have

(3.11) lim infy-, log Py/log N = —Ey(a + 6) > —Ey(a) asé— 0,

from which (3.1) follows immediately.

Thus it remains to prove Lemmas 1-3. Before doing so we will state two
additional lemmas due respectively to L. A. Shepp’ and C. E. Shanon.® We
prove Lemmas 1-3 in Section 3.2.

Lemma 4. (Shepp ): Let p be a signed measure (i.e., the difference of two measures)
on [0, T such that' [7 dlu(t)| < «, and let

4 = E(exp [—3 [T W(2) du(2)]).
Consider the solution g(z) (which always exists) of the integral equation®
(312)  g(a) = 1+ [T(t—2)g()du(t), 0=z =<T.
Ifgz) > 0,0 <z < T,then 4 = (g(0))%

2 Reference [5], Section 18.

¢ Reference [4]. Similar results can be found in Ref. [1]. Since this lemma is not available
in the literature, a proof is given in the appendix.

¢ Let p = ™ — u~, where u* are measures. Then d|u] = du* + du~.

5 fz F(@®) du(t) will be taken as fbi F@) du(t) throughout this paper.



1414 A. D. WYNER
Lemma 4 immediately yields two corollaries.
CoROLLARY 1. Let N > 0 and let
B = Efexp \[& W(t) du(t)]},

where 1 < K £ N, and u is a signed measure such that [% dlu(t)] < «. Con-
sider the solution g(x) (which always exists) of the integral equation

(3.13) gz) =1 —2\[T (t —2)g(t)du(t), K=z=N
If
g(z) > 0, K=<z=N,
and
J¥g(t) du(t) < g(K)/(2AK),
then

B = [g(K) — 2\K [T g(t) du(2)] .

CoROLLARY 2. Let éwx = E exp (\Yy.x) where Yy x is defined by (3.4),
and 0 < N < }. Then

(3.14) wx(N) = [(ar — @) (@ (K/N)* — o« (K/N)™)I7,

where ax = 3(1 £ (1 — 8\)H).

Note that Corollary 2 follows directly from Corollary 1 on substituting
du(t) = ¢ *dt and observing that the integral equation (3.13) is equivalent to
the differential equation ¢” (z) = —2M “g(z), K < 2 < N, subject to g(N) =
1, (N)=0. .

Finally we state the Shannon result:

Lemma 5. (Shannon). Let X be a random variable and let y(N) = log E&*(\>
0). Then for any £ > 0,

(3.15) Pr(X = +'(A) — &(v" O\
> (1— g% exp ly(A) — M (A) = MG

3.2. Proaofs of Lemmas 1-3.

3.2.1. Proof of Lemma 1. We shall use Corollary 2 to Lemma 4 which gives
éwx ) = E exp (\Y»,x), and then use Lemma 5 to obtain Lemma 1. Letting
the random variable X in Lemma 5 be Yy« , a direct computation yields for
0 < X\ < % and for fixed K (as N — «):

y(A) = log dwx () = 31 — (1 — 8\)"] log N + o(log N),
(3.16) 4 (\) = (1 —8\)Flog N + o(log N),

v"(\) = O(log N).
Thus from Lemma 5, for fixed £ > 0 (with 8 = (1 — 8)\)%,
(3.17) Pr[Pyx = B log N — o(log N)]

> (1 — 1/¢) exp {—[(1 — B)"/(88)] log N + o(log N)}.
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If we set 1/8 = a > 1 (which corresponds to A\ = ((a® — 1)/a®)} < % as
required) (3.17) becomes
(3.18) Pr([¥Ywx = alogN — o(log N)]
2 exp [—(a — 1)*/(8a)]log N + o(log N).

To obtain Lemma 1, rewrite (3.18) as

(3.19) Pr [Py 2 alog N(1 + an)]
2 exp [—Eo(a) log N(1 + ew)],

where e, ey — 0 as N — «. Lemma 1 then follows on replacing a by a/
(1 + ew), and observing that Eo(a/(1 + ean)) = Eo(a)(1 + &y) (where
ey —>0asN — «»).

3.2.2. Proof of Lemma 2. Let 6, A > 0 be given. Let A = A/s. We will show
that there exists a K = K(\) sufficiently large and a ¢, < « such that for all
N z K, E exp (My,x) < ¢ . Thus, (as in (2.10))

(3.20) Pr[Zyx = 6log N] < exp [—\(8 log N)] E exp ()\ZN;K)
= coexp (—Alog N),

and we have proved the lemma.
Now note that

(3.21) ZN,K = ?N,K - YN,K = f}}\{r W2(t)t_2 dt - ZkN=K W2(k)k_2

= [RW() duo(t),
where the signed measure uo = w™ — uo_, where duet(8) = 2 dt(1 £t < » )
and wo assigns measure 1/k” to ¢ = k and zero elsewhere (=1, 2 ---).
Thus we can use Corollary 1 to Lemma 4 to estimate E exp (AZy,x). We will
now prove a proposition about the solution to (3.13).

ProrosiTiON. Let u be a signed measure on the interval (1, « ) which is the dif-
ference of two finite measures, and for which there exists constants a,b, k=0
such that for x = koand all T(z £ T < »):

(3.22a) 1) [ dlu®)] < ar/a,
(3.22b) (i) |7 du(t)| < bo/z™

Let g(z) = gn,x(x) be the solution (which always exists) of the integral equation

(3.13), i.e.,

(3.23) gx) =1 —2A[¥ (t — 2)g(t) du(t), K <z < N.

Then for any e > 0, there exists a K = K(e) > 0 sufficiently large so that for all
N =2 K,

(3.24a) (i) gyvx(z)=21—¢ K<z=N,
(3.24b) (i) gwx(K) — 2MK [Fg(t) du(t) = 1 — e
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It is readily verified that the signed measure g satisfies the hypotheses of the
proposition. Hence, the proposition and Corollary 1 to Lemma 4 imply that for
any A > 0, E exp (MZy,x) — 1 as K — o (uniformly in N = K). Thus (3.20)
is valid with any ¢y > 1 and Lemma 2 is proved.

Proof of the Proposition. First note that from (3.23), g(z) is differentiable and

(3.25) g (x) =2\[Jg(t)du(t), K =z=N.
Next, define for N > 0and1 =t = N
(3.26)- an(t) = [V du(r),
andfor N >0and1 =z =t =< N,
(3.27) Bu(t, x) = [V (r — @) du(r).
Integrating (3.27) by parts we have
Br(t, z) = — [V (1 — x) dan(7) = (¢t — @)an(t) + [V an(7) dr.
Thus from (3.22b), for ¢ = k,
(3.28) lax(t)| < b/,  and |By(t, z)| = 2bo/t.
Now rewriting the integral equation (3.23) as
g(z) = 1+ 2\[2 g(t)[Bn(t, x)/(01)] dt
and integrating parts, we obtain
(3.29) g(x) = 1 — 2ng(x)Bn (2, x) — 273 Bu(t, 2)g'(t) dt. .
Thus
(330) lg(a)| < 1+ 2\g(@)lIBx(=, 2)| + 2A[¥ |Bx(t, 2)]lg (1)] dt.
But from (3.25)
(3.31) lg' (0 = 22fY |g(8)] dlu(@)] < 2AM [T dlu(t)],
where M = supx<.<wy g(¢). Combining (3.30) and (3.31) we have
lo(x)| < 1+ \M|Bx(z, )| + 4°M [V 185 (t, 2)|[ [T dlu(r)|] dt.
Finally from (3.22a) and (3.28) we have, if K = k.

(3.32) M £ 1+ 4\Mby/K + 8\N’Mbeao/K = 1 + vM/K,
where v = 4\by + 8\7boa . Solving (3.32) for M yields
(3.33) M = supgsa.zv |9(z)| £ (1 — v/K)™ =a4u B(K),

provided K = v, k.
Returning to (3.29) we can write

lg(z) — 1] = 2Ng(2)||Bx(, =) + 2N [7 Bx(t, z)g (¢)] dt.
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Repeating the same steps as in the derivation of (3.32) we obtain when K = ko,
lg(z) — 1| £ 4\Mbe/K + 8NMbeao/K = vM /K.
If in addition K = v we can apply (3.33) to obtain
lg(z) — 1] < yB(K)/K -0, asK — «.

This implies (3.24a) and the first part of the proposition is proved.
To establish (3.24b), write

g(K) — 2\K [ g(t) du(t) = 1 — 2\ [ tg(¢) du(2).
Using f’f rdu(7) instead of By(%, z) and paralleling the derivation of (3.32) we
have (if K = v, ko)
lg(K) — 2\K [R g(t) du(t) — 1| < yM/K < yB(K)/K —0, as K — o,
which implies (3.24b) and the proposition.

3.2.3. Proof of Lemma 3. For any random variables Yx,x , Y,z , and for any
a,dé>0
Pr[Pvx = (a+8)logN] = Pr[Vyx = (a+8)logN, Vg = alogN]
+ Pr[Pyx = (a+8)log N, Yur < alog N
SPr[Yyx=a log N]+Pr [Yyx — Yrx
= 6 log N1.
Setting Zy.x = Yv.x — Yw.x, this is Lemma 3. *

Acknowledgment. The author wishes to thank D. Slepian, S. O. Rice, H. O.
Pollak, and especially L. A. Shepp for many stimulating discussions and helpful
suggestions.

APPENDIX

A.1. Proof of Lemma 5.
LemMA 5. Let X be a random variable and v(\) = log ES*(\ > 0). Then for
any £ > 0,

PriX 2+ (\) — &)1z 1= exply — M (N — MGV

Proor. (Shannon). Let X have distribution function F(z) and let ¢(\) =
Eé*. Define a new random variable X with distribution function G(z) = G(z,
\) given by

(A1) G(z) = o(\)) " [Z0 &7 dF (y),

for all A > 0 such that ¢(\) < . Note that dG(z)/d =Ae"’/¢()\). Let
¥(s) = E exp (sX) be the moment generating function for X. Then

(A2) W(s) = [Z.e®dG(z) = [Z% (¢(\)) e dF (2) = (s + \)/e(\).
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We can then compute the moments of X

(A3) EX =¥ (0) = ¢'(\)/e(\) = dlog o(\)/d\ = ' (\),
(A4)  EX* =w(0) = ¢"(\)/e(N).

Hence the variance of X is

(A5) o’X = E(X — EX)’ = EX* — (EX)*

=" (N)/e(\) = [’ (M) /oM = d(e' (V) /e(N))/dx = v" (7).

Thus Chebycheff’s inequality applied to X yields

(A6) Prigs = X <plz1-—¢£7,
where

(A7a) Br=EX — 00X =+ — t(¢"),
(A7b) B = EX + tX =+ + £(v")},
and £ > 0. Thus

Il

Pr[X > 8] = [5 dF(z) = o(\) [, €7 dG(x)
(A8) 2 o(\)[B e dG(z) 2 o(\)e ™ Pr 81 = X < 6]
2 exp (v — M&)(1 — £7).
Substitution of (A7) into (A8) yields the lemma.
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