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A CLASS OF RANK ORDER TESTS FOR A
GENERAL LINEAR HYPOTHESIS!
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0. Summary. For a general multivariate linear hypothesis testing problem, a
class of permutationally (conditionally) distribution-free tests is proposed and
studied. The asymptotic distribution theory of the proposed class of test sta-
tistics is studied along with a generalization of the elegant results of Hajek (1968)
to the multistatistics and multivariate situations. Asymptotic power and opti-
mality of the proposed tests are established and a characterization of the multi-
variate multisample location problem [cf. Puri and Sen (1966)] in terms of the
proposed linear hypothesis is also considered.

1. Introduction. Consider a (double) sequence of stochastic matrices
=(X71)"'vaN,), 1§II< ©,

where X;; = (XP, -, X)), 4 =1, , N, are independent stochastic vectors
havmg continuous cumulatlve dlstrlbutlon functions (cdf) F,:(x), xeR®,
1 =1, .-+, N, respectively. It is assumed that

1.1) Fuix) =F@Ex — a — BC), 1<:7=N,, 1=<7»< o,

where o/ = (alv""ap)andg_ ((ﬂ]k)), 1 "1p;k= 1,---,qareun-'

known parameters and Ci= (&SP, -, ¢ ), -+, N, are known regression
constants (vectors). Having observed E and assummg some conditions on F and
¢,i’s (to be stated in Section 2), we desire to test the null hypothesis of no re-
gression, that is

(1.2) Hq:B = 07,

against the set of alternatives that 8 is non-null.

A variety of tests for Ho in (1.2), based on the assumed normality of F (x),
are available in the literature [ef. Anderson (1958, Chapter 8) and Rao (1965,
Chapter 8)]. However the likelihood ratio test is one of the most adopted ones. In
this paper, the assumption of multinormality of F (x) is relaxed and a class of
Chernoff-Savage-Héjek-type of rank-order tests is proposed and studied. These
tests are valid for all continuous F (x). In Section 2, along with the preliminary
notions, these rank-order statistics are defined. Section 3 is concerned with certain
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1326 PURI AND SEN

permutational invariance structure of the joint distribution of E, (when Hyin
(1.2) holds), and this is then utilized for the construction of permutationally
distribution-free tests for Hoin (1.2). In Section 4, by a generalization of Hajek’s
(1968) results, the asymptotic joint normality of the proposed rank-order sta-
tistics is established. Section 5 deals with the asymptotic power properties of the
proposed tests for nearby alternatives, and Section 6 is concerned with the asymp-
totic optimality of the proposed tests, granted certain conditions on F (x). In the
last section, the relationship of the multivariate multisamplelocation problem with
the linear hypothesis in (1.1) and (1.2) is studied.

2. Preliminary notions and fundamental assumptions. Let RS} be the rank of
X$? among X\, .-+ | X'§ , that is,
21) RY = X iuXx? — x0), i=1--,N,; j=1,--,p,
where u (z) is equal to 1 or 0 according as x = 0 or not. [Since F (x) in (1.1) is
assumed to be continuous, ties among X7, --- , X 5}}, can be neglected, in prob-
ability, forj = 1, - - - , p.] Consider now p sets of score functions
2.2) {ajG),1=¢=N,}, Jj=1,---,p, (where 1 £ v < )

generated by functions {¢;({),0 < t < 1},7 =1, - - - , p, in either of the following
three ways:

(23) a;(@) =¢;G/IN, + 1), 1=2i=N, j=1-,p;
(24) av]'(’i) = E{‘Pj(Uv(i))}’ 1=7= NV’ J =1-,p;
(25) at’i(’i) =N, f%zi)/h'y‘?:i(t) dt’ 1=4= Nv; J =1--,p;

where U, < -+ = U,”” denote an ordered sample of N, observations from the
rectangular distribution over (0, 1).
Consider now the random variables

26) S.u = Mo cf,’g)a,,j(Rf,?)’ j=1,-,p, Ek=1,--,q.
Our proposed test for Hq in (1.2) is based on the stochastic matrix
@0 S, = ((S,,%))-

In Section 3 we shall see that for the construction of some permutationally (con-
ditionally ) distribution-free tests for H, , we require (for small samples) only the
conditions that (i) the sum of product matrix in the regression constants is positive
definite and (ii) the sum of product matrix of the scores (defined in (2.11)) is
also positive definite. However, for large sample sizes, in order to justify the
second condition and simplify the asymptotic distribution theory of the test
statistic, we are required to impose certain regularity conditions on the regression
constants as well as on the score functions. These are stated below.
Assumrrion I (Héjek). It is possible to express

(2.8) eit) = ¢ja(t) — @;2(t), J=1,---,p; 0<t<1
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where the ¢;: (t), k = 1,2,5 = 1, - - -, p are all non-decreasing, square integrable
and absolutely continuous in (0, 1).
Assumprion 11 (Hoeffding). In addition to (2.8)

29) [ileix@®)|t@ —t)Fdi < o, forall k=1,2; j=1,---,p.

It may be noted that for the asymptotic (multi-) normality of the elements of
S, , the first assumption due to Héjek (1968) is sufficient. However, for the study
of the asymptotic power properties of the proposed tests, we require to simplify
the expression for E(S,), and for this we require the slightly more restrictive
assumption (2.9), due to Hoeffding (1968).

Let

(210) ¢i = f(ji(p](t) dt, .7 = 17 P Hv(x) = Nv_l Zi’glFﬂ(X).

The univariate marginal of the jth variate and the bivariate joint distribution
of the (4, j/)th variates corresponding to the cdf H, (x) are denoted by H,y (z)
and H,ij.1 (x, y), respectively, forj < ;' = 1, ---, p. Let

(211) Ny (H,) = [Zw [ZwoiHotn @))er (Huiin (y))
“dH, g0 (&, y) — @@y 55 =1, -+, p;
(2.12) AH) = ((\y(H,)))
AssumptioN III. A(H,) is positive definite for all v = » .
It may be noted that \;(H,) = ﬂ, [e;(t) — &]*dt = \;; is independent of

H,forj = 1, ---, p. Further, under the Assumptions V and VII (or VII (a)) to
follow, when (1.1) holds,

(2.13) lim,., A (H,) = A(F),
where A (F') is defined as in (2.12) with H, replaced by F. Thus, we may write

AssumprioN IIT (a). Under (1.1), (2.16), (2.19) [or (2.20)], Assumption III
holds if

(2.14) A (F) is positive definite.
Assumprion IV. ¢, ¢ = 1, - -+, N, satisfy the condition
(2.15) N = 2 2i¢: = 0% forall 1 <v < o,

(this can always be done by replacing e in (1.1) by &, = « + 86,.)
AssumprioN V.

(2.15) Sup, {224 [k} < o forall k=1, ---,q.
Let us also define a ¢ X ¢ matrix

@17) G = Zincen = (Tad?e )k =1, -+, q.
AssumpTion VI.

(2.18) Rank [C,)] = ¢(=1) forall 1 =<» < .
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[In fact, by reparameterization in (1.1), C, can always be made of full rank.
Hence, (2.18) imposes no further restriction on (1.1).]

Assumprion VII (H4jek). For every e > 0 there exists a value of », say ».,
such that for » = ».

(2.19) Yo (CF) > eN[Maxicis, [CFF], k = 1, -+, g,

where of course we assume that N, is a non-decreasing function of » with
lim,.o N, = .

In fact, following Héjek (1968, Theorem 2.2), we may relax the Assumption
VII a bit more when the ¢;; have all bounded second derivatives.

Assumprion VII (a) (Noether).

(2.20) maXi<k<q MaXi<ign, [ij:)[/{ 1121 [Cff]z?)]z}% =0 (1 )

[Note that VII = VII (a) but not conversely.]
Now, corresponding to the matrix A (H,), we define its sample measure
M, = ((m,,3)) by

(2.21) My,j57 = (Nv - 1)—1{ iv’=,,1 Qyj (R;(ti) )avj’ (Rl(‘i,)) - Nudvja-vf'} 5

(2.22) &= N, 20a;@), j=1,-,p.

We also define a pg X pq matrix

(2.23) D, =M, ®C, = ((dmiw))

where ® refers to the Kronecker-product of the two matrices M, and C,. By
(2.18) and (2.23), we obtain .
(2.24) rank [D,] = (rank [M,])q.

Thus, if M, is of rank r, the rank of D, is ¢ (r < p). For the time being we assume
that M, is of rank p and denote its reciprocal by M, = ((m,” ")). Also, we denote
the reciprocal of C, by C,”* = ((¢"*')). Then, we have

225) DT =M CT = (@H) = (o)),
Our proposed test statistic is
(226) & = Z;J:l Z?’=1 Z’%=1 Eg'=l dvjk'j,k,sv.jksu,f’k’ )

and its rationality will be made clear in the next section. If M, is of rank p’ (<p),
we may work with either a generalized inverse of M, and define £, with D!
replaced by M,* ® C,™* (where M,* is a generalized inverse of M, ), or we may
work with a subset of p’ variates for which the corresponding minor of M, is
positive-definite, and define £, in terms of only those S, ’s for which j belongs
to this subset. However, it will be seen later on that under Assumption III (or
III (a)), M, is positive definite, in probability, as » — «. Hence, for large »,
£, can be defined as in (2.26), in probability.
ReMARK 1. For better use, we write a,;(z) in (2.2)-(2.5) as

(2‘27) (,0,,',‘(1 + [tNV]/(NV+ 1)) 0<t< 1,]= ]-7 Dy
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where [s] denotes the largest integer contained in s. Then, from Lemma a and
Lemma b of Héjek and Siddk (1967, pp. 164-65), it follows that
(228) limv—»oo f% [<Pv,j({1 'I" [tNu]}/{Nv + 1}) - <pj(t)]2dt = 07 ] = 1, e, Dy
while for (2.4), (2.28) follows from the results of Hoeffding (1953).

REMARK 2. We define
(2.29) r'=A(H)®C, [T,]| = det T,

where det A stands for the determinant of a square matrix A. From Assumption
IIT and VI, it follows that for » = »,

(2.30) rank [T] = pq.
Moreover, from (2.29), (2.11) and (2.16), it follows that
(2.31) sup, T = ([17-oNii)lsup, {ITE1 Co}] < w0

wherein (2.31) we use the well-known property of a positive definite (symmetric)
matrix A (of order p)

(2.32) 14l = I a.
Moreover, if lim,. C, = C exists, then under (1.1) we have
(2.33) lim,,T, =T = A(F) ® C.

3. Permutation distribution of S, and the rationality of £, . Under H, in (1.2),
E, is composed of N, independent and identically distributed random vectors’
Hence, the joint distribution of E, (which is the product of the N, distributions of
X1, -+, X,x,) remains invariant under the N, ! permutations of the N, vectors
X1, +++, X,n, among themselves when (1.2) holds. We now consider the basic
rank-permutation principle, which is essentially due to Chatterjee and Sen (1964,
1966), and is discussed in detail by Puri and Sen (1966 ).

We define a p X N, rank matrix R,

RY - . - R
(31) Ry = E ’ . : = (vay e ’RPN,,),

R(P) : (p)

vl VN

where Rys = (RS, +-+, R$P) fori = 1, -+, N,. Each row of R, is a permuta-
tion of the numbers 1, ---, N,, there being in all (I, !)” possible realizations of
R, . Let us rearrange the columns of R, in such a way that the first row has ele-
ments 1, -+ -, N, in the natural order, and denote the corresponding matrix by
R,*. R, is said to be permutationally equivalent to a matrix R,”, if it is possible
to obtain R, from R, only by permutations of the columns of the latter. Thus,
corresponding to each R,”*, there will be a set > (R,) of N, ! possible realizations
of R,, such that any member of this set will be permutationally equivalent to
R,*. Now, the probability distribution of R, over the (¥, !)? possible realiza-
tions will depend on F (x), even when Ho in (1.2) holds (unless F (x) has co-
ordinate-wise independent marginals). Thus, rank-statistics, like S, in (2.7),
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are, in general, not distribution-free under H, in (1.2). However, given a par-
ticular set (R,*) (of N, ! realizations ), the conditional distribution of R, over
the N, ! permutations of the columns of R,* would be uniform under Hoin (1.2),
ie.,

32) PR, = 1,|>X ®R*), H} = 1I/N,! for all ey R*),

whatever be F (x). Let us denote by ®, the permutational (conditional) prob-
ability measure generated by the conditional law in (3.2). Then, by routine com-
putations (along the lines of Puri and Sen (1966)), we obtain that

(3.3) E{S,|®,} = 0™
(34) E{Sl’,jk Sv,j’k’ I (Pv} = O, jk;j'k’ for j7 jl = 1, sy Dy k} kl = 17 G

where dy, u;;%’s are defined by (2.23).

Since S, is a stochastic matrix, for actual test construction it is more convenient
to use a real valued function of S, as a test-statistic. By an adaption of the same
arguments as in Chatterjee and Sen (1966) and Puri and Sen (1966), we may
work with a positive-semi-definite quadratic form in the pg elements of S,,
where the discriminant of the quadratic form is the inverse of the matrix D,
which has the elements d, ;% defined by (2.23) and (3.4). This leads to the
test statistic £,, defined by (2.26). £, will be stochastically large if S, is sto-
chastically different from 0. For small values of » (i.e., N,), the conditional
distribution of £, , given Y (R,”), can be obtained with the aid of (3.2), and a
conditionally distribution-free test for Hoin (1.2) based on £, can be constructed.
This, however, requires the evaluation of the N, ! realizations of S, (under @, )',
while D, is ®,-invariant. The task becomes prohibitively laborious and for large
values of », we are forced to consider the following large sample approach in which
we approximate the true permutation distribution of £, by a x distribution with
pq degrees of freedom (df). For this purpose, we consider first the following
theorem.

TraEOREM 3.1. When the scores are defined by (2.3), (2.4) or (2.5) and the score
Sunctions satisfy the Assumption I [in (2.8)], M, — A (H,) —, 0,, where A (H,)
and M, are defined by (2.11) and (2.21) respectively.

Proor. We shall sketch the proof only for the scores in (2.3), while the cases
with (2.4) or (2.5) will follow in a similar manner. By (2.21), (2.22), and (2.28),
it follows that as v — «

35) My — Ng(H,) = Ny = [hlos(t) — of'dt, 5 =1, ---, p.

'So, we require only to show that for j = 7/, m, ;» — Ny (H,) —, 0. Now, as in
Lemma 5.1 of Hijek (1968), we have for any ¢ > 0, :

(3*6) ¢i(t) = \I’J(t) + ¢j,1(t) - §0j,2(t), J=1 .-, D,
where ¥;’s are polynomials, ¢;’s are non-decreasing (in ¢), and
3.7) > Joein(t)dt < e forallj =1, .-+, p.

Il
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Then, we may write m, ;; as
N, — 1) >
R /W, 4 1) + 1B /(N, + 1)) — ¢2(BSY /(N + 1))
[ R/ (N + 1)) — 0 (B /N, + 1)) — 0 2R /(N + 1))]

(3.8) — N {0/ (N +1)) + 051G/ (Vs + 1)) — 0,96/ (N, + 1)}]
DL 2 <z/<N,+ D) + @016/ (N, + 1)) — @526/ (Ny + 1))}]
=N, — DI REY /N, + D)WRE/(N, + 1))

- N @—1\1’](1/(1\/' + 22 Y @/ (N, + D)} + R,

where using (2.28), (3.7) and the Cauchy-Schwarz inequality, it can be readily
shown that

3.9) [R,| < ke,

where £ is a finite positive quantity. Since the ¥;’s are polynomials, the proof
of Theorem 4.2 of Puri and Sen (1966 ) can be readily extended to show that the
first term on the right-hand side of (3.8) is asymptotzcally stochastically equiva-
lent® to Ny (H,) (as v — ). Then the proof is terminated by letting e be ar-
bitrarily small.

CoroLLARY 3.1. Under Assumption I, D,, defined by (2.23), is stochastically
equivalent (as v — o) to T, defined by (2.29). Hence, under Assumptions IIT
and VI, D, us positive definite, in probability, as v — .

The proof is a direct consequence of (2.23), (2.29) and Theorem 3.1.

TaEorEM 3.2'. Under ®,, the joint distribution of the elements of S, converges,
in probability, (as v — ) to a multznormal distribution with null means and
variance-covariances gien by (3.4).

Proor. Forany givent = (4, -+, £,)’, define the vector

(310) Zv = (Zl%:l gk Sv.]’k ) .7 = 17 T p))
which, by (2.6), can be written as
(3.11) (Zz—l av@ x(ai)) Zlg=l tk 651;)’ .7 = 1’ Tty p)'

Now, cji = D 1 bics?, i = 1, -+ -, N, satisfies the Noether condition [ef. (2.20)],
and by (2.16) and (2.18), sup, 2_i% (e5;)* < . Also, by Theorem 3.1, M, ,
defined by (2.24), is positive definite, in probability, as » — o, when Assump-
tion IIT holds. Hence, it is easy to show that the condition (7.2) of Theorem 7.1

# A sequence of random variables {X,} is said to be asymptotically stochastically equiva-
lent to another sequence of random variables {Y,} if | X, — ¥,] =, 0 as » — «. '

4+ We say that the distribution of X, is asymptotically multinormal with mean vector u,
and dispersion matrix ¥, , if for every £ > 0, the distribution of £'(X, — w,)/[€ =, £V con-
verges to a standard normal distribution when » — «.
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of Héjek (1961) is satisfied, in probability, as » — . Hence the theorem follows
by an appeal to Theorem 7.1 of Hajek (1961). []

By virtue of the preceding theorem, we arrive at the following theorem through
a few simple steps which are omitted.

TuroreM 3.3. Under the conditions (I) to (VIIL) of Section 2, £,, defined by
(2.26), has a permutation disiribution (under ®,) asymptotically converging, in
probability, to a chi-square distribution with pq degrees of freedom.

Hence we have the following large sample test procedure:

= Xoga, reject Hoin (1.2);

(3.12) if &, \
< qu,a y a;CCept HO I}

where P{x’ = x%..} = @(0 < a < 1), the level of significance.

4. Asymptotic multinormality of S,. In this section, generalizing the results
of Hajek (1968), we shall derive the asymptotic distribution of S,, without
restricting ourselves to the model (1.1). Also, as a particular case of special
interest, we shall subsequently consider the model (1.1) and simplify the ex-
pression for the parameters of the asymptotic distribution of S, . We define H, (x)
as in (2.10) and its univariate and bivariate distributions as in the line follow-
ing (2.10). Also let Foij(z) and Foiy1(x, y) be the umvarlate (jth) and
bivariate ((j, 7 )th) marginals corresponding to F,:(x), forj = 5/ = 1, -+, p.
We define

Ajjtirg = | [—ocacy<e Foitn @)[1 — Foita ()]
(4.1) coi Byt @) (Hott ) dF ey () dFvery (y)
+ ff—-oo<:c<y<oo Foas (x)[l — Fuip (y)]
cof (Hyta @))ei (Hot () APyt (&) dF i (y),
fore,r,s=1,--- N,,,andj= 1,---,p;
4.2) A = f Zeo [Fyats,in (x, y) — Foin (@)F a1 (y)]
o (Hotit @))ey ) AFurtsy dFrain (),
forj#j =1,---,pandd,r,s =1, ---, N, ; the subscript »in (4.1) and (4.2)
is understood. Let then
*.3) oy miw = (/N 20 2o 30 (o5 — o) (a8 — o) Asrcien
forj,7 =1,---,pand k, k' =1, ---, g; the corresponding pg x pq matrix is
denoted by X, . Throughout this section it will be assumed that
(4.4) X, is positive definite and ||Z,|| = det =, < .

Also, whenever we refer to the model (1.1) in this section, we shall assume that
F(x) in (1.1) is absolutely continuous having a continuous density function
f(x), x ¢ R®. It is to be noted that if we restrict ourselves to the model (1.1),
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we have the following lemma which shows that (4.4) holds under the assumptions
I, IIT and IV of section 2.

Lemma 4.1. Under (1.1), and Assumptions V and VIL, £, — A(F) ® C,
— 072 g5y — . Hence under (2.14) and (2.18), =, is positive definite in, the
limit as v — oo,

Proor. By virtue of (2.16) and (2.19) [or (2.20)], max: i<y, MaX <k <q |47 |
— 0 as v — «, and hence

(4.5) lim, ..., {MaX1 <i<w, SUPxers |[Fri () — F (x)|} = 0.
From '(4.1), (4.2), (4.3) and some routine computations, it follows that
4.6) limyoo {MAX1<i,r,0cr, MAX1 <57 <p [Ajr (iire) — Ny (F)]} = 0,

where \j; (F) is defined by (2.11). From (4.3), (4.6), (2.16) and (2.19) [or
(2.20)], we obtain after some simplifications that

4.7) oy ik — Coaar Njj» (F) >0 asv— o,

forallj,j =1, -+, p; b, & = 1, - -+, q. This completes the first part of the
proof. The second part follows from (2.14), (2.18), (4.7) and some well-known
results on limits of sequences. []

Let us now introduce the following notations. Let

48) Biw»(Xi?) = [Zalu@@ — X¥) — Foun @) Eoa ) dFlagy (=)
forj=1,---,p;4,7 =1,---,N,. Also let

(4.9) Zyigw = (1/N,) 2202 (62 — ¢ )Bj o (XD), .
forj=1,---,p;k=1,---,gandi = 1, +++, N,. Finally let

410)  Zyg=3TuZugny for j=1,---,p; k=1, ---,q.

Straight forward but somewhat lengthy computations yield that

@11)  Cov {Z, g, Zyjw} = ovjujur, forallj,j’ =1,-- p;k k' =1,---,¢

where o, ;5,57 ,1’s are defined by (4.3).

To study the asymptotic distribution theory of S, , we shall now make use of a
very elegant result by Hijek (1968) which establishes the convergence (in quad-
ratic mean) of the elements of S, to the elements Zvg,j=1,--,p,k =1,
“++, g Hajek (1968) has actually considered the univariate situation with
one regression variable (i.e., p = ¢ = 1) and established this convergence. Since,
for the marginal distribution of S,,; we are confronted with his situation, we
obtain from his Theorem 4.2 and Lemma 5.1 that under the Assumptions I and
V of Section 2.

4.12) sup, [NAE[ (S, — ES,.3) — Z, 4l}] < o,

forallj=1,---,p,k=1,---,q Weutilize (4.12) to establish a comparatively
stronger result. With this end in view, we consider the following lemmas.
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LEmMA 4.2. Leta, = (an, *++, @) and b, = (b, - -+, byy) be two stochastic
t(= 2)-vectors, such that Var (a,; — b,;) > 0asv — o« forallj =1, -,
Then

4.13) [Cov (ayj, ave) — Cov (by;, bye)] >0 forall 5,£=1,---,¢

The proof follows by expressing Cov (a,;, @) = Cov (byj, by) +
Cov (byj, ave — bye) + Cov (av; — byj, bue) + Cov (as; — byj, G — bye), apply-
ing Cauchy-Schwarz inequality to the second, third and fourth terms on the right
hand side, and making use of the conditions stated in the lemma.

By virtue of (4.11), (4.12) and Lemma 4.2, it follows that

(4.14:) ljmy-)oo {[COV (Sy,jk, Sy,jlkl) -_ a'll,jk.j'k']} = 0,
for all j’j, =1, - ;P§k3k, =1-,q

An immediate consequence of Lemma 4.2 is the following.
Lemma 4.3. If a, has asymptotically a multinormal distribution with mean
vector «, and a distribution matriz A, and if for each

j(=1,---,1), Var (@ — b;) —>0asv— o,

then b, has asymptotically the multinormal distribution with mean vector Eb, and a
dispersion matriz A, .

Thus it follows from (4.12) and Lemmas 4.2 and 4.3 that for proving the
asymptotic normality of S,, it is sufficient to show that {Z, %,7 = 1, -+, p;
E =1, ---, ¢} has asymptotically a multinormal distribution. This will be ac-
complished by showing that any arbitrary linear combination of Z,, z’s has asymp-
totically a normal distribution. With this end in view, we define

(4.15) Z, = Zf=1 ZLl /A

where £;’s are real and finite and not all of them are zero. From (4.9), (4.10)
and (4.15), we obtain that

(4.16) Z, = 2719:(X0i),

where

@17)  gi(X) = N7 20 22 2kl (6 — o )Bien (X3D),

fort =1, ---, N,. By definition, gi(X,,i) are independent random variables.
Further

(4.18) Y Var {g:(Xoi)} = DBy Dby D Py D obia bin bk O jas i

is finite and positive by (4.4). Proceeding then precisely on the same line as in
the proof of Theorem 2.1 of Héjek (1968), it follows that {g:(X,:),2 =1, ---, N,}
satisfy the Lindeberg condition of the central limit theorem when the assump-
tions of Section 2 hold. Here we note that when ¢,’s do not have bounded second
derivative, we consider the same modifications as in the proof of Theorem 2.3
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of Héjek (1968), whereby we approximate the ¢; by some polynomials up to any
preassigned level of accuracy. Hence, we arrive at the following.

TrEOREM 4.1. Under (4.4) and the Assumption I, III-VII of Section 2, the
elements of S, have (jointly) asymptotically a multinormal distribution with mean
ES, and dispersion matriz E,, defined in (4.1)-(4.3).

Let us now confine ourselves to the model (1.1) and impose the restrictions
(2.14)-(2.20). Then, by Lemma 4.1, the covariance matrix X, is asymptotically
equivalent to A (F) ® C,. So, in order to find the limiting distribution of £, ,
defined by (2.26), we require to simplify the expression for ES, when (1.1) holds.
Now, it is not known whether under the assumptions made by Héjek (1968), the
expression for ES, ;. can be simplified as a linear function of the expected scores
fi.e. [Zwi(Hyi (@) dFyiq (x)]. However, it has been shown by Hoeffding (1968)
that if Assumption II of Section 2 is superimposed on I, then ES, 5 can as well
be replaced by

(4.19) e = 2021058 [Zwoi(Hotn () dF iy (2)),

foryj=1,---,p;k=1, -, q.Inaddition to F (x) in (1.1) being assumed to be
absolutely continuous, we impose either of the following two assumptions: either
(a)foreachj(=1,---,p), fin(®) = (d/dzx)F; (x) is absolutely continuous and

(4.20) I(fin) = [Zulfin @)/fin @) dFp; () < o,

or, (b) for each j(= 1, ---, p), ¢;(u) has a continuous derivative ¢, () such
that

4.21) limusoor1 {005 (w)ftn Fiin ()} is bounded.
If (4.20) holds, we let W;(u) = —fin (Fri @) /fi(Fiiw)), 0 < u < 1,
Jj =1, ---, pand define
(4.22) Bilps, Fin) = [oe;)¥;(w)du, j=1,---,p.
On the other hand, if (4.21) holds, we let
4.23)  Bilps, Fin) = [Zuei Frn@))fin@)de, j =1, p.
Now, upon making use of Assumption IV, we may write
(4.24) e = 202058 [Zwi(Hyn @) dF i (&) — Haua ()],

j=1,++,p;k =1, -, p. Thus, if (4.20) holds, we obtain under (1.1), and
Assumptions V-VII that

(4.25) v, + (Z%=1 BitCy,5¢)Bi(e;, Fij)| = o(1),

j=1 - ,p,k=1,--+,q. On the other hand, if (4.21) holds, we obtain from
(4.24) by partial integration and using (1.1), (2.15)-(2.20) that

(4.26) lunie + (O %1B4¢Ch,j¢)Bs (05, Fi)l = o(1),
Jj=1,p,k=1,---,q. Of course, if both (4.20) and (4.21) hold, then it is
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easy to verify that

(4.27) limusoor1 ¢ (u)ftn Friw)) =0, j=1,---,p,

and hence, using the results of section 5.2 of H4jek and Siddk (1967, page 216),
it is easy to verify that

(4.28) Bi(ei, Fin) = Bales, Fin) = Bles, Fia),

Jj =1, -+, p. Hence, for later convenience, we shall replace u, s by

(429) — (X318 CridBlos, Fin)yj = Lo+, p b= 1,--, p

where it is understood that B(e;, Fi;;) stands for Bi(p;, Fia) or Be(e;, Fj) or
any of them when (4.20) or (4.21) or both hold.

In the next section, we shall make use of this result for the study of the asymp-
totic properties of the test based on &£, in (2.26).

6. Asymptotic properties of the £,-test. Now, using the results in Lemma 4.1,
Theorem 4.1 and the discussion following the latter, it follows from some well-
known results on the limiting distributions of quadratic forms in asymptotically
normally distributed random variables that

(5.1) &= D2 D Db Dby 8, Sy, i N (F) O

[where (W' (F))) = A™Y(F)] has asymptotically [under (1.1), the Assumptions
I-VII of Section 2] and (4.20) or (4.21) a non-central x> distribution with pg df
and the non-centrality parameter

Ag, = D Py 2200 D iy 2ok Bk B CoiwN” (F) B ,Fis1)
(5.2) ‘B(gjr , Frjn)
= Zf-l DhL Z%=1 D be1 B B Cy v’ (F),

L

where
(5.3) ((7'(F))) = (rir(P)N)7TY
(54) v;p(F) = Njy(F)/IB(¢;, Fitn)B(ey, Fun)l, 5,5 =1, , p.

Now, using Corollary 3.1 and Theorem 4.1, it is straightforward to show that
under (1.1) and the assumptions of Section 2,

(5.5) & — £5—,0, as v — .

This leads to the following theorem

TaeoreM 5.1. Under (1.1), the Assumptions I-VII and (4.20) or (4.21), the
statistic £, has asymptotically a non-central chi-square distribution with pq df and
the non-centrality parameter Ag, , defined by (5.2).

Theorem 5.1 may be used to study the asymptotic power properties of the test
in (3.12) and to compare its (asymptotic) efficiency relative to standard para-
metric tests. Unlike the univariate situation, in the multivariate general linear
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hypothesis testing problem, more than one test is available in the literature, and
each one is admissible against certain specific alternatives. Thus, the different
test criteria do not have uniformly (in the range of the parameters) good or bad
performances. The standard parametric tests are based on the assumption that
F(x) in (1.1) is a multivariate normal distribution. The notable test criteria
include the so called normal-theory likelihood ratio test criterion (which happens
to be based actually on the least squares estimators of 8), Roy’s largest charac-
teristic root of certain determinantal equation, and others [ef. Adnerson (1958,
Chapter 8)]. The performance characteristics of these tests when F(x) ceases to
be a multinormal cdf are not precisely known, even when N, is large. The question
arises: how does a normal theory test behave when F(X) is not necessarily normal
and how does it compare with our £, test in (3.12)? This will be the subject
matter of the current section. In this study, we have specifically considered the
normal-theory likelihood ratio test based on the conventional least squares
estimators, though we believe that a similar study can be made with that of Roy’s
largest characteristic root or some other criterion. Second, when F(x) is not
necessarily normal but is specified (and satisfies certain regularity conditions to
be stated in Section 6), it is possible to derive the so-called likelihood-ratio test
which possesses some asymptotically optimum properties in the sense of Wald
(1943). The comparison of £, with such a likelihood ratio test is itself worthy of
investigation, and is considered in the next section.

6.1. Comparison with the normal-theory likelihood ratio test. Let us write
(5.6) Z79= (Za); Zop = 230 XFC5; .
(5.7) V, =N 22X - X)X — X)) X =N"7"2mX..
Also, we define C, as in (2.17), and denote the covariance matrix of F(x) by

H = ((nj7)) which we assume to be positive-definite and finite. The least
squares estimator of 8 in (1.1) is given by

(5.8) 8 = 2.C7,

so that the covariance matrix of § is H ® C,™, which by Assumption VI is
positive definite and finite.
The normal-theory likelihood ratio criterion is

(5.9) N = {INV, — B.C8/I/INV [}

[ef. Anderson (1958, page 188)]. To simplify the expression for A, (actually
—2log \,) for large values of », we first consider the following.

LemMA 5.1. Under (1.1) and the Assumptions IV-VII of Section 2, when H is
finite, V, —», H as v — .

Proor. Let us write

(5.10) Yi=Xs—a«—8C., i=1,---,N,, ¥ =NT2"Y:;
(5.11) V=N XYY
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Since Y,.’s are independent and identically distributed random variables (vectors)
and H is finite, by Kintchine’s law of large numbers,

(5.12) ¥, —,0 and V =, H as »— .

From (5.7), (5.10), (5.11) and some simple algebraic manipulations, we obtain
that

(5.13) V, — V,* = 28[(N,)* X C.X) — 2% — (X — o
+ N,78C8 + (X — ).

Now, by (5.10), (5.12) and (2.15), X, — @ —, 0 as » — . Also, by (2.16),
N,7'8C,8' —, 0 as » — «. Finally, using the Cauchy-Schwarz inequality and
(2.16) as well as (5.12), we get that N,™* D22 C,.Y,: —, 077 as v — . Hence,
from (5.12) and (5.13), we obtain that as v — «

(5.14) V, ~, V¥ -, H.

Hence the lemma.

By virtue of this lemma, V, is positive definite, in probability, (as v — )
whenever H is positive definite (as has been assumed). Hence, by elementary
expansion of the determinant in the numerator on the right hand side of (5.9) and
followed by some simple algebraic manipulations we get that for any fixed 8:

(5.15) —2log\, = Z?=1 Zfl:l D 2 b Bt Bosirwr Cogaw 0,1 + o0,(1)],

where (»,”"') = V,™. Thus, by virtue of (5.15) and Lemma 5.1, we have for the
model (1.1) (for any fixed 8) and under the assumptions of Section 2, »

(5.16) —2logh, ~ p Z?=1 Z?’-l ZI%=1 D s Boit Boirw Co njj',

where (njj') = H™. Since §, in (5.8) is a linear estimator it readily follows by
generalizing the results of Eicker (1963) to the multivariate case that under the
assumptions of Section 2, § has asymptotically a multinormal distribution with
mean B and dispersion matrix H ® C,”'. Hence, the statistic on the right hand
side of (5.16) has asymptotically a non-central chi-square distribution with pg
degrees of freedom and the non-centrality parameter

(5.17) A\, = Z;';l Zf'=1 DA 2™ Co Bt B -

Thus, under Ho:3 = 0, —2log A, has asymptotically a chi-square distribution
with pq df, provided F(x) in (1.1) has finite second order moments. Hence, the
same (asymptotic) test procedure as in (3.12) applies to the normal-theory
likelihood ratio test.

It is seen that in multivariate situations, the asymptotic relative efficiency
(A.R.I.) of the test based on £, with respect to the one based on ), , as measured
by Ae,/A, , depends not only on V and H, but also on 8 and C, , even when it is
assumed that lim,-« C, = C exists (which is required to justify the A.R.E.).
The following points are worth noting in this context.
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(i) If p = 1, no matter whatever be 3 and C,
(5.18) Ae,/B\, = nu/vn

which depends only on the parent edf F and happens to coincide with the usual
A.R.E. expression for the two-sample location problem. A few important cases
may be mentioned here. First, if for £,, we use the Wilcoxon scores (i.e.,
or(u) = u:0 < u < 1), (5.18) reduces to 12u11(ff«,f?1](x) dz)’®, which has known
values (as well as lower bounds) for various Fi;(x). Secondly, if ¢1(u) is taken to
be the inverse of the standard normal cumulative distribution function (i.e., the
a,(7) are the normal scores), (5.18) is bounded below by 1 where the lower
bound is obtained only when Fpy itself is normal. This clearly illustrates the
asymptotic efficiency of the proposed tests for p = 1.
(ii) If F(x) in (1.1) consists of totally independent coordinates, i.e.,

(5.19) F(x) = [[7« Fua(e;), xeR™
Then, both v and H are diagonal matrices and as such
(5.20) Ag, (22 (1/vi;) D28t D e Bin Bire Cor}

Ay, B (222 (1/mg) 2 ofes Do Bin Bine Cor}

Thus, if we write

(5.21) e = minji,...,, (15/v35),
we obtain from (5.20) and (5.21) that
(5.22) Ag,/A\, = e, uniformlyin 8 and C,.

Hence, if we use the normal scores for ¢; , ¢ is bounded below by 1, and hence,
the same bound applies to (5.20). Incidentally, here also the equality sign in
(5.22) holds only when Fp;; is normal for all 7 = 1, .-, p. Similarly, for
Wileoxon scores, e is bounded below by 0.864 (for all continuous Fij;;’s), and
hence, (5.20) is also bounded below by 0.864.

(iii) If F(x) in (1.1) is itself a multinormal cdf, then if we use the normal
scores, it readily follows that v = H, and hence, Ag, = A, for all 3 and C, .
Thus, for parent normal distribution, the normal scores test and the normal-
theory likelihood ratio tests are asymptotically power equivalent.

(iv) In general, for arbitrary F(x), Ag,/A, is bounded below and above by
the minimum and maximum characteristic roots of Hv™, (the proof follows by a
straightforward application of a theorem by Courant on the bounds of the ratio
of two quadratic forms (cf. [13])). Now, the bounds of Hv ™" have been studied
in detail by the authors [Sen and Puri (1967)] in connection with the multi-
variate one-sample location problem. As such, the details are omitted here.

6. Asymptotic optimality of £, for certain F(x). For this we assume that
F(x) in (1.1) has the absolutely continuous density function f(x), and define

(61) f(xj) |CL'1, ety i, Tjyr, yxp) Zf(X)/ffwf(X)dX], .7= 1; Y 2
(6.2) fia(z) = (d/dx)Fry(x), j=1,---,p.
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Let then

(6.3) fi (x| x) = (8/02;)f(w;]|x),

(6.4) fla(@) = (d/do)fin(z), § =1, ,p;

(6.5) gi(x;|x) = fi (e | ) /f(z; %), 7 =1,--+,p

We define the statistics

(66) Upp = Xacg(XP X2, -, X7, X507, ., X30);

forj=1,--,pk=1--+,q¢
We also define 2 = ((&;;)) by

(67) £ = Bofgi(XP |1 X9 X 1K)}, 47 =1,

where E, denotes the expectation over the random vector X,;, computed under
the null hypothesis 3 = 0. Finally, let T, = ((7,s,7)) = & ® C,, where C, is
defined by (2.17), and let

(6.8) U = Zf=1 Zf'=1 Z%=1 Z%'=1 ijk'j/k,Uv,ijv,j'k' ,

where ((7,”**)) = T,7" = 27 ® C, Y, and it is of course assumed that = is
positive definite.

Let now p(E,: ; «3) be the joint density function of E, = (X,i, -+, Xow,)
and let &, , 8, be the maximum likelihood estimates of « and § respectively. Also
let &* be the maximum likelihood estimate of « under the assumption that
8, = 0. We then define the likelihood function by

(6.9) Lv = p(Ev ) &v*’ 0)/p(E" ) &” ) g")'

If now (i) the range of x in F(x) [in (1.1)] does not depend on (e, 8), (ii)
8°f(x) /(dz:9x;) exists for all 4,7 = 1, -+ -, p and these are continuous functions
of x, and (iii) the maximum likelihood estimates of @ and 3 are uniformly (in «, 3)
consistent, then it follows from the result of Wald (1943) that

(6.10) —2log L, ~, U,*.

Using his results, it also follows that under Ho:3 = 0, — 2log L, has asymp-
totically a chi-square distribution with pg df. Hence, a large sample test for
8 = 0 can be constructed as in (3.12). Also, using Theorem X of Wald (1943,
p. 480), it follows that under (1.1) and the assumptlons of Section 2 [namely
IV-VIII] —2log L, has asymptotically the non-central x* distribution with pq
df and the non-centrality parameter

(6.12) Doy = D20 D0 Doka Db E7C, B By -
Now, for each @ ¢ R™, we define a surface by the equation
(6.12) Apy = o, a > 0.

Consider now a transformation from § to 8,*, such that (6.12) in terms of 8"
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reduces to

(6.13) Dl D ia (B;k.jk)z = d, a>0.

We denote by S.(8) and 8, (8,”) the surfaces in (6.12) and (6.13) respectively.
Now, for any point 8, and any positive p, consider the set w(Bo, p) consisting of
all points 8, which lie on the same S,(3) as 8o and satisfy the condition that
|8 — Bo| < p. We denote by o (B, p) the image of w(B, p) by the transformation
from 8 to B,%, and by A(w) the area of the set w. Then, from Theorem 8 of
Wald (1943, p. 478), we arrive at the following.

THEOREM 6.1. For testing Hy:3 = 0 against 3 = 0 the likelihood ratio test con-
sidered above has (1) asymptotically best average power with respect to the surfaces
8.(8) and weight functions v(8) = limyo {A[w'(8, p)1/Alw(8, p)]}, (ii) asymp-
totically best constant power on the surfaces S.(8), and (iil) <t is an asympto-
tically most stringent test.

Thus, when we speak of the asymptotic optimality of the likelihood ratio test,
we keep in mind the regularity condition of Wald (1943) and regard the op-
timality in the light of Theorem 6.1.

We shall show that under certain conditions on F(x), the test based on £, has
also asymptotically the best average power on the same family of ellipsoids,
provided ¢;’s are chosen suitably. Our treatment deals with a set of sufficient
conditions for this asymptotic optimality and the authors are not aware of
necessary conditions for the same.

Regarding F(x) we assume that

(6.14) gi( X1 X0) = 2 Pca hyyfirin (@) [fin (5)

where h;;’s are real constants, not all zero, for j = 1, ---, p. (6.14) holds for
(i) the multivariate normal distribution, (ii) any coordinate-wise independent
distribution, and may also hold for other distributions.

Let us now define

(6.15) Wit = 212 csefin(XD) /fea(X5D),

forj=1,---,p,k=1,---,q. If (6.14) holds, it follows that U,,u’s are linear
functions of W,,4’s, and consequently, the quadratic form based on W, i’s
(analogous to U,*), will also have the same properties as that of U,*.

We now define

(6.16) ;) = fa(Fii@) /fin(Fii(w), 0 <u <1, j=1,-,p

and define S, ;’s as in (2.6). Following then Hajek’s (1962) elegant approach it
is seen that S, — W, s converges in quadratic mean to zero for all
j=1,+--,p k =1,---, q Consequently, on using Lemma 4.2 and some
routine computations, we obtain that for ¢’s given by (6.16), £, in (2.26) is
stochastically equivalent to the quadratic form in W,,;’s, under (1.1) and the
assumptions of Section 2. Since, under (6.14), this quadratic form in V, u’s is
also equal to U,” in (6.8), it follows that under (1.1), the assumptions made in
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Section 2 and (6.14), (6.16),
(6.17) &, ~, U*.

Consequently, we arrive at the following.

THEOREM 6.2. Under (i) the model (1.1), (ii) the assumptions made in Section 2,
and (iil) (6.14) and (6.15), £, is asymptotically the best test in accordance with the
optimality criteria in Theorem 6.1. :

In particular, if F(x) is normal, the condition (6.14) is satisfied and (6.16)
leads to -the coordinate-wise normal scores. Hence the asymptotic optimality of
the normal scores test for normal cdf’s.

A special case of Theorem 6.2 (that is, for p = 1) is dealt with in an interesting
paper by Matthes and Truax (1965).

7. A characterization of the multivariate multisample location problem.
Let Xu, ---, Xwn, be 7 independent and identically distributed p-variate
random variables having a continuous p-variate cumulative distribution function
Fiy(x) fork = 1, -+, ¢(=2). In the multivariate multisample location problem
[ef. Puri and Sen (1966) and the other references cited therein], we may let

(7.1) F(x) =Fx—®&), k=1,---,c

We define N = n, + --- + n., and consider a sequence of N p-vectors
Zy, -+, Zy, of which the first 7, observations are from the first sample, the
next 7, from the second sample and so on. Now, we may write 0; as 0 + @i , where
>ty (m/N)Br = 0. Thus, only ¢ — 1 of the @ are linearly independent and the

null hypothesis: F; = --- = F, implies that 81 = --- = 8. = 0. Hence, by
reparameterization, we may write
(7.2) Fu(x) = F(x — 0 — ¢B1— -+ — i Be), k=1,-+-,c¢

where the constants ¢’} satisfy the condition:

(7.3) S ey =0 for r=1,---,¢c— L

Moreover, if the Assumptions V and VI of Section 2 are to be satisfied, we re-
quire that (i)

(7.4) CR = o(N D,

and as N — o

(7.5) gy = W20 < M <1 forall k=1,2 - c

The resulting statistic £, in (2.26) can be shown to be identical with the cor-
responding &, in Puri and Sen (1966). Thus, the results derived in this paper also
generalize the results of Puri and Sen (1966) in the sense that the conditions on
©7s in this paper are much less stringent than in Puri and Sen (1966) and the
regression constants {c,;, ¢ = 1, ---, N,}, contain the latter as a particular
case.
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ReEmARK. The model (1.1) could be made a little more general as follows.
(76) Xf'i) =a;+ le=lﬂjkcl('?; +71('Jz:), .7 =1--,p 1= 1. >N"

where the ¢{¥) are known constants. The theory can be developed along the same
line as in Sections 3-6. However, this model will lead to certain complications.
First, D, and I', cannot be expressed as the Kronecker product of two matrices,
and as a result the proof of Corollary 3.1 will have to be changed. The same
problem also arises in (4.7) and for T, in Section 6. Secondly, in actual practice
(1.1) is a more natural model which arises in many situations; for example, in the
c-sample problem (cf. Section 7), or when we want to fit a regression of X,; on
Cvi,? =1, ---, p. Hence, the model (7.6) is not considered in detail.
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