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STARSHAPED TRANSFORMATIONS AND THE POWER OF RANK TESTS!

, By KieLr Doxksum
Unaversity of California, Berkeley

1. Introduction and summary. It is known (Lehmann (1959), p. 187, and
Bell, Moser and Thompson (1966), p. 134) that for the two-sample problem, the
closer the two samples are together stochastically, the smaller is the power of
monotone rank tests. Here it is shown that if one uses the ideas of van Zwet
(1964) to define “skewness” and ‘“heavy tails,” then the more skew the distribu-
tions of the two samples are, the smaller is the power of monotone rank tests;
and heavy tails similarly leads to smaller power of monotone rank tests.

Skewness and heavy tails are defined using convex and star-shaped trans-
formations of random variables. These are the same transformations used in
reliability theory (Barlow and Proschan (1965), Birnbaum, Esary and Marshall
(1966 ), and others) to describe the concept of “wear-out.” Thus if X is a random
variable that represents ‘“time to failure,” and if failure is caused by wear-out
or by the environment, then there exists a convex or starshaped function g such
that Z = ¢g(X) is an exponential (1 — exp [—Mz]) random variable. The dis-
tributions of these variables X are called increasing failure rate (IFR) distribu-
tions when ¢ is convex and (IFRA) distributions when ¢ is starshaped. It turns
out that if one restricts attention to such distributions, then the results of this
paper can be used to construct a simple optimality theory for rank tests. This is
done in a later paper [6].

The power inequalities related to skewness and heavy tails readily extends te
sequential rank tests. It is shown (Example 5.1) that the sequential probability
ratio test based on ranks for exponential scale alternatives (e.g. [11] and [12])
also is valid for the class of IFRA scale alternatives.

2. Starshaped transformations of random variables. Weakening the con-
vexity condition g(\zo + (1 — M) £ Mg(xo) + (1 — N)g(21),0 S A= 1, we
call a function ¢ defined on the interval I C [0, « ) starshaped on I if g(A\x) =
Mg (xz) wheneverx eI, \xel and 0 < X = 1 (see [2]). Thusif I = (0, ), then
the graph of ¢ initially lies on or below any straight line through the origin, and
then lies on orabove it. On the class §o of continuous distributions F with
F(0) = 0, the following ordering (partial) is defined: F <x H (F is starshaped
with respect to H) if H'F is starshaped on {z:0 < F (z) < 1}, where H *(u) =
inf {z:H (z) = u}. Thusif F <« H and X has distribution F, then Z = H '[F (X)]
has distribution H and is a starshaped transformation of X; hence one would
expect the distribution of Z to be more “skewed to the left”’ than the distribution
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1168 KJELL DOKSUM

of X (see [13]). Moreover, if X and Z are random variables that represent ‘“‘time
to failure,” then ' <4 H indicates that X is more subject to wear-out than Z
(see [4]).

For the class & of continuous distributions F with median 0, i.e., F(0) = %,
the ordering <. is defined by (see [8]): F <, H (F is r-ordered with respect to H)
if H'[F (x)] is starshaped on {2:% < F (z) < 1} and —H '[F (—z)] is starshaped
on{z:0 < F(—z) < £}.If F <, H and X has distribution F, then Z = H '[F(X)]
has distribution H and one would expect the distribution of Z to have “heavier
tails’”’ than the distribution of X. More generally, if F and H are continuous and
have medians m; and m, , let F (z) = F (x + m1), H (&) = H(z + ms), and de-
fine <, by: F <, H if A7'[F (z)] is starshaped on {z:} < F(z) < 1} and
—H '[P (—z)] is starshaped on {z:0 < F(—z) <%}. Since all the tests in the
next sections are translation invariant, it will be assumed (without loss of
generality ) that m; = my = 0. Examples of r-ordered distributions are: uniform
<, normal <, logistic <, double exponential <, Cauchy (van Zwet (1964)).

Note that if /' is any continuous distribution with F (0) = } and if H.(z) =
F(cx), then F <. H.and H. <, F for each ¢ > 0. Thus the ordering <, is inde-
pendent of scale. On the other hand, the power functions of rank tests are not
independent of scale. For instance, if the shift parameter in a two-sample prob-
lem is fixed, then the power of the Wilcoxon test tends to one as the scale param-
eter tends to zero, while the power tends to the significance level « as the scale
parameter tends to . Thus, in addition to F <. H, a condition is needed on the
““dispersion” of the distributions before one can hope to obtain bounds for power
functions. If ' and H have densities f and h, then it is reasonable to require tha}
the density with the heaviest tail have the smallest value at 0, i.e., A (0) =< f(0).
The following lemma gives the connection between the condition A(0) < f(0)
and two more familiar conditions on the dispersion of f and k. The condition in
(ii) has been considered by Lawton (1968). Part of the lemma (as indicated)
was proved by van Zwet in a personal communication.

Lremma 2.1. Let X and Z have distributions F and H in § and let F and H have
continuous denstties f and h satisfying f(0) > 0, h(0) > 0, then

(1) i F <. H, i F and H are symmetric, and if X and Z have finite variances,
then h(0) = f(0) vmplies Var (X) < Var (Z), and (van Zwet) Var (X) =
Var (Z) implies h(0)/f(0) = [Var (X)/Var (Z)}} = 1.

(i) of F < H,thenh(0) =< f(0) isequivalentto P = Z <t) S Pw =X £1t)
forallv < 0 < ¢.

Proor. Suppose h(0) = f(0). Let gx) = H'F(z)], then ¢ (0) =
f(0)/R(0) = 1 which together with F <, H implies H '[F (z)] = z forz > 0
and H'[F (z)] < z forz < 0. (i) and the first part of (i) follow easily from this.
Suppose Var (X) = Var (Z) and set ¢ = [Var (Z)/Var (X))} £ 1, then

(2.1)  E[@g(X) — ¢X)(9(X) + ¢X)] = Var (Z) — Var (cX) = 0.

If g(z) = cx, then the second part of (i) clearly holds. Suppose g (z) # cz, and
suppose ¢ (z) does not cross the line cx (except at 0), then either (¢(z) —cz)-
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(g(x) + cz) = 0 forall z or (g(x) — cx)(g(x) + cx) £ O for all z, and since
g(x) # cx, this implies either E[(g(X) — ¢X)(g(X) + ¢X)] > 0 or
E[(g(X) — cX)(9(X) 4+ ¢X)] < 0. In either case, (2.1) is contradicted and one
can conclude that g(z) crosses cz for z # 0. This can only happen when
g’ (0) = £(0)/h(0) < ¢, and the proof is complete.

Héjek (1969) defines the density f to have shorter tails than the density & if
F7'(u) = a(u)H " (u) for some non-decreasing function a(u) on (0, 1). Under
the conditions of Lemma 2.1, this is equivalent to F <, H.To see this, make the
substitution v = F(z) in the quantity H '[F(z)]z™" and the substitution
u=F(—z)in —H'[F(—z)}z""

It turns out (Section 4) that one can obtain the desired inequalities for the
power functions of rank tests under slightly weaker conditions. For F and H in
F one defines: F <, H (F is tail ordered with respect to H) if H '[F (z)] — z is
non-decreasing on {z:0 < F(z) < 1}. It is clear from the proof of Lemma 2.1
that:

LemmMma 2.2. Let X and Z have distributions F and H in &, then

(i) if F 1s tasl ordered with respect to H, then P(v £ Z < t) S Pw S X £ t)
forally < 0 < ¢, and Var (X) £ Var (Z).

(@ii) <f F and H have densities f and h continuous at 0, if F is r-ordered with

respect to H, and if h (0) < f(0), then F 1is tail ordered with respect to H.

3. Skewness, the scale model and the power of monotone tests. Let
Xy, ,Xnand Y1, -+, Y, be two independent random samples from popu-
lations with continuous distributions F and @, and let r, < - -+ < 7 denote the
ordered ranks of the X’s in the combined sample. A test ¢ is said to be monotone
if
31) y/zy for j=1,---,n implies

ﬂo(xly )xm,ylly e :yn,) = <p(271, gy Tmy, Yr, )yn)-

Thus monotone tests are used for one-sided alternatives under which the Y’s are
stochastically smaller than the X’s. All the usual one-sided rank tests such as the
Wilcoxon, normal scores, Savage, etc., are monotone. In fact, all one-sided tests
based on statistics of the form D J (r;) with J non-decreasing, are monotone. The
power of a test ¢ for the scale alternative G(y) = F (Ay) will be denoted by
B:(p; F; A), ie.,

(3.2) Bilp;F;A) =Eralp) with G(y)=F(dy), —o <y< x; A>0.

The null hypothesis considered is Ho:A < 1 and the alternative is Hy:A > 1. It
will be shown that the starshaped ordering (skewness) on the class of distribu-
tions induces orderings on the probabilities of type I and type II errors of
monotone rank tests. More precisely, increased skewness to the left leads to
larger probabilities of these errors. Note that 8,(¢; F; A), 0 < A £ 1, is the
probability of a type I error, while 1 — B (p; F; A), A > 1, is the probability of a
type II error.
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TueoreM 3.1. If ¢ is a monotone rank test, of F, H € §o , and if F is starshaped
with respect to H, then

(3.3) Bs(p; Hy A) = Bs(p; F; A) for each A > 1.
If in addition, H () < 1 for each x < «, or F (x) < 1 for each x < «, then
(34) Bs(p; H; A) 2 Bs(p; F;A)  foreach 0 < A = 1.

Proor. The proof essentially consists of showing that the starshaped ordering
is equivalent to some stochastic ordering. Let X ;] = H'WF(X:)] and
Y, =H'FY),i=1,---,m;j=1,---,n. Since H'F is increasing and ¢
is a rank test, then

(35) ‘P(Xl, 7Xm)Y17 7Yn) =¢<X117 to )Xmly Yl,: te 7Yn/)-

Next note that if one lets ¥;” = {H '[F (AY;)]}/A, then the definition of F < « H
implies that for each A > 1,

(36) Y/ =H'IF(Y;))]=H'FQQAY;)] <A H F@QY)] =Y,

provided Y;and AY;arein Ir = {2:0 < F (z) < 1}. Note that AY; has the same
distribution as X;, thus AY; is in I, with probability one. If Y; is not in I,
then F(Y,;) = 0 and ¥;/ = H(0) £ Y,”. Hence in all cases, ¥; < ¥,” as.
(almost surely ), and since ¢ is monotone, then

(37) ‘p(Xlly ) Xm,) Yl”) ] Yﬂ”)
< o(XY, o, X, Vi, o, V) as (A> 1)

Note that X, has distribution H (z), ¥;” has distribution H (Ay), and that (3.5)
and (3.7) imply that

(38) ‘p(X1,7 R Xm,) Yl”: B Yﬂ”)
< o(Xy, o, Xn, Yi, -, V) as. (&> 1)

Thus (3.3) follows by taking expectations in (3.8). Next suppose that0 < A < 1,
then the definition of the starshaped ordering implies that

3.9) Y/ = ATHFQAY) S HF(Y)] =Y/

provided that Y; and AY; are in Ir. Again AY;is in Ir a.s. If ¥, is not in I,
then F (Y;) = 1,and Y/ = H '[1] = « under the additional condition: H (z) < 1
for each £ < . On the other hand, if F () < 1 for each £ < «, then Y;isin
I as. In either case, Y,” < Y, as. (34) now follows upon noting that for
0< A=1,(3.7)and (3.8) hold with the inequality signs reversed.

The following example shows that the rank condition can not be omitted from
Theorem 3.1. Whether or not it can be replaced by the condition “¢ is a Pitman
permutation test’’ is not known.

ExampLE 3.1. The uniformly most powerful level a test for one-sided scale
alternatives when F (z) is of the exponential form 1 — exp [—Mz], z = 0, A > 0,
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is given by (e.g. [12])
(3.10) =1 if 7= ke
=0 otherwise

where k, is the 100(1 — a)th percentile of the F distribution with 2m and 2n
degrees of freedom. It is clear that this test is monotone, but it is not a rank test.
It does not satisfy (3.3) for 0 < a < 1. To see this, let K(z) = 1 — exp (—z)
and Fo(x) = 1 — exp (—2%), = 0, then F, is starshaped with respect to K. Let
N = m + n, ® stand for the standard normal distribution function, and let
e = ' (a) + (A — 1)[mnN~ l]*. Itis shownin [5] thatif A =14+ ¢cN ¥ for some
constant ¢ > 0, then for each ¢ > 0 there exist m; and n; such that

(3.11) 18: (0*; K; A) — ®(ca)| < ¢, and
(3.12) 18: (™3 Fo5 A) — ®(calr (4 — 7)) < e

form = myand n = n; . Since o < 4, ® () < 0, and there exists ¢ such that
ce < 0. Upon computing [r (4 — w)_l]* = 1.91 > 1, one obtains from (3.11) and
(3.12) that there exist m, n and A > 1 for which 8; (¢*; K;A) > Bs(¢™; Fo; A),
thus (3.3) does not hold. Using the arguments of van Zwet (1964, p. 10), one
can generalize the above example and show that if F; and F; are any two distinct
distributions in ¥, with finite variances such that F; is starshaped with respect
to F'; , then there exist m, » and A > 1 such that (3.3) does not hold for the test
o* (provided 0 < a < %).

To obtain a counterexample to (3.4) for the test ¢*, take A = 1,3 < a < 1,
and note that the above computations and [5,], p. 1734, yield 8;(¢*; K; 1) = «
while 8 (¢*; Fo; 1) > ® (@ (a)[r @ — 7)) > o

For a simpler counterexample illustrating the same inequalities but using a
less reasonable test, consider

ExamprLE 3.2. Let F and H in & be such that HF ()] = 4, eg,
H@x) =1—¢* F(z) = 1 — ¢ Consider the monotone test

QY1 = 1 lf Y §_ %xl
=0 otherwise.

Suppose 0 < 1A < 1, then B,(¢1; H; A) = Py(Y1 £ 1X1)
< $A[A = 1) > Pr((Yy/X1)' S 3A|A = 1) = Py(Y1 S 3X)
Thus (3.3) is contradicted for 1 < A < 2.

ReMmArKk. If alternatives with the Y’s stochastically larger than the X’s were
of interest, then monotone tests would be defined to be non-increasing functions
of the x’s rather than the y’s (see (3.1)). In that case, the results of this paper
would continue to hold if one lets the F’s and H’s denote distributions of the Y’s
and the G’s distributions of the X’s.

Py ((Y1/X1)
Bs(er; F5 A).

4, Heavy tails, the translation model, and the power of monotone tests.
Consider the two samples and the monotone tests of Section 3. For the transla-
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tion alternative G (y) = F (y + 0), the power of each test ¢ will be denoted by
Bt (‘P; F; 0)’ i'e‘)

(4.1) Bi(e; F;0) = Eralp) with G(y) = Gy + 0),
—o <y< o, —wo < o,

The null hypothesis Hy':6 < 0 is to be tested against the alternative Hy':6 > 0.
The next result in conjunction with Lemma 2.2 (ii) shows that for monotone
rank ‘tests, the probabilities of type I and type II errors increase as one makes
the tails of the distributions heavier (in the sense of Section 2).

TrrorEM 4.1. If ¢ s a monotone rank test, of F, H £ §, and if F s tail ordered
with respect to H, then

(4.2) Bi(o; H; 0) < Bi(p; F;0)  foreach 6 > 0.
If in addition F (z) < 1 for each x < o, or H(z) < 1 for each x < =, then
4.3) Bi(p; H; 0) = Be(p; F; 0) for each 6 < 0.

Proor. Let X = H'[F(X,)land ¥,/ = H'{F(Y),i=1,---,m;j = 1,
-++, n. Since H'F is increasing and ¢ is a rank test, then

(4'4) ¢(X17 "'me)Yly "'yYn) =‘F(X‘i,y"'7Xm’7 Yl,,“‘,Y”’).

Set ¥; = H'[F(Y; 4 6)] — 6, then the definition of tail ordering implies that
for each 6§ = 0, »

@5) Y/ Y, =H'FY)-Y,sHWFY;+0)]— (Y;+60)=7;—-Y;

provided Y; and Y; + 6 arein Ir = {2: 0 < F(z) < 1}. Y; + 6 has the same
distribution as X, thus Y; 4+ 6 ¢ I as. If Y; is not in Iz, then F (¥;) = 0 and
Y/ = H*(0) < ¥,. Thus in all cases, the inequality (4.5) holds a.s., and we
obtain ¥;' £ ¥;as.,7 =1, - -+, n. Since ¢ is monotone, this yields

(4.6) <p(X1', ,Xm', ?1, e, Yn) < <p(X1', ,Xm', yl" e, yﬂ’)
as. (8> 0).

Finally note that X, has distribution H (z), ¥; has distribution H (y + 6),
and that (4.4) and (4.6) imply that -

(4'7) ‘P(Xily "',Xm,7 Yl, "'aY") é(P(Xl, "':Xm,Yl, "'aYn)
as. (6 > 0).

Thus (4.2) follows upon taking expectations in (4.7). Next suppose that § < 0,
then

48) ¥, =Y, =H'F(Y;+0)]—(Y;+60)sHFY)-Y;=Y/-Y,
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provided Y, ,Y; 4+ 0eIp.Y;+ 0 ¢ Ira.s. asbefore. If F (x) < 1foreachz < «,
then Y;elr as. If Y; 2 Ip, but H(z) < 1 for each ¢ < o, then ¥, =
H7'(1) = ».Inall cases, ¥; < Y, a.s. when 6 < 0. Finally, (4.3) follows upon
noting that for § < 0, (4.7) holds with the inequality sign reversed.

For each distribution function F, let o* (F) denote the variance [ 2’ dF (z) —
(fx dF (z))’. The next example shows that the condition of tail ordering in
Theorem 4.1 cannot be replaced by the condition ¢*(F) < o* (H).

ExamprE 4.1. Let ¢ be any non-constant, non-randomized, monotone rank
test, let F; denote the standard normal distribution function, and let F; denote
the uniform distribution on (—2, 2). Then ¢*(F1) = 1 < % = o (F), but for
0 >4,8:(p; F2;0) = 1> Bi(o; F1;0).B:(p; Fo;0) = 1for8 > 4 since the test
must reject when all the z’s are larger than all the 3’s (which happens a.s. under
F,), while B¢ (p; F1;60) < 1 for all 8 since under F1, no rank ordering has prob-
ability one.

Next, consider replacing the tail ordering of Theorem 4.1 by Ps(v £ Z £ t)
S Prw=X=t)forallv <0<t or |H[F(z)]] = z for all . That this is
not possible (even in the presence of symmetry) is shown in

ExampLE 4.2. Let ¢ be any non-constant, non-randomized, monotone rank
test, let H; denote the uniform distribution on (—1, 1) and let H, denote the
distribution uniform on (—2 — §, —2) u (2, 2 4+ &), where 0 < 6 < 1. Then
Pp,0 S Z St) £ Py, £ X St)forallv <0< ¢ and |Hy [Hi(2)]| = =
for all z. However, if ¢ has level & = (%), then there exist 0 > 0and 0 < 8 < 1
such that

4.9) Bi(p; Hi;0) < Bele; Ha 5 0).

To see this, note that ¢ = 1 if and only if all the x’s are larger than all the y’s.
Thus,

(4.10) Bilo; Hy;0) — (3" as 60— 0.

Next assume (without loss of generality) that m < » and note that for 0 < § <
0 <1,

(4.11) Bi(p; Hy30) = Py (X120, -+, X, 20) = 27"

Since 27" > (3)7, (4.10) and (4.11) imply that there exists 0 < 6, < 1 such
that B:(¢; Ha; 0) > Bi(p; Hi;0) forall0 < 8 < 6 < 6.

It is sometimes easier to show that H '[F(z)] is starshaped and that
h(0) = F(0) than it is to show that H '[F (z)] — x is increasing. Thus the fol-
lowing result which follows from Lemma 2.2 (ii) and Theorem 4.1 would be used.

CoROLLARY 4.1. If F and H in § have densities f and h continuous at zero, if
F s r-ordered with respect H, and if h(0) =< f(0), then the conclusions of Theorem
4.1 hold

ExampLe 4.3. Let F,° (), F,® (¢), F.® (), F2* (z) and F,* (z) denote the
uniform, normal, logistic, double exponential and Cauchy distributions with
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densities
5.0 @) = }a, —asz=a0a>0,
£HP @) = (1/@r)) exp (—22/0°), —w <z < ©,b>0,
7P @) = ¢texp (—z/c)[l + exp (—z/c)], —o < z < ©,c¢ > 0,
29 () = (&/d) exp |—=/d|, —o <z < »,d>0, and
£9(k) = 1/kr (1 + 2/12), cw<z<w, k>0

respectively. F~"»F® is starshaped for each ¢ < j, thus according to Corollary
41,

(4.12) Bi(o; Fu¥;50) < Be(o; Fa®360) < Bele; Fo¥358) < Bi(o3 I3 0)

< Bi(o; Fa5 6)
for all monotone rank tests ¢ and all 8 > 0 provided £® (0) < £%20) £ £.20)
< #20) = £.°(0), i.e., the inequalities (4.12) hold for all a, b, ¢, d, and k
such that
(4.13) 0=<2 £ (2r) < 4¢c < 2d £ «k.

When § < 0, (4.12) holds with the inequalities reversed (provided a, b, ¢, d,
and k satisfies (4.13)).

Next we give an example which shows that the rank condition cannot be
omitted from the assumptions of Theorem 4.1 and Corollary 4.1.

Exampie 44. Let Z; = 25 W; = 2", ¢ =1, -+, myj=1,---,n and
define the monotone test

o =1 iz = ke
=0 otherwise

where Fomon(ke) = 1 — o when Fy, s, is the F distribution with 2m and 2n
degrees of freedom. Let F1 and F be the uniform distributions on (—1, 1) and
(=2, 2) respectively. Then equation (3.5) of [5] and few computations show
that if ® stands for the standard normal distribution,

B:(01*; F1; 8) — (e’ - 3))] — 0

and  [Bien™; Fa50) — @(ca- G =0  as m, n— w,
where e =¥ (@) + (€ — 1)[mnN"1]’.

This implies that for 0 < a < 3, there exist m, n, and § > 0 such that 3; (@*;F1;0)
< Bi(er™; Fy 3 0). See Example 3.1.

5. Sequential tests. The situation considered here is the one in which the
observations at the nth stage form two independent random samples Xy, - -+ , X,
and Y1, - -+, ¥, from populations with continuous distributions F and G. A se-
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quential test ¢ is monotone if

y;i = yi forj =1,2, .-+ implies
(5°1) qD(.’Ih, Lo, *°° ;y1,7 yz,, "') = ¢(x11x2, YL, Y, "')'
Rank tests are tests which at the nth stage depend on the ordered ranks
Ry, -+, R, of the X’s in the combined sample Xy, -+, X,; Y1, -++, V,.

Let B:(p; F; A) and B:(p; F; 6) denote the power of ¢ when the Y’s have dis-
tributions F (Ay) and F(y + 6) respectively, then it is immediate that the
results of Theorem 3.1, 4.1 and Corollary 4.1 hold for these quantities.

The following example is typical of the kind of applications the results of this
and the preceding sections have. It shows that a test which is appropriate for
exponential alternatives actually is valid (in terms of bounds on the probabilities
of type I and II errors) for the more general class of IFRA scale alternatives.
Further applications to the IFRA scale problem are given in [6].

ExampLe 5.1. The sequential probability ratio test 4 = &(a, b) based on
ranks for the exponential alternative where F(z) = 1 — exp (—\z) = K(z)
(say) and G'(z) = K(Az) has been studied by Parent (1965), Savage and
Sethuraman (1966), and others. For testing A = 1 against A = A; > 1, it can
be written

Take two more observations (X4, You) if a < L, £ b,
(5.2) accept Hy if L, < a,

reject Hy if L, > b,

n=12---,
where 0 < @ < 1 < b are constants independent of =,
(5.3) Ly = @)1a” [TA R + (A = DV,

and V; is the number of Y’s among the k largest observations in the combined
sample. Note that (V1, -« -, Va,) is equivalent to the set of ranks (Ry, - -+ , R,).
It is clear that this test is monotone; thus the bounds on the error probabilities

given in Theorem 3.1 apply. Let ao and a1 be desired error probabilities for
A = 1and A = A; respectively, and suppose that ¢ and b are such that the test
& (a, b) achieve these bounds for the exponential distribution, i.e., 8, (%; K; 1) = ao
and 1 — B;(#; K; A1) = a1. Then the sequential version of Theorem 3.1 implies
that o and o1 are bounds on the error probabilities for all IFRA distributions
for A £ 1 and A = A; respectively; i.e.,

Be(@; F;A) £ a0 for A <1, and
(5.4:) 1 - ﬁs({b; F; A) Sar for A=A

for all continuous IFRA distributions F.

Note that the test ¢ is easy to carry out as a and b can be closely approximated
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as follows:
(5.5) a=o1(l—a)? and b= (1— a)a "
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