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0. Summary. This is a straightforward continuation of Hajek (1968). We
provide a further extension of the Chernoff-Savage (1958) limit theorem. The
requirements concerning the scores-generating function are relaxed to a mini-
mum: we assume that this function is a difference of two non-decreasing and
square integrable funections. Thus, in contradistinction to Hijek (1968), we
dropped the assumption of absolute continuity. The main results are accumu-
lated in Section 2 without proofs. The proofs are given in Sections 4 through 7.
Section 3 contains auxiliary results. )

1. Introduction. Basic tools used in this paper are the same as in H4jek
(1968), namely the variance inequality (Theorem 3.1) and the Projection Lemma
4.1. The main trouble to overcome was the treatment of the scores-generating
function, which has just one jump and is constant otherwise (Theorem 1).
The solution of this seemingly simple problem took three Sections—3, 4 and 5.
The remaining theorems were then obtained relatively easily by combining
Theorem 1 with the results of Hijek (1968).

Since we have loosened the conditions concerning the scores-generating func-
tion, we had to introduce additional smoothness requirements concerning the
distribution functions Fy; of individual observations. Without it the theorems
of Hijek (1968) do not hold for discrete scores-generating functions, as is
there illustrated by a counter example.

In framing the theorems we had to balance two requirements: the generality
of conditions and the readiness for applications. To satisfy both we presented six
variants of conditions under which the coneclusion of Theorem 1 holds.

If the scores-generating function may be discrete, the assumptions become
more complex. For this reason we had to abandon the e-form used in H4jek
(1968), and to switch to limiting theorems concerning sequences. To simplify
the notation, the sequences are indexed by the sample size, though, in principle,
the sample size could be made a function of a new index as well.

Pyke and Shorack (1968) obtained results similar to ours for the two-sample
and c-sample problems and for a slightly less general scores-generating function,
and they provide a simplified expression for the asymptotic expectation, which
is not attempted in the present paper. Their approach, completely different from
ours, is based on convergence properties of certain stochastic processes and has
some common points with an earlier paper by Govindarajulu-LeCam—Ragha-
vachari (1967).
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2. Main results. For every N = 1, let Ry1, ---, Ry~ denote the ranks of
independent random variables X1, -, Xw~. Choose some scores ay(1),
-+, ax (V) and regression constants cy1, - -+ , cwwv , and put

2.1) Sy = 2 -1cviay By:).

We inquire under what conditions the linear rank statistics Sy are asymp-
totically normal.
We shall assume that the cy’s satisfy either the Noether condition

(2.2) iMoo Maxs <izw (owi — Gw)?/ 2 1=1 (owi — &w)" = 0,
or, more stringently, the boundedness condition
2.3) lim supy.« N maxi<i<y (cyi — c"N)z/Z’Ll‘ (ewi — év)* < .

The scores will be generated by a function ¢ (¢), 0 < ¢ < 1, which is represent-
able as a difference of two nondecreasing, square integrable functions:

(24) o) = @(t) — e2(t),

s nondecreasing, [ soi dt < . The scores are obtained either by interpolation,
(2.5) ay (@) = eG(N + 1)), 1<i{=N,
or by a procedure satisfying

(2.6) 2lan(@) — e GV + 1)) = 0(1),

or, more loosely,

(2.7) S ¥ ilaw @) — oGV + 1)) = o V).

The distribution functions of X1, -+, Xww, say Fwy, -+, Fyx, will be
assumed continuous. We shall put

(2.8) Hy(z) = N7 2 Frie), —w <z < o
(2.9) Hy'(¢) = inf {x:Hy(z) > 8}, 0<t<1,
and

(2.10) Lys(t) = Fri(Hy (@), 0<t<1.
It is easy to show that

@i11) N7 Lwi(t) = 4, 0<t<1L,N 1.

In the sequel, v will denote a jump point of the scores-generating function ¢
or, more generally, a point of some set containing the singular set of ¢. We shall
need a sort of uniform differentiability of the functions Ly; at this point (these
points), which will appear as a combination of two requirements. First, for such a
ve (0, 1) and for every K > 0, K' > 0

1:(2.12) maxléiéN,xN-#éu_méxw—blogéN,(LNi(t) - LNi(”))/(t - 1))' = 0(1)
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Second, we shall assume that the Ly,’s are uniformly approximately linear in the
vicinity of the point v & (0, 1) in the following sense: there exist numbers y; (»)
such that for every K > 0

(218) maxigicw, o srn=t [Lvs() — Lwi() — (¢ — 0)lwi(@)] = o(N7H).

If (2.13) is satisfied for some ly;’s, then setting ¢ = N*t4vin (2.13) we see that
it is also satisfied for Iy;(v) = N'[Ly:( + N7?) — Ly (v)]. Consequently, in
view of (2.11), we may assume

(2.14) N ili) =1

in (2.13) without any loss of generality. For the same reason, we may assume
that ly;(v) as a function of » is measurable. Further it is important to note that
(2.13) neither implies nor is implied by the existence ‘of the derivative Ly;(»)
at the point ». Consequently we generally cannot put ly;(v) = Ly (v), even if
the latter number exists. Of course, if the derivative exists uniformly with respect
to 7 and N, then (2.12) and (2.13) are satisfied with ly;(») = Ly (»). The some-
what artificial looking conditions (2.12) and (2.13) result from our method of
proving Theorem 1 and from our recognition that the assumption of uniform
differentiability would be too restrictive (see Theorem 4 for example).
Other conditions concerning the Ly;’s used in the sequel are as follows:

(2.15) lim infyoe N7 D31 Lvs(0)[1 — Lys(0)] > O,
(2.16) lim infye mini<i<y Lvi @)[1 — Ly:(@)] > 0.

Obviously, (2.16) entails (2.15).

For applications, it is necessary to replace (2.12), (2.13) and (2.15) by some
more feasible conditions. For example, we may assume that the distribution func-
tions Fy; possess densities fy; such that for some open interval (a, 8) <
(— o, ) the following holds:

(a) fwi(x) = 0forz < a(x > B), if a(B) is finite;
(b) fwi(z) are continuous on every compact subinterval of (a, 8),
uniformly in (z, N, ©);
(2.17) (e) for every compact interval C' < (a, 8) there exists an ¢ > 0 such
that for all N = 1, N7 card {s:infoecfui(@) > € > ¢
(d) @ < lim infy,o Hy' (t) < lim supy.. Hy () < B for all ¢e (0, 1);
card4 stands for the number of elements of the set A.

In particular, (2.17) is satisfied for

() fui(x) = fl — dw);
(2.18) (b) f(x) is uniformly continuous and positive on (—w, o« );
(c) for every e > 0 there exists a compact interval C' such that for all
N = 1, N7 card {3:|dwi £C} < e
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Obviously, (2.18) is entailed by

@) fwi(x) = fx — dui);
(2.19) (b) f(x) is uniformly continuous and positive on (— o, ©);
(¢) supsy |dwi| < .

The last group of conditions concerns the nondegeneration of Var Sy. The
milder form is

(220) lim ian_,oo Var SN/E?=1 (Cni - EN)2 > O,
the stricter form is
(221) lim ian—mo Var SN/N maXi<i<w (CNi - 61;/)2 > 0.

Obviously (2.21) entails (2.20). Note that
Var SN = (N - 1)—1 Z¢=1 (aN (’L) - aN) Z¢=1 (CN@ - EN)2

if FFyg=Fyp=-= FNN,
which entails Var Sy = 0 (3.1~ (cws — é)°) under (2.4) and (2.5) or (2.6) or
(2.7). If the regression constants cy; are bounded in sense of (2.3), then, obvi-
ously, (2.20) and (2.21) are equivalent.

Alternatively we may assume that (2.20) and (2.21) hold with Var Sy re-
placed by some approximative variance oy

(2.22) Bm infyae o’/ D im1 (cxi — éx)° > 0,
(2.23) lim illfN_wo O'Nz/N maxi<i<n (szi - C-N)2 > 0.

TuroreM 1. Consider statistics (2.1) with scores satisfying (2.6), where

(2.24) el) =0 0<t<o,
=1 v =t< 1.
Put
(2.25) an(®) = N7 28 exilwi ()
and
(2.26) ox = D=1 (ewi — & (@) Ly ()[1 — Lui@)].

Then SN is asymptotically normal with parameters (ESy, Var Sy) and also
(ESx , ox’), if any of the following sets of conditions ts satisfied:
Ci: (2.2), (2.12), (2.13), (2.15), (2.20) or (2.22)
Cq: (2.2), (2.12), (2.13), (2.16)
Cs: (2.2), (2.17), (2.20) or (2.22)
Cy: (2.2), (2.18), (2.20) or (2.22)
Cs: (2.2), (2.19)
Cs : (2.3), (2.12), (2.13), (2.20) or (2.22).
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Proor. Asymptotic normality of Sy will be shown by first showing that Sy is
asymptotically equivalent to its projection Sy onto a space of linear statistics
(see Sections 3 and 4) and then showing that Sy is asymptotically equivalent to
a sum of independent random variables D i~ Zy: (see Section 5) to which the
Lindeberg central limit theorem applies. The components of o5” in (2.26) are the
variances of the Zy;’s. Moreover, for this choice of o5, conditions (2.20) and (2.22)
will be shown to be equivalent.

ExampLE. If we employ conditions (2.2) and (2.19) we can see that in the
two-sample location case the median test statistic is asymptotically normal if (a)
the underlying density is uniformly continuous and positive on (— o, ), (b)
the difference of the location parameters remains bounded, (¢) both the sam-
ple sizes converge to infinity.

On combining Theorem 1 with Theorem 2.3 of Héjek (1968), we obtain a
powerful result for the case of bounded regression constants (see (2.3)). Before
formulating it, let us recall that every nondecreasing funetion may be decomposed
into an absolutely continuous part and a singular part. (The singular part
includes both the jump and singular continuous components.) We shall have
© = ¢1 — @2, Where each ¢; is nondecreasing. Let us denote their absolutely con-
tinuous and singular parts by ¢ and ¢,°, respectively:

(2.27) oit) =0 @) + o), =12, 0<t<1.
Then put
(2.28) Cae = 01 — 0", o= — @

To every nondecreasing ¢ there corresponds uniquely a measure » such that
v{(a, b)} = ¢(b) — ¢(a), if a and b are continuity points of . We shall under-
stand by [4 dp and [ A de the expressions »(4 ) and [ A dv, respectively.

THEOREM 2. Consider statvstics (2.1) with scores satisfying (2.7), where ¢ fulfills
(2.4). Denote by A the set of values v € (0, 1) for which at least one of the conditions
(2.12), (2.13) and (2.15) is not satisfied, and assume that there is measurable set
B D A such that

(2.29) [z @’ (0) + des’ (@) = 0.

Put

(2.30) ox’ = 2o Var [TV O @y (0) — cws) do )]

where

(2.31) (@) = N7 2 ewilwi ),

if v g B, with the ly;’s chosen so as to be measurable and satisfy (2.14), and
(2.32) e @) = N7 23 ewilai (v),

if v & B but the derivative Ly; (v) exists.
.« Then Sy 1s asymptotically normal with parameters (ESy, Var Sy) and also
(ESy , ox”) provided either (2.21) or (2.23) holds, with ox" given by (2.30).
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Proor. See Section 6.

ReMARK 1. Since the Ly; are absolutely continuous, and since (2.29) holds,
&y (v) is defined almost everywhere with respect to the measure induced by
¢1 + ¢ . Consequently, the integral (2.30) is well-defined.

ReMark 2. Now (2.11), entailing N* D% Lys(¢) = 1, and (2.14) imply
&y (v) always is a weighted average of ¢y1, - - - , cvx . Consequently,

(2.33) IEN('U) - CNiI é 2 maxi<j<wy |CNj - ENI,

where ¢y = N" D 11 cwj.
Remark 3. If (2.17) or (2.18) or (2.19) holds, then we may put

vi@) = Lyi(w) = fui(lx " ©))/hy Hy ™ (0));

(see the part (C3) = (Ci) of the proof of Theorem 1 in Section 5). Conse-
quently,

(234) &) = 2ionifyiHy )/ 2 afviHy @), 0<wv <L

REMARK 4. As is shown at the end of Section 6, the conditions of Theorem 2
entail that the regression constants cy; are bounded in the sense of (2.3).

The following theorem, based on Theorem 1 and on Theorem 2.1 of Hajek
(1968), combines unbounded cy; with a class of bounded scores-generating
funections.

TueoreM 3. Consider statistics (2.1) with scores satisfying (2.6), and assume
that ¢ = @1 + ¢ , where ¢y is constant but for a finite number of jumps and o2 has a
bounded second derivative. Assume that (2.2) holds. Further assume that (2.17), or
(2.18), or (2.19) vs true.

Then Sy is asymptotically normal with parameters (ESy, Var Sy) and also
(ESy , on”), provided (2.20) or (2.22) holds, with oy” given by (2.30) and &y given
by (2.34).

Proor. The proof follows easily from the proofs of our Theorem 1 and Theorem
2.1 of Héjek (1968), since Sy may be represented as a sum of a statistic considered
in the latter theorem and a linear combination of statistics considered in the
former one. We approximate each component statistic by a sum of independent
random variables (denoted by Zy; in Héjek (1968) and in our Section 5) and
then we bound the variance of the difference by a multiple of the sum of the
bounds for residual variances of individual terms. It will be clear that (2.30) is
the right formula for ox” if you note that (2.30) reduces to (2.26) when ¢ is the
unit step function.

In conclusion, we formulate two theorems concerning the important two-
sample case, in which

(2.35) Fyi(z) = F(z) 1175 mw,
= G(z) my < 1= N;

and

(2.36) evi = 1 1 my ,

[

(=]

S

2

N A
I
IIATIA
=
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Then, obviously,
(237) Sy = Z:'ivl an (RNt)

Tueorem 4. Consider the statistics Sy under the two-sample case (2.35) and
(2.36). Assume that ¢ satisfies (2.4), the scores ax (1) satisfy (2.7) and that for
some fized Ao

(2.38) my/N = N+ O ). 0<N<1)

Put Hy = MF + (1 — NG, Lo = FHy " and My = GH, ", where FH, " denotes
the composition of functions F and H, " and GHy " has a similar meaning. Denote
by B the set of values t & (0, 1) for which the derivatives Ly (t), My (t) do not exist.
Assume that

(2.39) [5 e + dex’) =0,
where ¢;° denotes the singular part of ¢; . Put
(240) 70" = 20 (L — o) Jo [T { (1 = No)Md @)My (w)Lo(®)[1 — Lo(w)]
+ ML (0) Lo’ ()Mo @)[L — Mo (w)]} de (v) de (w),

and postulate that v > 0.

Then Sy is asymplotically normal with parameters (ESy, Var Sy) and also
(ESy , N7¢°).

Proor. See Section 7.

REMARK 5. The expression 7o is a o -multiple of expression (4.4) in Pyke and
Shorack (1968). The statistic 7% considered there is linearly connected with
Syt Sy = AN*T* + constant.

REMARK 6. Since Lo and M, both are absolutely continuous, their derivative
exists a.e. with respect to the Lebesgue measure, and, in turn, with respect to
the measure generated by &1 + ¢.*. Consequently, (2.39) entails

(241) fB (der 4 dez) = 0

and (2.40) is well-defined.
TaEOREM 5. Consider the two-sample case (2.35) and (2.36). Assume that ¢
satisfies (2.4) and ay (¢) satisfy (2.7). Furthermore assume that

(242) 0 < lim infy.e my/N =< lim supy-. my/N < 1

and that the densities f = F' and g = G exist and f(z) + g(x) > 0 for z & (a, B),
whereas f(x) + g (&) = 0 for z £ [, B]. Let f and g be continuous on (a, 8). Put
Ly = FHy "and My = GHy ', and

(243) ' = 2w (@ — W) [3 [§ {1 — M)My )My W)Ly @)1 — Ly )]
+ L' @)Ly’ )My @)[L — My (w)]} de (v) de (w)

where \y = my/N. Assume that

(2.44) lim inf 74* > 0.
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Then Sy is asymptotically normal with parameters (ESy, Var Sy) and also
(ESy , N7°).

Proor. See Section 7.

REMARK 7. There are many further possible variants of the above theorems.
For example, if we assume that ¢ (¢) is continuous at ¢ = % and the densities
fws are symmetric with respect to a fixed point xo , then (2.17) may be relaxed as
follows: There exists a 0 < o £ + « such that

(a) fwi = Oforz < 29 — @, if a is finite;
(245) (b) fx:i(x) are continuous on every compact subinterval of (xo — «, o),
uniformly in (z, N, 2);
(¢) for any compact interval C C (zo — a, 2o) there exists an ¢ > 0
such that for all, N = 1, N card {¢:inf,ec fxs () > € > ¢
) 2o — & < liminfyae Hy ' () < lim supy.«o Hy ' (¢) < @ for every
te (0, 3).

It may be shown that (2.45) implies the satisfaction of (2.12) and (2.13) with
lyi() = Lyi®) = fyi(Hy ' ©))/hy(Hy @) forallv 5 4,0 < » < 1 (see Section
5, the proof of Cs = C1 ). If ¢ is continuous at v = %, then the singular parts of
o1 and ¢; give measure 0 to this single point, and, consequently, Theorems 1, 2, 3
are applicable with (2.12), (2.13) and (2.15) replaced by (2.45). Condition
(2.45) is satisfied, for example, if fy: () = e *¥if (we *¥*), where f(z) is continu-
ous and positive on (— «, o ), unimodal, symmetric with respect to the origin
and the dx’s satisfy part (¢) of (2.18).

RemARK 8. The (first) subseript N of the symbols introduced in this Section
as well as below, will be omitted in the following. Further, K; , K» , - - - will de-
note positive constants, independent of N and numbered in order of appearance.

3. Lemmas concerning the Poisson binomial distribution. Denote by

B(k;p1, -+, pn)

the probability of & successes in N independent trials with respective probabilities
of success p1, Pz, -+, pw . Let Bt 3 (k;p1, - -+, px) denote the above prob-
ability, where the parameters p; ,---, p:;, were replaced by zeros and
Diyr, *++ » Di,r by ones. Let B* stand for either of the symbols B, B, B;, B¥ B},
B;,1 =47 =N, j Let us put ¢; = 1 — p,. Further, let us abbreviate
B(k;p1, -+ ,px)as B(k),if p1, -+, px are fixed.

LemMA 1. For A > 4 we have

(3.1) X B*(k;pr, -+, py) < max [exp (—A*/16 2 ¥ pugi), exp (—A/8)),

where the summation on the left extends either over k > Y i~ pi + A or over
k< 2?;1 pi — A.
Proor. Let us first prove that

(3.2) Sisiors BE (k) £ Dok BE) £ Diskes B (k).
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The above definitions entail
B(k) = pp;B” (k) + pigiBi* (k) + qipsBi’ (k)
(3.3) + ¢iq;B:i (k)
= pip;B (k) + pig;B”(k + 1) + ¢ip;B”(k + 1)
+ ¢ig;BY(k + 2).

Obviously (3.3) yields (3.2) for B* = B¥. The proof of (3.2) for the remaining
variants of B* is similar.

Now, we shall use Theorem 18.1.A, proposition (i) in Lo&ve [5]. A random
variable Y with distribution B(-; p1, - - , p~), centered by its mean Y i1— p:,

satisfies the conditions of the quoted theorem with s = (2 i1~ piqi)* andc = s,
in Lo&ve’s notation. If we put, moreover, es = A, we gét

B4) 0< A<= 211_\;1 Dig; = Zk>2‘;¥=1p¢+A B(k) < exp (_%A2 Z?L-l Diti)
Az 2 Napg= Zk>z{.”=lm+A B(k) < exp (—%4).

As the conditions of the theorem remain satisfied also if the random variable[Y is
multiplied by —1, the relation (3.4) holds true also when the summation extends
over k < Y. ¥up; — A. Finally, suppose that A > 4. Then A — 2 > A/2 and
(3.2) entails

Zk>2’§=lm+4 B*(k) = Ek>z§¥=1p¢+éA B (k).

Combining this with (3.4), we obtain (3.1) for & > Y .i-p:; + A. The case
k< > Yip: — A may be treated similarly.

In what follows, ¢ (z; p, °) and ® (z; u, o) will denote the normal density and
the normal distribution function, respectively, with parameters (4, ¢*). Further,
we shall write ¢ (z) and ®(z) instead of ¢ (z; 0, 1) and ®(z; 0, 1).

LemMa 2. For all z, u, by and all sufficiently small |hs|/o” we have

(3.5) l6@; 1 + by o + h) — ¢(z; )| < |M|/40” + |h|/50°,
(36) |@@;n+t h,o" + k) — &5 0)| S 2|ll/5c + |hl/80"

Proor. The proof follows easily from Taylor’s formula.
In the following lemma, ko , k&1 may depend on N.
Lemma 3. Suppose that

(3.7) limyaw D im pigi/log N = + o,
3.8) lko — ki) £ Ky forall N 2 1.
Then we have, for N sufficiently large,
(3.9) |B*(ko;pr, -, px) — ¢ 2iupi, 2ipigs)| S Ko(QVapigs)™,
(3.10) | DXksro B* (b5 pr, -+ 5 o) — Bk 2oimapi, 2o imapags)|
< K(XVapag)™
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Proor. Specializing Theorem 1 in Petrov (1957), we get, under assumption
3.7),

(B.11)  [B(k) — é(k; 2t ps, 2t pigs)l S Kb i pigs) ™
where A is the L]a,punov ratio, i.e.,
(312) A= (pz qi + yorn )(Z =1 p1Q1)_3/2 < (Z{i\;l pth_*

Recalling the definition of B*(k), let ¢* (k) denote either ¢(k; D 3= Di, D im1 Digs)
or the value obtained from ¢ by replacement of one or two numbers p; (and, cor-
respondingly, ¢;) by 0 or 1. Thus we have

(3.13) ¢* (k) = o(b; 2t pi + b, 2T pis + o),
where || < 2, —% < hy £ 0. From (3.11) we get for N sufficiently large
(3.14) [B*(k) — ¢ (k)| < Ks(XCXapigs — )7 = 2K pige) s
and (3.13), (3.5) and (3.8) entail
(3.15) 6" (ko) — ¢ (ks 5 251 ps, D20 pagi)|
< LK 4 2) Clapiag) ™ + (1/10) i pigs) ™ < Ko QoY pigs) ™

Setting k = ko in (3.14) and combining it with (3.15) we obtain (3.9).
As for the distribution functions, we make use of the Berry-Esseen theorem
(Theorem 20.3.B in [5]) instead of Petrov’s theorem. So we get

(3.16) | 2kzro B* (k) — ®(ko; 21 ps + huy 22 pigi + M)
< K(Chpa) ™
and, in view of (3.6),
@B.17) (@ (ko ; 251 pi + by 2 pigi + ha)
— ®(h; 2 pi, 2ot pigs)| < Ke(Qomapigs)”
Inequalities (3.16) and (3.17) yield (3.10).

4. Proof of Theorem 1: upper bound for E(S — ).
Lemuma 4. The functions L;(t), defined by (2.10), satisfy the relation

(4.1) |Li(t) — Li(s)] S NJt—s, 0<s t<1 1=4=N, Nz=1

(hence they are absolutely continuous).

Proor. It follows easily from the definitions (2.8)-(2.10) and from the con-
tinuity of the #/’s.

Throughout this section, we shall assume that the scores a(¢) are defined by
(2.5) with the function ¢ given by (2.24), and that the conditions (2.12), (2.13)

_and (2.15) are fulfilled.
First we shall prove two auxiliary propositions.
LemMA 5. Let , y be real numbers; let us denote as V the integer part of (N + 1)v.
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Then to each Ky > 2 there exists a Kig > 1 such that

(42) v —H@) > KNI N=PR:; > V|Xi=1x,X; =y) < N
and

(43) v—H() < —KN? g N=PR; 2 V|Xi=12,X;,=y) < N*v

hold for N > Ny (Kjy).
The relations (4.2), (4.3) remain true even when the condition X; = y is omitted.
Proor. If z satisfies the left side of (4.2), then

V=>miFn@)+ (V—-Nv)+Np— H())
>>F Fn(z) — 1+ KNIgEN > D%  Fo(x) + KuN'1g' N

for each 2 < Kll < K9 and N > No(Kn). B .
From Lemma 1 we get (with B* being equal to B¥ or B;* forz = y and 2 < y,
respectively )

PR;>V|Xi=12X;=y) = ZusvB*&; F1(x), - -, Fx(x))
= Zk>2%=lrm<z)+xumlgm B*(k; Fi(z), -+, Fy())
(44) < max[exp (—KuNIgN/16 2 8 1Fn(@)(1 — Fn(z))),
exp (—KulN'Ig! N/8)]
<exp (—1Kh1lg N) = N " where Kiy = 1K31 and N > No(Ku).

The proof of (4.3) is quite similar. The last assertion of the lemma follows by
integration with respect to dF';(y).

In the sequel, we shall denote D* = N > 5y Ln(») 1 — Ln(v)) and again,
V=[N + 1)

Lemma 6. Suppose that [v — H (z)| £ KN t1g* N. Then, for sufficiently large
N, we have

(4.5) > m1 Fn@)(l — Fu(z)) — ND*| < KuN'Ig' N,
46) [6(V; Zmaa Fn(@), Xt Fu(@) (1 — Fu(2)))

— ¢(Nov; XX Fu(z), ND*)| < KuN'Ig! N,
@7 18(V; X Fu(@), 2omaa Fu(@) (1 — Fu(=)))

— ®(Nv; DX Fn(z), ND*)| < KisN*igtN.

Proor. Let us put H (z) = ¢ For KN < |t — o] < KN Ig! N we have,
according to (2.12),

S Fn@) (1 — Fu(z))
= >N L) (1 — La(t))
= 2 Ln@)(l — La®)) + OW |t — o) = ND* + O(N'Ig' N),
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and, according to (2.13), we also have the same result for |t — v| < KN %
Thus we get (4.5). NOW, putting

|| = |V — No| =

|ho] = |28y Fn (x)(l — F.(z)) — ND*| £ KuN*1gtN, ¢ = ND* = KuN

(according to (2.15)), we obtain (4.6) and (4.7) from Lemma 2.

The purpose of this section is to derive an upper bound for the residual variance
E (S — 8)*, where

(4.8) 8= E@®|X:)— (N — 1)ES.
Combining the formulas 4.8 and 4.18 in [4], we get
EEl - 8)
< 2% (6~ O'Ela(R:) — E@(®)| X))
(4.9) 4+ 20 2w (e — €)(e; — E){E[Cov (a(R:), a(R))| X:, X;)]
+ E[(E(a(R:)| Xs, X;) — E(a(B)| Xs)) E (a(B))| Xs, X;)
~ E@R)| X))l — 2mwii Cov (E(a(R:)| Xn), E(a(R;)| Xn))}.

Let us investigate each term on the right-hand side separately.
LemMA 7. For N — + © we have

E[Cov (a(R:), a(B))| Xi, X;)] = N "D’L(0),;@) + oN ")

uniformly with respectto1 < 4,7 = N.
Proor. We have

Cov (a(R;), a(R;)| X: =z, X; = ¥)
= E(a(R:)a(R))| X: = z, Xi =y) — E@®)|X: =12, X; =y)
(4.10) ‘E(@R;)| X: =2, X; =y)
=PR;>V|X;=2,X;=y)PR; = V|X; =9y, X: =1z)

for z <y,
=PR;>V|X;=y, Xi=2)PR; 2 V|Xi =2, X; = y)

for = > y.
Let Ky > 2. Denote

= {@y):H@) — o = KN Ig'N, |H(y) — o < KN 'lg' N},
In view of (4.10) and Lemma 5, there exists a Kio > 1 such that
(4.11) < Cov (a(R:), a(R))| X: =2, X; = y) < N "
forall N > Ny (Kyo) and all (z, y) £ I. Further, in view of Lemma 3, (2.15) and
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(4.5), for (z, y) eI and < y, expression (4.10) may be continued as follows:
Cov (@a(R:), a(R;)| Xs =z, X; = y)
= kaBj (k; Fr(x) -+, Fy(z))
2asv BYG Fi(y), -+, Fa(y))
=l - &(V; X Fn@), ZnaFu(@)(l — Fu@)))]
(V5 2ma Fn(y), 2 Fu@) (1 — Fu(y))) + N7,
with | ¢1| £ Kis. According to (4.7), we may further write
(4.12) Cov[a(R:), a(R;)| X: = z, X; = 9]
= @((H(z) — )/ (DN ))(1 — #((H @) — v)/(DNH)) + &N 1N

with | d5| < Ky . For (x,y) < I,z > y, the positions of z and y on the right-hand
side of (4.12) should be interchanged.

Result (4.12) for the conditional covariance remains true even when we en-
large the square I to the square

= { (@ y):max (H(z) — o], [H(y) — v|) S KK DN 'lg' N}

where K, is such that D = Ky for all N. Writing now KKy = Ky »
H @) - v)/DN‘ = p, (H(y) — v)/DN™* = g, and

= {(p, ¢):max ([p|, l¢|) = Ku lg N},
we have
E[Cov (a(R:), a(R;)| X;, X;)]
= [ [rnw<a ®®) (A — ®(9)) dpLs (0 + DN p) doL;(v + DN %)
@13) 4 [ [rnwsa @@ A — ®(p)) dL:i( + DN 'p) d,L;(v + DN%q)
+ N gtN [ [ 83d,Li(v + DN*p) d,L; (v + DN q)
+ SN,

with | d5] =< Kz, | % = 1. The last two terms are o(N ") uniformly in 7, 7, as
is easily seen from (2.12) and Kj, > 1. The evaluation of the remaining two
integrals is essentially the same, so let us calculate only the first of them in de-
tail. We shall divide the domain I” into two parts, J and I”—J, where

= {(p, ¢):max ({p|, |¢]) = Kas}. In J we shall make use of the expansion
(4.14) L;(w + DN %) = L;(v) + L@)DNp + A:(p), 1 <4 <N,

where the functions A;(p) are absolutely continuous and are of order o(NV _*)
uniformly in the interval [— Ky, Ky and with respect to 1 < ¢ < N. This
follows from (2.13). Let us first treat the following integral:



ASYMPTOTIC NORMALITY OF LINEAR RANK STATISTICS II 2005

S [ @@) (1 — @(q)) dpLidoL;
= N D’L)@) [ [mnipa®®)(1 — &(q)) dpdg
(4.15) + N7DL) [ [nip<a @)1 — ®(q)) dp dA;(g)
+ N D) [ [nip<a (@)1 — ®(g)) dAi(p) dg
+ [ [inw<a @@) (1 — ®(q)) dAs (p) dA;(q).

If Ky is sufficiently large, the integral [ [snp<g @@)(1 — ®(q)) dp dg is
arbitrarily close to

[ Joca @) (1 — ®(q)) dp dg
(4.16) = [I201 - a() (fﬂww)dp)dq
=[50 - o) (@) + ¢@))dg = %.

If Ko is fixed, then the remaining terms on the right-hand side of (4.15)!are
o(N™"), as may be shown by integration by parts, and making use of (4.14).
Moreover, the numbers I; (v) considered as functions of (3, N),1 S { S N < =,
are bounded, as appears by setting ¢ = v + N? in (2.12) and (2.13). Con-
sequently,

@17) [ [onp<a @@)1 — ®(@Q]dsLidL; = 3N DL0);@) + o).

The same holds for the integral extending over the region J n {¢ < p}.
The proof of Lemma 7 will be completed, if we show that

4.18) [ [ar—nnw<a ®(@) (1 — ®(q)) dpL:d,L;
+ [ [ar-nnwsa ®@) A — &(p)) dyLid,L; = o(N7).

The left-hand side of (4.18) may be decomposed into four integrals extending
over areas similar to one which is shaded on Figure 1. The integral corresponding
to the shaded area equals

(4.19) J==han @@) ([5° (1 = ®(q)) doL;) dpLs .
In (4.19), where p < 0, we have
4.20) [77 (1 — ®(@)diL; S L + DN Ip|) — L;(0 — DN"[p|)
< KuN'lpl,

owing to (2.12) and to the inequality Kus < |p| < Ku lg! N. Thus the expression
(4.19) is less or equal to

KN [2R200w [p|® () dyLs
< KaN H{~[(Li(@ + DN"'p) — L;(2))p® (p)| %t 1ein
+ [ZRihey (Li + DN7p) — Li(v)) (®(p) + po(p)) dp}
< KuN7' [Z52p°6 (p) dp < N
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A

Ky 'lszN Ky 0 Ko KzflgyzN

Fia. 1

with € > 0 arbitrarily small for Ky sufficiently large. As the same bound is valid
for the three other integrals, too, the proof of Lemma, 7 is finished.
LemMMA 8. For N — » we have

Dizmgnmrzi; Cov (B (a(R:)| Xn), B (a(R;)| Xn))
= N7'DL»); ) + o(N7Y),

uniformly with respectto 1 < 4,5 < N.
Proor. According to Lemma 3.2 in Hijek (1968) we have

(4.21) E(@R:)|X:=2,Xn=2) — E(@R:)|X; = z)
=u@—2)—Fu@)PR:;=V+1|X;=2,Xn=2—1), ¢5m.

(We have used the notation introduced in Lemma 5 and the unit step function
u(x) =1,z = 0; = 0,z < 0.) Lemma 5 shows that

PRi=V+1|Xi=2Xn=2—1) < N 5w

for some Kjp > 1 and for all | H (z) — v| = KN 1gt N, N > No(Ku). On the
other hand Lemmas 3 and 6 imply
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PR,=V4+1|Xi=2,Xn=2—1)
(4.22) = BV + 1|F1(), -+, Fv(x))
(Vs 2 Fu(@), 20a Fa(@)(1 — Fu(z)))
4+ (N Fa@) (1 — Fale)))™
¢(Nv; NH (z), ND*) + 9N '1g N

for some | | < Ko, | 9| < Ky and all [H (x) — v| = KN~ tlgt N.
Now, we proceed similarly as in the proof of the preceding lemma. The result
(4.22) remains true even in the larger interval

|H (z) — v| < KJKwDN*1g'N (where Ky < D, N = 1).

Writing again Ku = KK, (H (z) — v)/DN* = p, (H() — v)/DN* =
and integrating (4.21) with respect to dF;(z), we get after some calculations,

E@R:) | Xn = 2) — E(@(Bs))
423) = DN [ cruanu® — @) — La(®)lé@®)dLi + DN 'p)
+ o),

uniformly with respect to — o <z < + .
Let us again divide the domain of integration into {|p| = K} and {Kxs =<
|p| < Kulg' N} and in the first domain let us use the expansion (4.14). We get

Halu@ — @) — Lu(@)]é(p) dLs
= DN L) [Z¥,lu®@ — @) — La@)lé()dp
+ [Fulu@ — ¢) — Lu(®)]6 (@) dA:(P),

where the integral f'_{?“ --]¢(p) dp is arbitrarily close (uniformly with respect
to z) to the expression 1 — <I>(q) L., (v) for sufficiently large Kos : whereas the
integral [X%,,[---]¢(p) dA:(p) is of the order of magnitude o(N™*), as can be
easily shown by integration by parts. Further we have

|[R2ien [ 16 (p) doLi]
[(Li(w + DN7*p) — Li(v))é () xiein
— [TE2%w (L + DN7'p) — Li@))¢ (o) dp
< KuN7? [Z55 %0 (p) dp < eN* for Ko large;

the same for fﬁ;;lgw .16 (p) d,L; . Altogether, we have
(4.24) E(@R:) | Xn =2) — E(a(R:))
= N'L@){1 — &(g) — La@)} + oV ),
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uniformly in — o < z < 4. Hence,
Cov (B (a(R:)| Xun), E(a(R;)| Xun))
425) = [IZ(BE@R:)|Xn =2) — E@(R:)))
“(B@(R;) | Xm = 2) — E(a(R;))) dFu(z)
= NL0)L;w) [T2{1 —&(q) — Lu®)}*dLn(® + DN ¥) 4+ o(N7?).

As each of the integrals 5 (1 — ®(q)) dLn and [T5 (1 — ®(q))’ doLum evi-
dently equals L, (v) + o(1), we have
= 1—a(@) — Lm(v))quLm = Ln®)(1 — Ln()) + o(1).

Inserting this into (4.25) and summing over 1 < m < N, m 5 1, j, we finally
get the assertion of the lemma. (Observe that deleting the 7th and jth terms can
diminish the sum ND* = > .5 L,(®)(1 — Ln(v)) at most by %.)

LEMMA 9. For N — o we have
E[(E(a(®:)| X, X;) — E(a(R:) | X3)) (B (a(R;) | X, Xj) — E(a(Ry) | X;))]

= O(N_‘1)1
uniformly in 1 < 4,7 < N.
LemMA 10. For N — o« we have

E@R:) — E@(R:)[X:)) = o(1),

uniformly in 1 < ¢ < N.

Proofs of Lemmas 9 and 10 will be omitted; they are similar to the proofs of
two preceding lemmas, but substantially simpler.

LemMMA 11. For N — « we have

E®B —8)? = oL (ci — ¢)%).

Proor. It follows by inserting the results of Lemmas 7-10 into the inequality
(4.9) and making use of the inequality

o D il — élle; — &l £ N 2 ¥e (e — ¢)%

b. Proof of Theorem 1: completion. In this section, we shall at first assume,
that the scores a () are defined by (2.5) with the function ¢ given by (2.24), and
that the assumptions (2.2), (2.12), (2.13), (2.15) and (2.20) or (2.22) (with
¢ given by (2.26)) are satisfied.

From the definitions of S and § and from the obvious relation

i~ [E(a(®;)| X:) — E(a(R;))] =0
it follows § — ES = > Y., where
(5.1) Y= 204 (6 — c)lE(a(R) | X:) — E(a(R)))],
Y, are independent, EY; = 0,1 < ¢ = N, Var S =2V Var¥,.
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Further denote
(5.2) Zi= (@) — c)u — H(X;)) — L:(v)], 1=<{=N,
where & (v) is given by (2.25). Random variables Z; are independent, with zero

expectations, and such that i~ Var Z; = o (defined by (2.26)).
According to (4.24) we can write, using (2.12), (2.13) and (2.15),

(63) Yi= (@) — c)[®(@w — H(X:))/DN?) — Li(v)]
+ N7 22V (e — cidniy

where 7, are random variables such that |7;) < ev, 1 < 7 < N, for some sequence
of constants ey — 0. Consequently, as in the close of the proof of Lemma 8, we get

(5.4) E(Y:— Z:)" = o N 2ia(e; = 0)"),
uniformly inz < ¢ = N.

Now, the inequality Var (S — SVaZ) 2> B, — Z,)+2E(S — 8)*
together with (5.4) and with Lemma 11 yield the following.

LemMmaA 12.

Var (S — 2% 2Z) = oK (e — &)?).

LemMa 13. (2.20) holds if and only if (2.22) holds with o given by (2.26).
In this case limy., VarS/e® = 1.
Proor. From Minkowski’s inequality we obtain

(5.5) ((Var Uy/Var Us)* — 1)* < Var (Uy, — U;)/Var Us.
If (2.20) is satisfied, we put Uy = Y i~1 Z:, Uz = Sin (5.5);if (2.22) is satisfied,
we put Uy = 8, Uy = D> i~ Z;. In both cases, Lemma 12 entails Var S/o* — 1

and, consequently, the validity of the entire Lemma 13.
LevmMA 14. The random variables D i1 Z; are asymplotically normal with

parameters (0, ¢°).

Proor. From (5.2) it follows |Z;| < 2 maxi<;j<w|c;— €], 1 £ 7 = N; (2.2)
and (2.22) then imply that maxi<i;<y |[Zs|/c = o(1), but this means that the
Lindeberg condition for asymptotic normality is trivially satisfied.

Now, the assertion of Theorem 1, under conditions listed at the beginning of
this Section, is a consequence of the following (already proved) propositions:

£ Zifo) > R0, 1), [Var (S — > 1= Z)l/e" — 0, (Var8)}/e — 1.
(Namely, we can write
5.6) (S— ES)/(VarS) = O uZifo+ (S — ES — DY Z;)/o)a/ (Var )}

and apply the Theorem 20.6 in Cramér [2].)
Let us relax the condition (2.5) to (2.6) and denote the corresponding sta-
tistics as S and S * Then we have from (2.6) and (2.2)

Var (S — 8% = maxicicy (6 — 6) O i=la@) — oG/ + 1))
= 0(Qim (e — €)°).
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Hence, with the help of (2.22), (5.5), (5.6), the asymptotic normality of S*
eagsily follows.

Thus we have proved Theorem 1 under conditions C; . If remains to show that
this set of conditions is entailed by the other sets.

Cy, = C; will follow from (2.16) = [(2.15), (2.22)]. However that (2.16) =
(2.15) is obvious, and (2.16) = (2.22) follows from (2.26) and from

2oim (6 — &))" = 2a(e — @)’

Cs = C; will follow from (2.17) = [(2.12), (2.13), (2.15)]. If we put 2 (z) =
N7 3V fi(@), we obtain from (¢) of (2.17) that on every compact ¢ C (e, 8)
(5.7) infoec b (@) > €.

Further, from (d) of (2.17) it follows that for every 0 < v; < » < vy < 1 there
exists a compact C C (a, B) such that
(5.8) H'@#)eC forall v <t < vy.

Putting (5.7) and (5.8) together, and noting that [A(H " (¢))]™" represents the
derivative of H '(t), we obtain for all N = 1
SUPv;<t<vy Id -1 (t)/dt, < 6_2.
Consequently, H * (¢) is uniformly continuous in a neighborhood of v. The same is
true about
dL;(t)/dt = fo(H " (8))/h(H(t))

since all three involved functions, f;, H ' and the reciprocal of 4, are uniformly
continuous in a neighborhood of v; for f;, consult (2.17 b) and for the reciprocal
of h, see (2.17 b) and (5.7). From this fact (2.12) and (2.13), with I; = L/
easily follow.

Now it remains to prove (2.17) = (2.15). Part (d) of (2.17) entails the exist-
ence of numbers 2; and z, such that o < 21 < 22 < 8 and such that for all suf-
ficiently large N, 2; < H ' (v) = z.. Consequently

(5.9) Li(@)[1 — Li(@)] 2 Fi(@)[l — Fi(x)].

Further, (¢) of (2.17) entails that for fixed 31, y2 such that a < 11 < 71 < @2 <
y2 < B there exists an ¢ > 0 such that

N7V card {4:infy, <o <y, fi (@) > € > ¢
which implies
N7 card {5:F;(x) > e(@ — 1), 1 — Fi(xs) > ey — @)} > e
This combined with (5.9) gives
N7 2L Li@)l — Li@)] > € @ — y1) (g2 — 22).

Note that C: concerns one point », whereas Cs ensures the satisfaction of C;
for any 0 < v < 1.
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Cy = C; follows from (2.18) = (2.17), which is easily shown.
Cs = C, follows from (2.19) = (2.18) and (2.19) = (2.16) = (2.22). The

first implication is obvious, and (2.16) = (2.22) has been proved by proving C:
=C;; (2.19) = (2.16) follows from

Li)l — Li)] =2 FF () — 2K)[1 — FF () + 2K)] > 0,

where F corresponds to f and K = sups, |ds.
Cs = C1is entailed by (2.3) = (2.2) and [(2.3), (2.22)] = (2.15). The former
implication is obvious, in the other we utilize the fact that

0'2 é 2 maXi<i<wn (Ci - 0-)2 Z?;l Lz(v)[l - L,,(?))]

This concludes the proof of Theorem 1.
Let us show that, under conditions of Theorem 1, ¢* and Var S are of order
2 V1 (e — €)° From (2.26) it follows that

o £ 2 (e —80) = X (e — &)+ N@E—&@))

Now, since the numbers I;(v) are for fixed » uniformly bounded in (N, ¢) (see
below (4.16)), we have

N@E=2@) =N"Qh €= c)l@) = K205 @ — )

for some K, . Thus ¢* = O (2.1~ (¢; — €)°) and, hence in view of Theorem 1
(see also Lemma 12),

(5.10) Var S = 0O (¢ — &)%),
6. Proof of Theorem 2. Assuming first that (2.5) is satisfied, put
S, = Zliv=1 cio(Bi/ (N + 1)).

Consulting Héjek (1968), namely (3.7) and (5.34), we can see that, for ¢
nondecreasing,

(6.1) Var S, < 42 N maxici<n (¢ — ¢)° [3 (o (t) — @)* dt.
Further put
(6.2) T, =25 u@ — HX,)) — Li@)]@E@) — )

where & (v) is defined by (2.31) if v £ B and by (2.32), if » ¢ B. We have, obviously,
in view of (2.11),

6.3) VarT, = 25a@®) — ¢:)’Li@)[1 — Li(v)]

=< 4N maxi<icw (¢ — 6)21)(1 — ).
Note that T', equals Y1~ Z; from Section 5. Consequently, by Lemma 12,
(6.4) E(S, — ES, — T,)* = o(2 i1 (ci — &)°).
If ¢ is nondecreasing and square integrable, then [jv(1 — v)dp < + and
(6.5) T, = [ Tyde®)
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is well-defined. Similarly as in proving (5.37) in H4jek (1968), we can show that
6.6) Var T, < 4N maxicicn (¢ — €)° [o &' (t) dt.

If ¢ is absolutely continuous and the ¢-measure vanishes on the complement of
B, then T, of (6.5) may be equivalently expressed by

67) Tp= 204N 25 (6~ ) [luk — Xi) — Fi@)le' (H()) dr; ).
This follows from the obvious formula
Jlu@ — X:) — Fi@)le' (H () dF;(z)
= [ilu@ — HX:)) — Li@)IL; @) do ().
Now for every o > 0, ¢ may be decomposed as fo}lows
(6.8) () =¥ (@) — M) +v(@) — @) +9@¢) — @),

where all functions on the right side are nondecreasing and square integrable, and
(a) ¥ and N are absolutely continuous such that

[s(@y 4+ d\) = [5 @ + ar);
(b) v () and 5 () are bounded such that
fB (d’Y + d"?) = 0;

)  [i@@) + K@)dt < o, and [5(dg + dh) = O.
Now, if ¥ has a bounded second derivative, Theorem 4.2 of Hajek (1968) en-
tails

6.9) limyow [E(Sy — ESy — Ty)Yl/IN maxicicy (i — )7 = O.

However, the bounds (5.33) and (5.37) of Héjek (1968) show that (6.9) holds
for an arbitrary nondecreasing, absolutely continuous and square integrable .
Next, we can easily see that

(6.10) Sy~ ESy — T, = [s(S, — ES, — T,)dy(v).
Consequently,
6.11) E(Sy — ES, — T,) = [y(1—) —vO0+)] [s E(S, — ES, — T.,)"dy.

Taking into account (6.4), (6.3) and (6.1), which entails VarsS, =
42N maxi<icy (¢ — &)1 — v), we easily see that (6.9) holds also for ¢ re-
placed by v or 5. Finally (6.1) and (6.6) entail

6.12) ES,—ES,— T, <2VarS,+2VarT,

< 92 N maxicicw (i — &) [34° () dt.
Thus

6.13) ES, —S. — ES, + ESw — T, + Th)2 =< o 184N maxi<i<n (C; — 6_)2.
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Now noting that (6.9) holds for y replaced by X, v, 7 and that « in (6.13)
may be arbitrarily small, we conclude that
(6.14) [E(S, — BS, — T,)Y/IN maxicisy (¢; — €)°] = O.

By (6.14) the problem of asymptotic normality of S, with natural parameters is
reduced to thesame problem for T, (see (5.6) and the text that follows). Assump-
tion (2.23) entails

(6.15) lim infyo. (Var T,)/[N maxi<i<y (¢; — €)7] > 0

since o5’ = Var T, . Also (2.21) in connection with (6.14) entails (6.15). Now
T, = D> %Y, where

(6.16) Y = [ilu@ — HX:)) — Li@®)IEE) — c) de(?).

If ¢ were bounded, we would have )

(6.17) |Y: < 2 maxicjcn|¢; — €| (a variation of ¢).

Therefore, in view of (6.15), max | Z;|/Var T, — 0, and the central limit, theorem
trivially applies.

If ¢ is not bounded, we write ¢ () = b(¢) + c(¢), where b () is bounded,
and [ ¢’(t) dt < e Then, by (6.6)

[E(T, — Tb)z]/[N max;<i<wv (€i — 5)2]
= [Var T.]/[N maxigi<n (ci — 5)2] = 4e
and
((Var Ty/Var T,)! — 1)* < Var T,/Var T,
< [4eN maxici<n (6 — 6)2]/Var T,.

Now, for large N, if e is sufficiently small, Var Ts/Var T, will be as close to 1as
we want (see (6.15)) and the difference between £ (T%(Var T% y#) and
£(T,(Var T,)*) will also be small. Consequently, since £ (75 (Var T} 7 —
9(0, 1), we must also have £(T,(Var T, Y4 —91(0, 1). From (6.14) and (6.15)
we also have £((S, — ES,) (Var S,) ™) — 9(0, 1).

The proof will be completed, if we show that (2.5) may be relaxed to (2.7).
Putting S, = D 1= cio(R:/ (N + 1)) and 8,* = > ¥4 ciax (R:), we have from
2.7)

ES, — 8, — ES, + ES,*)
< maXi<i<wy (e: — 0-)2[ zzy=l laN('l:) — @/ (N + 1))”2
= o(N maxi<icw (6 — €)°).

This concludes the proof.
In addition we shall show that under conditions of Theorem 2 the regression

constants have to be bounded in the sense of (2.3). We shall show that
" (6.18) By [ 3=t (¢ — €)']/IN maxi<icn (i — €)°] = 0
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entails
(6.19) limy e [Var S,]/[N maxi<i<y (ci — 6)*] = 0

contradicting thus our assumption (2.21). Since Var S,/ox° — 1, (6.19) contra-
dicts also (2.23).
If v is nondecreasing and bounded, then

Var8y, < [y(1—) — v(0+)] [3 Var S, dy (v)
where
Var S, < 42N maxi<i<y (ci — &) (1 — v).

If [dy = 0, then we can see from (5.10) that (6.19) is satisfied for ¢ replaced
by v. .

If ¥ has a bounded second derivative then we may compile from results of
Hijek (1968), namely from Theorem 4.2 and (5.17) and (2.14), that Var Sy
= 00 (¢s — €)°), so that (6.18) entails (6.19), if we replace ¢ by .
Finally for any nondecreasing ¢, we have (6.1). Now under assumptions of
Theorem 2 we may decompose ¢ as ¢ = ¥ + v — 9 + @1 — ¢z, where all compo-
nents except ¥ are nondecreasing, ¥ has a bounded second derivative, vy and n are
bounded and such that fB (dy + dn) = 0, and ¢1 and ¢, are arbitrarily small
in mean square. However, that completes the proof of our assertion that the
cni’s have to be bounded in the sense of (2.3), if the conditions of Theorem 2 are
satisfied.

7. Proof of Theorems 4 and 5. Let us first suppose, that the assumptions of
Theorem 4 are satisfied, but let us use in the proof also the symbols L, M, A,
introduced in Theorem 5. Thus

L(t) = FH'(t) = FHy ' (HoH ' (t)),
Hy=H+ (W—NF - G),
HH @) =t+ (o — NLE) — M) =t
i.e., foreach 0 < ¢ < 1 there exists a 0 < ¢ < 1 such that
(7.1) L(t) = Lo() and |t — | < KuN7%

Further, from the identity AL(¢) + (1 — MM () = ¢, 0 < ¢ < 1, and from
the fact that A’s are bounded away from zero as well as from one, it follows that
the functions L, M (and also Lo, M,) satisfy the Lipschitz condition for some
constant Ko , uniformly in N = 1. Hence also the validity of (2.12) follows for
every 0 < v < 1.

For each v £ B let us set

(7.2) L)

4

(say);

AN Lo (v), 14

I\
S

A
=

1 — N)(1 — )M @), m <3
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We shall show, that (2.13) holds true, i.e., that for arbitrary ¢ > 0 and K > 0
(7.3) [(L@#) — L®))/({ — v) — MN\"Lf 0)] < eN |t — o™

for all N > No(e, K) and all [t — »] < KN* (and similarly for M (¢)). For
[t — v] < ¢/2K5N?, the inequality (7.3) is evident, because its right-hand side is
larger than 2Kj, , whereas its left-hand side is less than 2K3, (provided that N is
sufficiently large). So it suffices to prove (7.3) in the domain

(74) ¢/2KsN' < |t — o] = KN

as the right-hand side of (7.3) is =¢/K in this domain, it actually suffices to
prove

(7.5) (L) = L@)/t —v) — M\"Lo 0)] < ¢/K
in the domain (7.4). We observe that
(LE) — L@)/ ¢ —v)
(7.6) = [(Le(f') = Lo@))/ (¢ — 0)I(f — v)/(t — »)
— [(Lo(') = Lo@))/ @ = )]0/ — )/t — v),

where ¢ and v’ are defined by (7.1); and note that

| =)/t = )| <14 2KnKs/e
and

[0 = v)/(t —v)| S 2KaKso/e

for all ¢ from the domain (7.4). Furthermore,

@ =)/t = v) = 1] < KnKaN™*

for all ¢. Finally, from (2.38) and from the existence of L, (v) it follows that both
the differences

(o) — Lo@))/ (' — v) — NN"'Lo (v)]

and
[(Lo@') — Lo(®))/ (0" — v) — NN 'L ()]

are arbitrarily small (say <e/3K (1 + 2KyKse *)) for t from (7.4) and N large.
Utilizing all these inequalities in (7.6), we obtain (7.5). Thus we have proved
(2.13).

From (7.2) it immediately follows that (2.14) is fulfilled. (2.15) can alsobe
easily proved. First, obviously, it cannot be that Lo (v) = 0 and My (v) = 0
simultaneously. So suppose Lo (») > 0 without loss of generality; hence
Lo(v) (1 — Lo(v)) is positive, say equal toa A > 0. But L (v) — Lo (v) for N — «
hence L(v) (1 — L(v)) > %A for large N; from the boundedness of N’s away from
0 and 1, (2.15) then follows.
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Now, evaluating (2.30) in our special case, we get
(77) o = NAVar (JT™ (1 — )My (v) do(v))
+ N (1 — \) Var (T ®® ML (v) do(@)).
It remains to pass to the limit (for N — « ). Let us denote
q@) = [{ Mo @) de @);
with this notation,
(7.8) Var [{5° M{ () de() = [S @)L ¢) dt — (f3q@)L @) dt)

We may confine ourselves to a nondecreasing ¢. The Llpschltz condition for M,
entails the inequality

lg@®)| S Ale@®)| + B or ¢'(t) < C’(t) + D
(with some constants 4, B, C, D) and its uniform (in N) validity for the L’s
entails further that the integrals
o+ [i-) @ OL @) dt

can be made arbitrarily small for all N and a suitable ¢ > 0. Now, the integration
by parts followed by the limit passage (N — « ) yields

J’l—-e q2L/ dt — J‘l—e 2L0/ dt,
and the limit is, in turn, arbltranly close to f ¢’Lq’ di. As the same argument
applies to the integral [5q(t)L’ (¢) dt, as well as to the second term on the right-
hand side of (7.7), we get finally
(7.9) o & NX(1 — No)* Var [T05° My dop + NAE(1 — No) Var [T Lidyp

(in the sense that the ratio of both sides tends to 1). But the right-hand side of
(7.9) is exactly Nro'; and the postulate 7" > 0 implies (2.23). An application of
Theorem 2 then completes the proof of Theorem 4.

As to the proof of Theorem 5, it is easy to show that the assumptions (2.12)-
(2.14) are satisfied with

L) =L @) =1
=M® m<i=ZN, 0<v<1;

lIA

m,

and that (2.30) gives exactly N+°. It remains to prove (2.15). Since f and ¢ are
continuous and f(z) + g(&) > 0 on (a, B) there is a point y such that

F)g(y) > 0. Let
e=min[v, [%f()du, [5f)du, [%g@)du, [§g) dul.
Now we shall show that
GH ) <e or GH @) >1—€=[<FH'®)<1-—¢.
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Assume that G(H " (v)) < e, for example. Then
mN7FH ‘@) +aN"'QH ")) = v
entails F (H ' (v)) > e. Further H ' (v) < y, and
1—FH'@) = [fof@) du> [57@)du 2 e

Thus F (H ' (v)) < 1 — e Similarly we may treat the case G(H " (v)) > 1 — e.
Consequently,

N2 Li@)[1 — Li(w)] 2 N ' min (m, n)e(l — )

and (2.15) is entailed by (2.42).
Thus, again, an application of Theorem 2 complefes the proof.

Acknowledgment. The authors wish to express their sincere thanks to the
referee for his prompt and thorough reading of the manuscript and many valu-
able comments.

REFERENCES

[1] CuerNoFF, H. and SAvAGE, I. R. (1958). Asymptotic normality and efficiency of certain
nonparametric test statistics. Ann. Math. Statist. 29 972-994.

[2] CramEr, H. (1946). Mathematical Methods of Statistics. Princeton Univ. Press.

[38] GoviNDARAJULU, Z., LE Cam, L. and RAagHAVACHARI, M. (1966). Generalizations of
theorems of Chernoff and Savage on the asymptotic normality of test statistics.
Proc. Fifth Berkeley Symp. Math. Statist. Prob. 1 609-638.

[4] HAsek, J. (1968). Asymptotic normality of simple linear rank statistics under alter-
natives. Ann. Math. Statist. 39 325-346.

[5] Lo&vE, M. (1963). Probability Theory (3rd ed.). Van Nostrand, New York.

[6] PeTROV, V. V. (1957). A local theorem for lattice distributions. (Russian.) Dokl.
Akad. Nauks SSR 115 49-52.

[7]1 PykEe, R. and SHORACK, G. R. (1968). Weak convergence of a two-sample empirical
process and a new approach to Chernoff-Savage theorems. Ann. Math. Statist.
39 755-7T71.



