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ASYMPTOTIC LINEARITY OF A RANK STATISTIC IN
REGRESSION PARAMETER

By Jana JureékovA

Charles University, Prague

0. Introduction. Let (X;, Xa, ---, X») be an independent random sample
from a distribution with finite Fisher’s information and let us consider the
statistic

San = 2?;1 Can (R?ri)

where R4, Ry, - - - , Ruw is the vector of ranks for random variables X; + Adi,
X;+ Ady, -+, Xy + Ady; A ciand di, 1 £ 7 < N are real constants. Then
{Say; —» < A < o} forms a random process. We show at first that under
some assumptions the realizations of this process are monotone step-functions of
A and that these realizations are asymptotically linear in A in the sense of the
formula (3.1) of Theorem 3.1. The asymptotic linearity of Say may be proved
also in the case of K—variate regression, when instead of Ry.’s there will occur
the ranks of the values X1 + Aidu + Aeday + -+ - + Axdr1, -+, Xv + Ardav +
.+ 4+ Agdgy ; the statistic Say is then an asymptotically linear function of the
parameters Ay, Az, -+ -, Ax.
Some possibilities of application are mentioned.

1. Notation and basic assumptions. We shall consider for any positive integer
N:
(a) an independent random sample (X1, Xwz2, -+, Xywv) from a distribu-
tion whose distribution function F has finite Fisher’s information, i.e.

Lol @)/F @) (@) de < =,

where f is the density of the distribution;
(b) areal vector (cy1,cw2, - -, cyn) (S0 called regression constants) such that

(1.1) thLl (ewi — c'zv)2 > 0.
(12) limN.m maxici<nz (CNi —_ 5N)2’[Elgy=1 (CN]‘ —_ 5N)2]—-1 =0

where &y = (1/N) 2 i-1cwi.
Condition (1.2) is the so called Noether’s condition.

(¢) a real vector (dwi, dw2, -, dwny) such that
(13) SYi(dvi—dv)) <M for N=1,2,---
where M > 0 is a constant, dy = (1/N) D i=1dyi and
(14) maxy<i<y (dyi — dw)* — 0 for N — o,

~ (d) a real parameter A.
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1890 JANA JURECKOVA

(e) vector of ranks (Ry1, Ry, - -+, Rux) corresponding to variables Xy +
Adyi, Xyo + Adya, -+, Xux + Adyy, ie. Ry is equal to the number of
(Xw; + Adyj)’s which are less or equal to (Xx1 + A dy;) provided all components
Xy 4+ Adwi, - -+, Xunw + Adyw are different.

ReEMARK. For simplicity of notation, we shall omit indices N in Xu:, cx:, dyi,
and Ry in the sequel; we hope that this simplification will not cause confusion.

(f) Let us consider the statistic

(1.5) San = Dt cian (RA)

where the scores ax (1), ax(2), ---, ax(N) are generated by a nondecreasing
function ¢ & L* (0, 1) such that [§ (¢ (u) — ) du > 0,3 = [s¢(u) du, either by
1.6) ax () = Eo(U®), i=12---,N
or by

1.7) ay (@) = ¢(i/N 4+ 1), 1=12--- N

where U ? is the ith smallest variable in the sample from the uniform (0, 1)
distribution.

2. Monotonicity of Saw .
TueoreM 2.1. Let N be any positive integer. If the assumptions (a), (d), (e),

(f) are satisfied with real numbers c¢1, ¢z, -+, ¢y and di, ds, - -- , dy salisfying
(2.1) (ci —¢)di—dj) 20, [(ei —¢;)(di — d;) =0]

foralli,7 = 1,2, ---, N, then the statistic Say with the monotone scores ay (),
i =1,2 ---, N is a non—decreasing [ (non—increasing)] step—function of A with

probability 1.
Proor. It suffices to consider the case

(22) (Ci—Cj)(di—dj)gO for i,j=1,2,"',N.

We may suppose without any loss of generality that the variables are so nu-
merated that

2.3) hSds - = dy.

Let us fix a vector (z1, 2, ---, ») with different components and let A; and
A2 , A1 < A; be two values of the parameter A such that S~ is well-defined for
=1,2 Letk < land R** < R;*' then z; + A dk <z + A1 d; and this implies
xk + Aedy, < 21 + Apdyin view of (2.3), thus R;*? < R;*?. This means that the
permutation (Ry%?, ---, Ry*?) is better ordered than (R;%!, ---, Ry*!) in the
sense of Lehmann’s definition in [4]. By a slight generalization of Corollary 2 of
Theorem 5 in [4] and with reference to (2.2) and (2.3), it follows that

2?;1 cioy (RS < Eg;l ciay (R?)

and Sax is a nondecreasing function of A.
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Let us consider the set
C = {A;2; + Ad; = z; + A d; for at least one pair (¢, j)}.

The set C is finite; if ¢ = {A®, A®, ... A®} then Say is not defined in the
points AP, A®, ... A Let (A+, A*) be any of the intervals (—», A ®),
QAa®Aa®), ..., (A @ %) and A be any point of this interval; let us consider
the points A = Ay. Then Say = Sa,v holds for all A satisfying

(24) A £ A < A + mingjeaay @ + Aodi — (77 + Ad)](d; — di)7

where A (A) is the set of those pairs (z,7), (1 < 4,5 < N), for which z; + Ao d;
> x; + Aodjand d; < d;. If A (Ay) is empty, then Say is constant for A = A,.
If we denote the right-hand side of (2.4) as A, then by definition of C, A ¢ C
so that A = A*-Say is then constant on semiclosed-interval [A,, A*). Since
Ap> Ax is arbitrary, Sax is constant on (A«, A*). The proof is complete.

RemARk. We may complete the definition of Sax at the points of discontinuity
as to be continuous either from the left or from the right. We shall suppose that
Sax is well-defined for all real A in the sequel.

3. Asymptotic linearity of Say in A.
TueoreM 3.1. Let the assumptions (a)—(f) be satisfied. If (c; — ¢;) (d: — dj) =0,
[(e; — ¢;)(ds — d;) SO0l fore,j =1,2,--- , Nand N = 1,2, ---, then

(3.1) limy.o P{maxiaj<c|Say — Sov — Abx| = e(Var Sw)!} = 0

Sfor any ¢ > 0 and C > 0. Here by denotes

(3:2) by = [So(w)e(u, f) du- [0 (i — &) (ds — d)] and
3.3) o, f) = = F@)/fF™ ).

Proor. We first shall prove the theorem for the scores (1.6). We may suppose
without loss of generality that

(3.4) S¥ici=0 and D iuce’=1 for N =23, ..

We shall use the following metric on the space 91 of random variables defined on a
probability space (2, @, P): d(X, Y), X, Y ¢ 9, is defined as

(3.5) d(X,Y) =inf{e > 0; P(IX — Y| = €) < ¢.

It is known that d(-, -) is a metric on the space of disjoint classes of equiva-
lence of 9 where X ~ Y if and only if X = Y a.e. [P]; further,

lim pw d (X0, X) = 0

if and only if X, — X in probability (see e.g. [5]).
The proof of the theorem is divided into several steps.
(i) For k = 1, 2, ---, let us consider the functions ¢ ® (u) defined as

(3:6) 0P (u) = o@/k+ 1) G—1)/k Su<ifk
fort=1,2, -,k
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Each function ¢ ) is non—decreasing and bounded on the interval (0, 1). By
Lemma V.1.6.a of [1] we have

(3.7) limgw, [ol0 ® (u) — @ W) du = 0.
Let us consider the statistics
(3.8) S(Ak) Zz—l CiQN ® (RiA)

where the scores ay ® (i) are generated by ¢ ® about (1.6).
Lemma 3.1. Corresponding to every positive number e, there is a positive integer
ko such that for any positive integer k > ko an index N, (k) may be found such that

(3.9) d(Sow, S§¥) < e forany N > No(k).

Proor. The inequality (V.1.6.6) of [1] implies
(3.10) E[Sow — SEP = (1/N — D[t el X fan () — aw ® G)P
(N/N = 1) [olew () — ox © @) du

where oy (u) = ax(2), 6 — 1)/N = u < ¢/N, and oy ® () = ay ®(), ¢ — 1)/N
=u<i¢N,2=12 ---,N.
Let us fix ¢ > 0; by (3.7) there exists ko such that for all &k > k,

(3.11) [ile® @) — o) du < €/96.

On the other hand, Theorem V.1.4.b of [1] implies the existence of N, (k) to every
k such that for any N > N, (k)

3.12) fol lox ) — o) du < /192
Jilor ® () — 0 ® W) du < €/192.

(3.10), (3.11) and (3.12) imply E[Sey — S$2T* < (R¢)®. (3.9) then follows from
the inequality

P{[Sow — Sox’| = 3¢} < E[Sow — SET- (3e)™ < e

which holds for & > ko and N > No(k). [J
(ii) Let us consider the statistics

(3.13) TSR = Dimcio ®F (X)) for k=1,2, .
It is a consequence of the proof of Theorem V.1.5.a of [1] that
(3.14)  limy..d(S%, T6¥) =0 forany k= 1,2,

(i) LEMMA 3.2. Let Ty denote the statistic
(3.15) Ty = 2= oo PIF (Xi + Ads — d))].
Then
(3.16) limy. d(TS%, TSw — ETSR) =0

forany k=1,2 --- andanyreal A.



ASYMPTOTIC LINEARITY OF A RANK STATISTIC 1893

Proor. We have
(3.17) Var (T$R) — T&)
S XL [{ePF @) — ¢ PIF @ + AW — 4))}*dF @).

The convergence
(3.18) Fz+ A(d; —d)) > F(z) for N—>

is uniform for z & (—», ©)and¢ = 1,2, --- , N because of the continuity of
of (1.4). The set A of the points of discontinuity of ¢ ® is at most countable, for
e ®is non-decreasing, square-integrable and bounded on (0, 1). Hence the con-
vergence

(3.19) limy.e ®[F (@ + A(d: — d))] = sq'(k) (F(z))

holds uniformly for ¢ = 1, 2, ---, N almost everywhere with respect to F, as
the exceptional set B = F~' (4 ) satisfies [sdF (z) = J4du = 0. Thus Lebesgue’s
theorem may be applied to the integrals in (3.17) which will tend to zero uni-
formly for 7 = 1, 2, ---, N. The desired result then follows from Chebyshev’s
inequality and from ET¢Y = 0.

(iv) Lemma 3.3. It holds that

(3.20) limy.wd(Sih, T42) = 0 for k =1,2 --- and for any real A.
Proor. Let Py be the probability distribution with the density
px = JI= ()
and Qax the probability distribution with the density
gav = [ i@ — A@ds — d)).

The densities gax are contiguous to the densities py , as follows from Theorem
VI.2.1 and from the remarks about (VI.2.4.15) of [1] (for the definition of the
contiguity see also [1]).

We denote Sox = So® (X1, ---, Xv) and TH = T, ® (X;, -, Xy) for
purposes of this proof. By (3.14),

PuflSe™® (X1, +++ , Xw) = To® Xy, -+, Xn)| 2 9} >0 for N > o
holds for any n > 0. The contiguity implies
Qan{lSo ® (X1, -+, Xy) — To® (X1, -+, Xw)| Z 9} » 0 for N— oo,
which may be written as
Pu{|So® (X1 + Ady, -+, Xy + Ady)
—To® X+ A~ ), -, Xy + Ay — )| Z 9} >0

for the statistic S¢x, depending only on the ranks, is invariant to the translation
of the whole sample. The last relation may be written as

P{|S{% — Ti| =z 7} - 0 for N — « and for any 5 > 0. 0
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(v) LemMa 3.4. There exists a positive integer ky such that for any k > k; and
for any real A

(3.21) limy.. d (TS, TS — Aby ®) = 0 where
(3.22) y @ = [i0® We, f) du[Z’Llcz(d ~ d)l.

Proor. (3.7) implies
limgw [5 (0 P () — 6 ® ) du = [6 (ow) — &) du > 0,

the positiveness being a consequence of assumption (f) of Section 1. It implies the
existence of &; such that f 0 @® W) —e®)Ydu>0forallk > k. Accordmg to
Theorem VI.2.4 and the remarks about (VI.2.4.15) of [1], the statistic TSy is
for any k > k; and for any real A asymptotically normal (Aby ®, (@ ®)?), where

(0’ (k) )2 - N—l el f() (¢ (k) (u) (Ic) )2 du = f(l)‘ ((p (k) (u) -5 (k) )2 du.

On the other hand, the statistic 7'¥ is asymptotically normal (0, (¢ ®)?) for all
k > ki, as follows from Theorem V.1.5.a of [1]. Returning to Lemma 3.2, we see

that
limyo [ETS — aby PF-@®)* =0 for k> ki ;

and the lemma follows from Lemma 3.2 again.

(vi) The following lemma establishes a property of contiguous sequences
which we shall use in the sequel.

Lemma 3.5. Let {Py} and {Qx} be two sequences of probability measures on
measure spaces { Xx , Qn , un} with the densities py and qy corresponding to measures
pw . If the densities qn are contiguous to px , then, corresponding to every ¢ > 0, there
18 a positive number & > 0 such that Qx (Ax) < e is satisfied for almost all N for
every sequence of sets {Ax}, AveGy (N = 1, 2, ---) satisfying Py(Ax) < 8
for almost all N.

RemMARK. We say that a proposition holds for almost all N if it holds for all but
a finite number of values of N.

Proor. By definition of contiguity, we have Qy(Ay) — 0 whenever
Py(Ax) — 0for N — . Suppose that it is possible, for some ¢ > 0 and for any
positive integer &, to find a sequence {Ayi}we1 = Wz, Ay @y, N = 1,2, ---
of sets such that

(3.23) Py(Ani) < 3 for N > No(k) but
(3.24) Qv(Ani) = e

for infinitely many values of N. (3.24) implies that there exists Ny* > No(k)
fork = 1,2, - - - such that Qw,* (Ax,*x) = € and that the numbers N;*, k = 1, 2,
- may be chosen so that Ni* < Ny, k = 1,2, - - - . Let { By} be the sequence

of sets:
7 (325) BN = ANk‘,k N = Nk*, k = ]., 2 e

= for other N.
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We have Py (By) — 0 for N — o but Q~(Bx) -~ 0. Since this contradicts the

assumption of contiguity of g» to px, the proof of the lemma is complete.
Lemma 3.6. There exists a positive integer ke to any fized A and to any € > 0 such

that for every integer k > ks , there is a positive integer N2 (k) and for any N > N, (k)

(3.26) d(San, S%) < e

Proor. Let Py, Qav be the probability distributions with the densities px,
gax which were defined in the proof of Lemma 3.3. By Lemma 3.5, in view of the
contiguity of gawy to py, there corresponds § > 0 to any ¢ > 0 such that
Qav(Axy) < %e foralmost all N for any sequence of events for which Py (4dx) <
8 for almost all N. By Lemma 3.1, corresponding to the number 7 = min (3¢, 48),
there is a positive integer k» such that for every k > k, there exists N1(k) and
for all N > N;(k) it holds that (using the notation of the proof of Lemma 3.3)

PullSo(X1, -+, Xn) — 8o @ (X, -+, Xn)| 2 3¢} <.
Lemma 3.5 then establishes the existence of N (k) for every k > k; such that
Qan{lSo(Xy, -+, Xn) — S0 ® (X1, -+, Xw)| 2 3¢} < Je
for all N > N.(k). This may be rewritten as
Pu{lSo(X1 + Ady, -+, X + Ady) — S ® Xy 4 Ady, -+, Xv + Ady)
= 1 < 3

which means that (3.26) holds for ¥ > %, and N > N (k). []

(vii) LemMA 3.7. There exists a positive integer k¥, corresponding to any fixed
A and any € > 0, such that an index N* (k) may be found to any k > k* and for all
N > N (k) it holds that

(3.27) d(Sow, Saw — Aby P) < e
Proor. We may write
d(Sox , Saw — Aby @)
(3.28) = d(Sw, So¥) + d(S®, Tw) + (Tow, Ty — Aby @)
+ AT — aby @, 88 — 8bx @) + d (S — Aby ©, Say — Aby ®)

forany k, N = 1, 2, - - - . The desired result then follows from Lemmas 3.1, 3.3,
3.4, 3.6 and from (3.14).
LemMma 3.8. If A is a real and € a positive number, then

limy.w P{|Sax — Sox — Aby| = ¢} = 0

where by = Zg;l ci(d; — J)-f3¢(u)¢(u, f) du.
Proor. Schwarz’s inequality and (1.3) imply

ox @ — by] = |2 tcidi — d)-[ole® @) — o@)le @, 1) dul
< M [5 (e ® ) — e))e(u, f) dul.
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The right-hand side of the inequality tends to zero for k tending to infinity from
(3.7) and (a) and thus limy.. by ® = by uniformly in N. The proof of the lemma
then follows from Lemma 3.7.

(viii) We consider now the scores (1.7). We use the notation

av (@) = E(e(U®)) ay' (i) = ¢(i/N + 1)
Sav = Xt cian (R:A) Siv = Di-1cian” (RA).
By Lemma V.1.6.a and Theorem V.1.6.a of [1] it holds that
(3.29) limyow P{|Sov — Son| = ¢ = 0 forany e > 0.

It follows in view of the contiguity of gax to py that
(3.30) limy.o P{|Saxy — San| = ¢ = 0 forany &> 0.
(3.29), (3.30) and Lemma 3.8 then imply

limyoe P{|Say — Sox — Aby| = ¢} = 0 forany e >0

which means that Lemma 3.8 is right also for the scores (1.7).

(ix) We now complete the proof of Theorem 2.1.

Let C, ¢, 7 be any positive numbers. Consider a partition of the interval
—C,C], —C = A < Ay < + -+ < A, = C, such that

(3.31) [(Ai — Ai1) [0 e (u, f) du| < 3e- M7,

fors = 1,2, ---,r, where M > 01is the constant satisfying > 11 (d: — d)’ < M
(N =1,2, ---) by (1.3). Lemma 3.8 guarantees existence of N, such that for
any N > N,

(3.32) P{|Sacv — Sow — Aibw| = 3¢} < n/r +1

fort =1,2,:---,r.

Let A be a point of interval [—C, C]. Then there exists 7, 1 < ¢y < r, such that
Aiypr = A £ Ay and the following inequality is satisfied:
(3.33) |Say — Sov — Abx| = [Saiey — Sov — Aibx| + |bx(Asy — Aspa)

+ |Saig—1,x — Sov — Asy—1by].

We now prove (3.33). Suppose that the constants ¢; and d; (¢ = 1,2, ---, N)
satisfy (¢; — ¢;)(d; — d;) 2 0 (4,5 = 1,2, - -+, N). Then the statistic Sax is a
non~decreasing function of A by Theorem 2.1. If Say — Sov — Aby = 0, then

|Say — Sov — Aby| = Sa;n — Sov — Aby = |Saioy — Sow — Asbal
+ |ow (Aiy — Agy-1)| + I8a; 41w — Sow — Azp—1byl.

The case Say — Sov — Aby < 0 is handled quite analogously. The same con-
clusions would be reached in the case where the constants ¢; and d; (z = 1, 2,
s+, N)satisfied (¢; — ¢;)(di — d;) =0 (4,5 = 1,2, - -+, N), when the statistic
Saw 1s a non—increasing function of A.
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The inequality (3.33) implies
(3.3¢) maxjaj<c|Say — Sov — Aby| < 2maxo<ic, [Sa;w — Sov — Asby| + Ze..
It may be shown that max|a|<c¢ [Sax — Sov — Aby| is a random variable so that

the probability P{maxa <c |[Sax — Sov — Abx| = €} is well-defined. (3.31) and
(3.32) imply
(3.35) P{maxjaj<c|Saxy — Sow — Aby| = ¢}

< 2o P{|Saiy — Sov — Ay = 1€} <9

for N > N 0-
By Theorem V.1.6.a of [1] the statistic Sov is asymptotically normal N (0, ¢*)

with
o= 2ael [i(ew) — ) du = [i (o(u) — &) du
or a® = Var Soy ; thus Var Sow — f o (o(u) — @) du for N — o this, together
with (3.35), implies that
limy..e P{maxa<c |Sav — Sow — Aby| = € (Var Sow)?} = 0.

The proof of Theorem 3.1 is complete.

Remark. The theorem remains valid also in the case when the constants ¢;
and d; satisfy the following weaker assumptions:

ci=c¢ +e¢’, di=d/+d’, i=12--,NNN=12, -

where either D i (i — &) = 0 for all but a finite number of N or
> (¢ — &)* > 0for all but a finite number of N ; the cases are analogous for
n 4 n
C; di 5 d@ .
Moreover, we suppose that the (c.')’s and the (¢;”)’s satisfy the Noether’s
condition (1.2) and that the (d;)’s and the (di")’s satisfy (1.3) and (1.4) and
that for all pairs (7, j), 1 < 4,5 < N, it holds that

¢ —¢)di —di)y=z0 (' —¢’)@di —di)=o0
(Ci, _ Cj,) ( di” _ dj”) <0 (Ci” _ Cj”) ( di” _ dj”) > 0.

On the other hand, the theorem also remains valid when the function o,
generating the scores, is a difference of two monotone square integrable functions
b1, Q2.

4. Numerical illustration. Consider the statistic

4.1) Say = D=1 cian (Ry:)
with N = 2n and
c; =0 t=1,2 .-, m,
= t=n+1L,n+2 .-, N;

4.2)
. d;

Il
=
s

=1’2,...,n,

=1/ di=n4+1,n+2 - -,N;
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the scores are of the form ay (¢) = ® ' (i/N 4+ 1) where & is the distribution func-
tion of the normal distribution N (0, 1). The statistic Sov is the test statistic of

van den Waerden’s test.

The following graphs show values of the statistic Say determined from samples
of sizes N = 40, 60, 80 from a N (0, 1) distribution.
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Graph 3. N = 2n = 80
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///
///
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?

6. Some possibilities for application. The first possible application of the
asymptotic linearity of the statistic of type Sax is in the construction of a simul-
taneous nonparametric estimate of regression coefficients Ay, Az, ---, Ag in
the regression equation Y; = Y® + a + Ay + -+ + Ax@ri ,5=1,2, ---, N,
where (¥7’, ---, Y') is an independent random sample from a continuous dis-
tribution. The idea of the estimate is similar to that of Hodges and Lehmann [2]
who propose a nonparametric estimate of the location. An estimate based on the
statistics of type Sax is proposed in the author’s thesis [3] which, up to this time,
remains unpublished.

The second application may be in the problem of testing the hypothesis that
two populations differ only in location against the alternative that they may differ
also in scale. Sukhatme [7] proposes to use in this case some test-statistics for a
two—sample test of scale with variables centered by estimates of location param-
eters. If it is supposed that the basic distribution is symmetric then applicability
of many usual two-sample tests of scale may be justified just by the asymptotic
linearity, for the coefficient by is then equal to zero.
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