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A REMARK ON ALMOST INVARIANCE!

By RoBERT H. BErk?

Hebrew University

1. Introduction and summary. In [1], P.J. Bickel and the author presented a
theorem giving sufficient conditions for the equivalence of invariant and almost-
invariant functions. In the subsequent discussion, it was intimated without proof
that the results extend to certain other classes of distributions that do not satisfy
the hypotheses of the main theorem. A small lacuna was glossed over in the
discussion; however, the conclusions are correct for the examples given there. In
this note we justify those conclusions. We adopt the notation of [1] without further
comment. .

2. The lacuna. As in [1], (Z, %) is the measurable (sample) space of the random
variable X. If P is a probability measure on (%', %), /' (P) = {BeZ%:PB =0} is
the ideal of P-null sets. If 2 is a set of probability measures on (%', %), /' (P) =
Npes A (P) is the ideal of Z-null sets. G is a group of 1-1 bimeasurable trans-
formations of & to itself. Theorem 1 of [1] allpws us to conclude for certain £ that
are preserved by G that almost-invariance and invariance are equivalent for
(G, 2). le, if ¢ is a P-almost-invariant (critical) function, there exists a G-
invariant function Y so that (¢ # y)e A (P). (¢ is P-almost-invariant if for all
geaq, (¢g # ¢p)e /(2).)

The following proposition allows us to conclude a similar fact for certain other
families of measures.

PROPOSITION 1. Suppose almost-invariance and invariance are equivalent for
(G, 2). Let 2 be another family of measures on (¥, #) so that /' (P) = N (2). Then
almost-invariance and invariance are equivalent for (G, 2).

Proor. If ¢ is 2-almost-invariant, for g € G, (¢pg # ¢p)e 4'(2) = A (P), so that
¢ is P-almost-invariant. Thus there exists an invariant i so that (¢ # Y)e /' (P) =
H(2). [

REMARK. In [1], it is intimated that the condition A'(2) > A(£) implies the
conclusion of Proposition 1. We show, however, in Section 4 that Proposition 1
fails if the hypothesis A (?) = A(2) is weakened to either #(P) = A'(2) or its
converse.

We now consider a useful general condition under which A4(2) = A4(2).
Following [1], we say that 2 < 2 if /(2) o A#(&). Lemma 4 of [1] gives a simple
sufficient condition that 2 < 2.
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PROPOSITION 2. If 2 > P and 2 < P, then /' (2) = N(P).
PRrOOF. Follows immediately upon noting that 2 > Z = A4(2) < #(2). (]

3. Examples. We reconsider the examples in Section 3 of [1] in the light of the
preceding. The first example there concerns the group of shift transformations. If
2 is the normal family with unit variance, it satisfies the conditions of Theorem 1
of [1], as noted there. Hence if 2 is the set of all absolutely continuous distributions,
we have 2 o 2 and 2 < Z; hence Proposition 2 and also Proposition 1 apply. The
conclusion stated in [1] is thus seen to be correct. This remark holds in any number
of dimensions.

The conclusions drawn for the nonparametric examples discussed in [1] are also
correct, as may be seen from Proposition 1 and Proposition 2. In particular, if 2 is
generated by the set of all distributions on (— o0, 00) having strictly increasing
continuous distribution functions and 2, by all those having continuous distri-
butions, then since 2 € 2, #/(2) = A(Z) (again, in any number of dimensions).
This 2 may be further enlarged as discussed in [1], Section 3.

A more interesting question arises if 2 is the location family of a power-product
distribution 2 that is absolutely continuous with respect to Lebesgue measure 4 (in
n-dimensions, say). If 2 is the normal location family discussed above, since Z = 4,
if also 2 = 4, it follows that A(2) = A'(&), so that Proposition 1 applies. One
need only consider the location family of the uniform distribution (on [0, 1], say)
in two or more dimensions to realize that in general, #(2) o A(Z2). However, the
following consideration can be applied in this case: For Be %, let 5 denote the
elements of Z restricted to B.

PROPOSITION 3. Suppose there is a G-invariant set A€ B so that for every Q €2,
QA = 1 and that /' (2,) = N (P,). Then if /'(2) > N (P) and if almost-invariance
and invariance are equivalent for P, the same is true of 2.

PROOF. Let ¢ be 2-almost-invariant. Since A is invariant and /(2 ) = A(2,),
it follows that ¢1, is Z-almost-invariant. Hence there is an invariant ¥ so that
(p1, # Y)e N(P). Since N'(2) o N'(P), it then follows that (¢1, # Y)e A(2).
However, since 4 supports 2, it also follows that (¢ # y)e A(2). []

Thus if 2 is uniform on [0, 1] in n-dimensions, the shift-invariant set 4 =
{ (e, o, x): |x,—x;| £ 1, Wi, j} is easily seen to satisfy the hypothesis of Proposi-
tion 3. The desired conclusion may be obtained in this way for the location family
of the uniform distribution. For a location family on R" generated by an arbitrary
absolutely continuous Q with i.i.d. components, (dQ/dA > 0) may be taken to be a
square (a measurable rectangle with equal sides). It is not difficult to show that
A = G(dQ|d)\ > 0) is a measurable shift-invariant set satisfying the hypothesis of
Proposition 3. The details are omitted. Whether this construction extends to other
groups is an open question.

4. Counter examples. We show by example that Proposition 1 fails in general if
the condition A (P) = A(Q) is weakened to A'(?) = A(2) or its converse. In
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both examples, Z = [0, 1], 4 is its usual Borel structure and 4 denotes Lebesgue
measure on [0, 1].

EXAMPLE 1. #(#) = A (2). Let G be all 1-1 transformations of [0, 1] onto
itself that fix all but a finite number of points. All G-invariant functions are constant.
Let 2 be the set of all distributions on [0, 1] and let 2 = {1}. /(P) c (2. A
function ¢ on [0, 1] is (G, ) almost-invariant iff it is constant. Hence almost-
invariance and invariance are equivalent (in fact, coincide) for (G, ). However,
any function on [0, 1] is (G, 2) almost-invariant, but is not 2-equivalent to a
G-invariant function unless it is constant a.s. [A].

EXAMPLE 2. /(2) > A'(2). Let G consist of all 1-1 transformations of [0, 1]
onto itself that fix 0 and 1 and all but a finite number of points of (0, 1), plus the
transformation fixing (0, 1) pointwise and interchanging 0 and 1. All G-invariant
functions are constant on the sets (0, 1) and {0, 1}. Let 2 = {p}, where p assigns
probability 4 to 0 and 1 and let 2 = {p, A}. #/(#)> A (2). A function ¢ on
[0, 1] is (G, 2) almost-invariant iff ¢(0) =¢(1). Moreover, such a ¢ is Z-equivalent
to any G-invariant function agreeing with ¢ on {0, 1} (e.g., the constant function
with value ¢(0)). Hence almost-invariance and invariance are equivalent for
(G, 2). A function ¢ on [0, 1] is also (G, 2) almost-invariant iff ¢(0) =¢(1).
However, unless ¢ is a.s. [A] constant on (0, 1), it is not 2-equivalent to a G-
invariant function.

We note in passing that in both examples, 2 and 2 are preserved by G (although
this condition is not required in Proposition 1). Finally, we mention that in the
proof of the main theorem in [1], Lemma 3 should be cited, not Lemma 2.
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