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0. Introduction and summary. The topics of orthogonality and Fourier series
occupy a central position in analysis. Nevertheless, there is surprisingly little
statistical literature, with the exception of that of time series and regression, which
involves Fourier analysis. In the last decade however, several papers have appeared
which deal with the estimation of orthogonal expansions of distribution densities
and cumulatives. Cencov [1] and Van Ryzin [6] considered general properties of
orthogonal expansion based density estimators and the latter applied these
properties to obtain classification procedures. Schwartz [3] and the authors [2]
and [4] investigated respectively the Hermite and Trigonometric special cases. The
authors also obtained certain general results which apply not only to estimators
of the population density but also to estimators of the population cumulative [2],
[4] and [5]. In this paper several results derived for the univariate case are extended
to the multivariate case. Also a new relationship is obtained which involves general
Fourier expansions and estimators.

Although there is some reason for calling the Gram-Charlier estimation of
distribution densities a Fourier method, one fundamental aspect of Fourier
methods is not shared by Gram-Charlier estimation. Gram—Charlier techniques
make no use of Parseval’s Formula or related error relationships of Fourier
analysis. The ease with which the mean integrated square error (MISE) is evaluated,
when Fourier methods are applied, accounts for most of the recent interest in this
area.

Section 1 of this paper deals with an investigation of two general MISE relation-
ships for multivariate estimates of Fourier expansions. The relationship given in
Theorem 2 is particularly simple and yet includes the four MISE’s which are
involved in the estimation problem.

In Section 2 the choice of orthogonal functions is restricted to the trigonometric
polynomials. It is shown that the MISE of multidimensional trigonometric poly-
nomial estimators are related in a simple way to the Fourier coefficients of the
distribution which is being estimated. This result is of considerable utility since it
yields a rule for deciding which terms should be included in the estimate of the
multivariate density.

1. Basic theorems—arbitrary orthogonal expansions. In this section two basic
properties of estimates of orthogonal expansions are discussed. The first property
was investigated independently by Cencov [1], Schwartz [3], and the authors [2],
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[4] and [5] but is reintroduced here because of its central position relative to the
other results of this paper. Although the second property is extremely simple and has
immediate application, it seems to be set forth for the first time.

The following notation, given by Zygmund [8] page 300, will be used in this
section. The symbols j and k represent p-tuples consisting of positive integers,
negative integers or zero’s. The sets .# and 4" and their complements .#Z and A4~
are composed of such p-tuples. The symbol & is used to represent a p x 1 vector
of real variables and B, and B, represent complex valued scalars. The scalar B, is
a statistic formed from » i.i.d. random variates. The complex valued functions
V(&) are defined to be orthonormal over the set D in p-dimensional Euclidian
space E?, i.e.,

(1 jD‘/’k(g)wj(‘%n)d%' = 0.

Finally the MISE (mean integrated square error) of the complex valued random
functions G(%Z) and G,(%) is represented by J(G, , G,) and defined as

) J(Gy, Gy) = E [ [Gi(#)— Go(#)][G () — Go()] d .

Theorem 1 concerns the reexpression of (2) for G, = F, and G, = F , where
(3 FZ) = HE) + Yy e B Z)
“ F (%) = HE)+ Lhe u BWi(®)

and .4 < . Further, the series defining F, and F, will be assumed uniformly
convergent.

THEOREM 1.
%) JF o F ) = Yheu E[(Bk —Bk)(ﬁk —B)1+Yke i Bi B

The proof of Theorem 1 follows trivially from orthogonality property (1).

In later sections the question of the choice of terms to be included in subset .#
will be investigated. For this purpose Theorem 2, which involves an identity
between the four MISE’s; J(F,, F ), J(F,, F ,), J(F,, F,) and J(F ., F;), will
be of importance.

THEOREM 2. If E(B,) = B, then
(6) JF B )+ I F ) =2J(F 4 F y) +J(E ., F ).
PROOF.
(7 J(F 4 F p) = EY e iy Be B
= Zk erniE [(Bk - Bk)(ﬁk -B)]+ Zk e (Wit Br B,.
(®) J(F . F i) = Ykewoity Be Be-
©) Iy F i) = Yue a ELB—BYBi=BI1+ Lke ity E[Bi— BB —BY]-
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The theorem follows from the rearrangement of the terms of expressions (5), (7),
(8) and (9).

Although Theorems 1 and 2 are valid for any orthonormal expansion when A~
is finite and for all of the commonly used orthonormal systems {y,} when A" is
denumerable, primary emphasis will be placed in the remainder of this paper upon
the trigonometric functions

(10) Yulx) = 2™

2. Basic theorems—trigonometric system. In the remainder of this paper the
n p x 1 vectors of real-valued random variates X ;s = 1, - - -, n; will be defined to
be i.i.d. with distribution density f(x) where fe L,nL, . Also, B, will be defined as
the Fourier coefficient

1)) B, = [af (x)e™2"** dx
where £ represents the p-dimensional unit hypercube in p-dimensional Euclidean

space EP. The support of f will be assumed to be a subset of # and B, will be
defined as the following estimate of B,

(12) Bk =n -1 Z;‘=1 e— Znik'XS.
It is important to note the obvious fact that
13) EB, = B,.

However, not only is the first moment of the statistic B, expressible in terms of the
Fourier coefficients of £, as would be true if any orthogonal y, were substituted into
expressions (11) and (12), but the second ordinary moments as well as the product
moments of B, are likewise easily expressible by equation (14).

THEOREM 3. For all j and k

(14) E[(B,—B)(B;,—B)] = n"'[B,—;— B, B_]]
which in turn equals
(15) n~'[B,-;—B.B;].
ProoF.
(16) E[(B,— B\ (B,—B,)] = EB, B;— B,B;.

(17) EBk Bj = E(n—z){Z;‘:l e—Zni[(k-j)’Xs]_f_zs#t e—Zni(k'X,-—j'Xt)}
=n" I{E e—Zni(k—j)'x +(n _ 1)(E e—Znik'x)(E e2nij'x)}.

Expression (14) follows from the substitution of expression (11) and (17) into (16)
and expression (15) results from the identity B; = B_; which is apparent from
expression (11). »

Similar relationships involving non-trigonometric orthogonal expansions have
been investigated by the authors and G. Anderson. These will be presented
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separately. In the univariate case a formula obtained by Watson [7] does yield a
simplified expression for the covariance of two coefficients of Hermite expansions.
However, expression (14) presently appears to be unique. The covariance or
variance is a simple function of the Fourier coefficients for no other orthogonal

family which has been investigated.
Letting j = k in expression (15) and substituting the result into expression (5)

yields the following corollary.
COROLLARY 1.
(18) J(Fys Fu) =n"" Yy e u[1=Bie B+ Yk e iy Bi Bi
If the set A" is defined as MU {ko}, kot M , We get:
COROLLARY 2. Define the error increment (AJ,,) due ‘to adding a term k, as
(19 JF4Fy)—IFF ), then AJy={n"'-n"'(n+1)B,, B}

Note that the sign of AJ,,, equals the sign of {(n+1)~'—B,, B,,} or, in other
words, the inclusion of the k-th term to form estimate F ., as opposed to the
estimate F , is indicated whenever

(20) By B, >(n+1)"L

As suggested by Cencov [1], “it is then possible to select n, ‘here k,,” according
to results of observations, restricting oneself in ‘(4)’ only to such terms whose
coefficients ‘B, are essentially greater ‘than’ their experimental mean square
error.” However the substitution of the estimate B, for B, in (20) will result in a
biased rule that would select too many terms. It will be shown using Corollary 3
that the appropriate inclusion rule would indicate the use of the term k, whenever

(1) BB, >2n+1)""
rather than B, B, > (n+1)"".

COROLLARY 3. Let
AN —
(22) Ay, = {n ' =n"Y(n+)[n(n—1)"'B,, B,,—(n—1)""']}. Then

N\
(23) E(AJ,,) = AJy,.
Corollary 3 follows from expression (17). Now from (22) we see that the sign of

N =
AJ,, , the unbiased estimator of AJ,,, equals the sign of {2(n+1)"*—B, B,,} i.e.,
we use expression (21) for our inclusion rule.

3. Conclusion. Some computational properties and applications of expressions
(12) and stopping rule (21) are discussed by the authors in [2], [4] and [5] for the
univariate case. In [2] and [4] the estimator given in this section is shown to com-
pare favorably with univariate estimators of the population density proposed by
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other authors. In a forthcoming paper it will be shown that the results of Section 1
can be applied to the estimation of the univariate camulative. Further, these results
may also be useful in defining nonparametric classification rules.
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