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BETTING SYSTEMS IN FAVORABLE GAMES'

BY ALAN J. TRUELOVE?

University of California, Los Angeles

1. Introduction and summary. A favorable game is one in which, loosely
speaking, there are opportunities for favorable bets. We consider only games where
there is a “double or nothing” return of the stake, the win probability p being
drawn independently each day from a distribution F(p), and told to the player
before he makes his bet.

We are interested, not in maximizing the expected fortune over a number of
plays, but in minimizing the probability of eventual ruin. In order that the gambler
cannot stand pat, we use two devices.

In Model I, he must pay a fee of $1 after each play. In Model II, he must bet a
minimum of $1. His bet may never exceed his current fortune, x.

Let b denote an allowable betting strategy. We define the ruin function by
q(x) = inbe(ruin|b, starting fortune x). In both models, if ever x <1, ruin is
inevitable.

In Section 3, we introduce (following Ferguson, [3]) the idea of a loss function,
qo(x), satisfying certain conditions. A “natural” choice for loss function is g,*(x) =
1 for x < 1, = 0 otherwise. We define the minimal expected loss after n games by
g.(x) = inf, Eqo(X,) where X, is the fortune after the nth game.

In Lemmas 3.1-3.5, we construct a suitable Borel-measurable betting function
to show that g,(x) satisfies the dynamic programming relationship; if x — X,(b,)
after bet by, then g,(x) = inf,, Eq,_, (X,(b,)). The results of Section 3 do not
depend on the assumption that the game is favorable, but from now on this
assumption is required.

Using the natural loss function g,*(x), we show in Lemma 4.1 that g,*(x) - q(x)
as n — o0, uniformly in x (in passing, Theorem 5.1 shows that for any loss function,
¢,(x) = q(x) without uniformity) and we employ this result in Section 6 to show that
q(x) is continuous, for Model I only. For both models, g(x) is already known [1]
to be lower semi-continuous. These results are sufficient to establish [3] that a
particular stationary Markov betting function, b*(x, p), is optimal (although not
necessarily unique).

For large fortunes x, asymptotic forms for the ruin function ¢g(x), and as a con-
sequence for b*(x, p), are already known [1], [3] under a slight restriction on F(p),
namely that it have no mass in a neighborhood of 1. On removing the restriction,
some weaker results are obtained, and summarized in Section 8.
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2. Preliminaries. Starting with fortune x,, the gambler is presented with an
infinite sequence of independent games G,,G, - G;- .

Before each game G, a probability of win (for the gambler) p; is drawn from a
distribution F(p) [the same one each time] and announced. The distribution F(p) is
known to the gambler. He may bet any amount b; where

2.1) 0<b,<x;_; (ModelI)
1<b;<x;_, (Model IT)

and x;_, is his current fortune. The odds are 1: 1, so that he receives back double

his bet, if he wins, nothing if he loses.
For Model I, a fixed charge is imposed after each game. We take this charge as $1.
Thus the fortune after game G; is, for Model I,

x;=max(X,_,+b;—1,0)  probability p;
=max(X;_;—b;—1,0) probability (1—p;)

where X, = x,. .
Note that whenever X;_;+b;—1<0, or X;_;—b;—1 <0, we arbitrarily put
X; =0, in which case we shall have X; = X;,, =+ =0.
For Model II, we have '

X;=X;_,+b; probability p;

=X otherwise;

where X, = x,.
Note that if X; <1 for some j, then X; = X;,, = --. This convention avoids
the necessity of specifying a bet when the fortune has dropped below 1.

DerFINITIONS.  For both Models, the event ruin by game n occurs if and only if
X, < 1. The event ruin occurs if and only if ruin by game n occurs for some n.

A partial history is a sequence (Xg, P1, X1, * Xy—1,Dn)-

A betting strategy for the gambler is a set b of functions {b;} where, at game
J,b; associates a bet with each partial history, i.e.

bj=bj(x0$p1’x1a”'axj—hpj)» ng

and b; satisfies (2.1). We shall consider only strategies belonging to a certain class
S,whereb = {b;} € Sif and only if for fixed xo, and forallj = 1,b; = bj(Xo,P1, X1,
x;_1,p;) is Borel-measurable in py,xy, **,x;_,p; (the term “optimal strategy”
used subsequently refers to optimality within S, inf, will mean the infimum over
beS, etc.).

Stationary strategies will be written b(x, p) where x, p denote the current fortune
and win-probability.

A favorable game is one in which there exists a betting strategy for which the
probability of ruin is less than one for some value x > 0 of the initial fortune.
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The ruin function for strategy b is defined by
(2.2) ¢"(x)=P(X, <1 some n|b,X,=x)
=limP(X,<1|b,Xo=x) as n— oo.
and the term ruin function, without reference to a specific strategy, is defined by
(2.3) q(x) = inf, ¢"(x).

Ferguson ([3], page 811) points out that a necessary and sufficient condition that
a game of Model I or Model II be favorable is that F(p) assign positive mass to the
interval (3, 1], the necessity following by the martingale convergence theorem.
Ferguson also shows that g(x) < 1 for x > 1 (Model I) and for x = 1 (Model II),
and that g(x) » 0 as x — oo at least exponentially fast.

Given x > 1, and a betting strategy b, let ¢ = [x]+ 1, where [x] denotes the largest
integer < x; let 0 = [§(1 —p)dF(p), < 1 if we suppose F(p) not concentrated on 1.
Then for x’e[1,1¢],

(2.4) P(Xn+t<1|b9X0=x0"”Xn=xl);9t

since 6" = P(loss ¢ consecutive times). Ferguson ([3], page 802) uses (2.4) to show
that for fixed x, y

(2.5) P(X,e[1, x]i.0.|b,Xo=y)=0

(i.o. = infinitely often) which incidentally shows that minimizing the probability
of ruin is equivalent to maximizing the probability that the fortune tends to
infinity.

The results (2.4), (2.5), and the lemma following do not use the restriction
F(3) < 1, and so are true whether or not the game is favorable.

LEMMA 2.1 (Models I and II). Assume F(p) not concentrated on 1.
(i) Given x = 1, then for y < x,
P(X,e[1,x] for n=1,-"N|b,Xo=y)—>0 as N- oo,

uniformly in y, b.
(ii) For fixed x,y,b

P(X,,e[l,x]|b,X0=y)—>0 as n— .

[Note: In the case of Model I, this theorem may be trivially modified as follows.
The restriction x = 1 may be replaced by x > 0, and the interval [1, x] may be replaced
by (0, x], throughout].

PRrOOF. (i) Let # = [x]+ 1. Given y < t, we have from (2.4), for x’e[1,¢], and i
any nonnegative integer,

Supx’P(X(i+l)te[19 t] I b: Xit = xls XO = y) é 1-0

uniformly in y < 1, b.
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Therefore
P(Xrinell, (] b, Xo =)
SU-PXell, 1]]b, Xo=y)
< (=0 P(Xoe[1, ][ b, Xo =)
S=0y*
Thus, for n > 1,
P(X;e[l,¢] for j=1,"-",n|b,X,=y)
SPXjel[l,t] for j=1,-,it|b,Xo=1y)

(where i = [n/t]) < (1—0)"— 0 uniformly for y < ¢, and*in b, as n — co0. The result
follows, a fortiori; since x < t.
(ii) Given x = 1; let y and b be fixed. For any sequence A, for which P(4,i.0.) = 0,

0= P(A,,IO) = P(nlo\;;l U::O=NAn) = lij—'wP(U:::;NAn)

since the sequence of sets (J,- y 4,) is decreasing as N — oo. Hence P(|J;=y4,) 10
as N-oo. But U,2y4,2 4, Hence P(4,)|0 as N— co. The result then
follows from (2.5) with 4, = {X,e[1,x]}.

3. Iterative scheme, finite game, and loss function.

3.1. Definitions. The following scheme (also referred to as the ‘““finite game”
situation, in contrast to the “infinite games” just considered) has application in
numerical calculations. It is also a useful tool in proving some of the theoretical

results.
We introduce the idea of a loss function, q,(x), which is nonincreasing with x,
and satisfies

3.1 gox)=1,x<1; Go(x)—>0, as x— co.

This function could be thought of as expressing the negative of the “utility”’ of
fortune x to the gambler. The higher the fortune, the lower the value of the loss
function. (If, for example, we are interested in minimizing the probability of ruin,
we should choose gy(x) =1 for x < 1,g4(x) = 0 otherwise. This choice is made

below.)
Suppose we start with fortune x, play » games (Model I or II), and obtain fortune
X,. The minimal expected loss after n games with starting fortune x, is

(32) qn(x) = infb E[qO(Xn) | bs XO = x]‘

3.2. Preliminary results for the finite game. (Statements and/or proofs will be
given for one model, and it is to be understood that modifications for the other
model are trivial unless indicated otherwise.)

LemMMA 3.1. For eachn > 0, q,(x) =1 for x <1, q,(x) =0 as x — o0, and q,(x)
is nonincreasing in x.
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ProoF. (Model I). The first result is obvious, and the fixed strategy of betting the
minimum suffices to establish the second result.

Finally, if x, = 0, x,” = xo,+h, where 4 > 0, we show that ¢,(x,) = ¢,(x,"). Let
¢>0, and let b = {b;} €S be e-optimal at x, in the sense that

(1+8)qu(x0) = E{qo(X,)| b, Xo = xo}.

Consider starting fortune x," = x,+A, and general fortune x;/. Let b’ be the
strategy: put aside A, and at game j, bet, using b, as if the current fortune were

x_;—h. As soon as the condition x}_, = 4 is violated, arbitrarily adopt a *“go-
for-broke” policy (b;" = xj_;, b}, = x;/, etc.) thereafter. By considering partial
histories, we see that since the original b is in S, the derived strategy b’ is also a well-

defined member of S. Clearly, for any x = 0,
P(X,Zx|b, Xo=x0) £ P(X, = x|, Xo=2x,).
Hence, since ¢, is nonincreasing
gu(Xo+h) £ E[qo(X,) | b', Xo = xo+1] = E[qo(X,) | b, Xo = xo] = (1 +€)q,(xo)

and the result follows since ¢ is arbitrary.
In Lemmas 3.2-3.4 which follow, we use the following notation:
q(x) denotes a function nonincreasing with x. Also, for p € [0, 1], b nonnegative,

é(x, p, b) = pq(x+b—1)+(1=p)g(x—b~1)  (Model I)
= pq(x+b)+ (1 —p)q(x—b) (Model II).

3.3) O(x, p) = infy <<, P(x, p, b) (Model 1),
=inf; cp<, d(x, p, b) (Model II).

LEMMA 3.2 (Model I). With q, ¢ and @ as above, q(c0)—q(— ) = 1, pe[0, 1], and
b real, we have that ¢(x,p,b) is

(1) nonincreasing with x, for fixed p, b;

(ii) nonincreasing with p, for fixed x, b and further, if 0 <p, <p, =1, then
0 é ¢(x’p1a b)_ d)(x’pZ ’ b) = (Pz _pl)

Also, ®(x, p) is (iii) nonincreasing with x, for fixed p;

(iv) nonmincreasing with p, for fixed x;

(v) concave in p, for fixed x;

(vi) continuous in p, for fixed x.

Proor. Easy.

LeEMMA 3.3. (Model I). With q, ¢ and ® as above, q(x) =1 for x < 1, g(x) = 0 as
x — o0, pe|0, 1] and b real, we have: given & > 0, there exists a function b'(x,p),
measurable (in fact elementary) in x, for each p,0 £ b*%(x, p) < x, such that

(3.4) o(x, p, b™(x, p)) £ B(x, p)+¢’ all x.
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PrOOF. Given ¢’ > 0, take ¢ = ¢'/2, and fix p,0 < p < 1. There are at most a finite
number of discontinuities of size = ¢ for ®(x, p), from Lemma 3.2 (iii). Construct a
sequence of points, 0 = xq < x; < *** < X34+, = 00 containing these discontinuities
of size = ¢, such that

O¥(x;_1, p)—DP (x;, p) <o, i=1,2,-, k+1
where
®*(y, p) = lim, )+ B(x, p), @7 (v, p) = lim,.,,- O(x, p).
Now for any point x, we may find b'(x, p),0 < b¥(x, p) £ x, such that
@(x, p, b'(x, p)) < O(x, p)+e.
Consider a point x, where
X # X (i=0,-, k+1).

Then x must be contained in some interval (x;_;, x;), which, if i < k+1, we write
for convenience as (x*, x* +A) where A > 0. [If i = k+ 1, choose any A, > 0, and
take A = Ag].

Suppose x < x,+A,, then for some m, (mn=0,1,:-*)

X¥FAR2M < x < xFHA2T,

and we set
xE = x*+ A"

If x > x,+A,, set x* = x,+A,. Then
d(x, p, b(x%, p)) < ¢(x*, p, bT(3", p)) < D(xF, p)+e < O(x, p)+2¢

(using (i) of Lemma 3.2).
Let us define, for x < co, where x*, A, m are to be determined as above,

bt(x, p) = bI(x*+A/2"" Y, p)  if x#x;(i#0, ", k)
= bi(x;, p) otherwise.
Then, if x # x,(i = 0, -+ k), we have from the last result,
¢(x, p, b"'(x, p)) < B(x, p)+2¢.

If x = x;, some i, this remains trivially true. Hence we have obtained the desired
function, which is clearly measurable, and elementary in x.

LemMa 3.4. With q,¢ and ® as above, and the additional conditions on q in the
previous lemma, and with p € [0, 1]; given ¢ > 0, there exists a function b(x, p) Borel-
measurable in x, p, (in fact elementary in x, for each p, and simple in p for each x) and
satisfying 0 £ b(x, p) £ x such that

¢(x, p, b(x, p)) = (x, p)+¢
for all x and p.
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PrOOF. Let ¢ > 0. Construct a sequence 0 = pg < p; <-*-p,, =l withp,—p,_, <
gf2 fori=1,---,m. Now let b'*(x, p,) be as in the previous lemma (with &’ = ¢/2)
fori=0,---,m.

Define
b(x’p)=b11(x’pi) if pi—1<p§pi’ i=1"“am

(of course, b(x,0) = b'7(x,0)). Thus, b(x,p) is clearly Borel-measurable in (x,p),
elementary in x for fixed p, and simple in p for fixed x.
Furthermore, for p,_, <p = p;,

¢(x, p, b(x, p)) = ¢(x, p, b''(x, )
< ¢(x, p;, bM(x, p)) +e/2 (Lemma 3.1. (ii))
S D(x, p;)+e/24¢/2 (Lemma 3.2.)
S O(x, p)+e (Lemma 3.1. (iv))

completing the proof.

We can now establish the following lemma, which shows the usual “dynamic
programming” property of the g, function. The method follows Ferguson ([3],
Lemma 3), where there were no measurability difficulties.

LemMA 3.5(Model D). If ¢,(x) = infyy 5 Elgo(X,) | {B;}, Xo = x]thenforn = 1,2,

4(x) = Jinfy <y [P gu-1(x+b— 1)+ (1 —p)g,-(x—b—1)] dF (p).

ReEMARK. I am indebted to the referee for the following remark. The lemma is
almost a special case of Dubins and Savage [2], Theorem 2.15.2. Our problem is a
gambling problem in their sense with fortunes (x, p), utility function u(x, p) = —g,(x),
and gambles defined in the natural way. Also, our restriction to measurable
strategies does not change ¢, ; this follows from Theorem 2.2 of Sudderth [5].

PRrROOF. Let {b;°} €S be e-optimal in the sense that
(3.5 (%) (1 +¢) Z E[q0(X,) | {b;7}, X0 = x].
Then, for general x*,
E[qo(X,)[{b/}, Xo =X, p1 = p, X; = x"]
= E[qo(X,-)[ {7}, Xo = x*]
2 infy s E[qo(X,-1) [ b, Xo = x*] = ¢,-1(x™)

Where bj(x'p)(xo’pla tet an) = b‘;‘+ l(xap’ XosP1s" " ’pj)' Then {bj(x'p)} € S for all (x’p)’
The inequality in the above follows since the infimum refers to all b€ S, and the
preceding expression refers to one particular betting strategy, {b;*P}.
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Then, continuing from (3.5), and setting x* = x+b,%(x, p)—1,and x—b,%(x, p) —1
in the result just obtained

(3.6) E[qo(X,) | {bje}ﬂ Xy =x]

= [ {PE[4o(X ) [{b}, Xo =X, p1 = p, X1 = x+b(x, p)—1]
+(1=pE[qo(X,) | {b}*}, Xo = x, p1 = p, X| = x—b,(x, p)—1]} dF(p)

2 [[pgu-1(x+b,°(x, p)— D+ (1= p)gy-1(x — b1 (x, p)— 1] dF(p)
2 [infocpsx [Pgn-1(x+b—1)+ (1= p)gu-1(x—b— 1] dF(p).

This holds for all ¢ > 0 in (3.5); hence

(37 40 Z finfo gy [Pgu-1(x+b=1D)+(1 = P)y- s (s —b— ] dF(p).

We now prove the reverse inequality:

(38)  g,(%) = finfocpc[Pgn-1(x +b—1)+(1 = p)g,-1(x—b—1}] dF(p).

We proceed by induction on index n; it is convenient to state the inductive hypo-
thesis for index n—1:
Given ¢ > 0, there exists a betting strategy b** such that, for all x,

(l) [qn—l(x)é]E[qO(Xn-—l)lb**’ XO =3C]
S finfocpey [Pn-ox+b—1)+ (1= p)gu—o(x—b—1)]dF(p)+e
[é qn—l(x)+8],

where the last inequality follows automatically from (3.7).

(ii) For j = 1,---n—1, we have the following conditions on b;**.

b;**(x,py, X4, X;_4,p;) is an elementary function of x.

If x,py, - x;—; are fixed, b;**(x,py, Xy, " X;_1,p;) is simple in p;.

[Note that b**eS]. By Lemma 3.4, the hypothesis is clearly true for index 1.
We choose, for b, **, the betting strategy b(x, p) in the statement of that lemma.

Next, assume the hypothesis is true for index n— 1. We establish it for index .
Lete <O,

¢n—1(xa p, b) = pqn—l(x+ b— 1)+(1 —p)qn—l(x—b_ 1)
®,_(x, p) = infy << Py 1(X, P, D).

The expression ®,_,(x, p) is nonincreasing with p, for fixed x, by Lemma 3.2
part (iv), and Lemma 3.1.

Given &> 0, and using Lemma 3.4 choose b'(x,p),0 < b%(x,p) < x so that
Gu_1(x,p,b%(x,p)) < ®,_(x,p)+¢, and b'(x, p) is elementary in x for fixed p, and
simple in p for fixed x.

We define a betting strategy b* with b,*(x,p,) = b'(x,p,) and complete the
definition as follows: for j = 2,3, -

* . —
bi*(x, py» X155 Xj-1, Pj) = bj7(x1, Pas s Xj—15 Pj)
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where b** was specified in the inductive hypothesis (for index n—1). b* clearly
satisfies condition (i) of the inductive hypothesis. Also, for all x,

E(qo(X,)[{b;*}, Xo = X)
= [E(qo(X,) | {b;*}, Xo = x, p1 = p)dF(p)
= I[PE(CIO(X;,) | {bj*}9 Xo=x,py=p X, =x+b*x, p)—1)
+(1—PE(qo(X,) | {b;*}, Xo = x, p1 = p, X1 = x=b*(x, p) — D]dF(p)
= J[PE(@o(Xn-1) | {b;**}, Xo = x+b'(x, p)=1)
+(1 = PE@@o(X,- )| {b;**}, xo = x—b'(x, p) —1)]dF(p)
< [[Pdn-1(x+b'(x, =1+ = p)g,-1(x = b'(x, p)— )] dF(p) +¢
[using the last inequality in (i) of the hypothésis]
= [¢u-1(x, p, b(x, p)) dF(p)+¢
S J@,-4(x, pdF(p)+e+e

[by choice of b'(x, p)].
Hence '
4,(%) < E[qo(X)| {b;*}, Xo = x] = [ @y 1(x, p) dF(p) +2.

The second inequality obviously establishes part (ii) of the induction hypothesis;
and the first and last members of the chain establish (3.8), since & is arbitrary. This
completes the proof.

4. A special choice for loss function. For the remainder of the paper, we assume
the game is favorable. A special choice for loss function is

4.1) qo¥(x) =1(x < 1),=0(x = 1).

The minimal expected loss after n games is written g,*(x) and may be identified

with P(ruin by game #):

(42)  g,*(x) = inf, E{qo*(X,)| b, X, = x} = infy, P(X, < 1]b, X, = X).

For each n, clearly g,*(x) £ ¢(x), and is nonincreasing in x, by Lemma 3.1.
LemMa 4.1. (i) g,*(x) £ ¢ (%) all x, and n=0,1,2, -+

(i) g,*(x) = q(x) uniformly in x as n — oo [the following equivalent form is used in
the sequel: given & > 0, there exists N such that for all x and alln 2 N,
g(x)—inf, P(X, < 1|b, Xo =x) <e].
PrOOF. (i) Obvious.
(ii) Since g,*(x) is nondecreasing in n, and bounded above, the limit as n— o

exists and < g(x) for all x since g,(x) < g(x).
Next, given & > 0 (and without loss of generality, & < 1) choose x; > 1 such that

(4.3) g(x,) <e( < 1) (possible, since the game is favorable).
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We show there exists an N such that
lg(x)—inf, P(X, < 1|b, Xo=x)| <2 all n=N, all xe[l,x,]
We need two preliminary results:

(A) Let b™ denote the stationary betting strategy
(4.4) for x=M: bM(x,p)=1p=19), =M(p>1D.
for x<M: bM(x, p)=x

in which M has been chosen so that if x = M, the expected gain on a single game is
positive. Then, ([3], page 811), g,m(x) = 0 as x — co. Then, with the ¢, x; above, we
may choose x, = x, such that

(4.5) infps,P(X, 21 all m|bM X,=x)>{1+e[l—q(x,)] "} 7"

This choice is possible since the latter quantity < 1; also note that the former

quantity > 0.
(B) From Lemma 2.1.(i), given x; > 1; x, = x,; ¢ <0, we may choose N such
that

(4.6) P(X,e[1l,x,] all n<N|[b Xo=x)<e

for all b, all xe[l, x,].

Given an arbitrary betting system b, construct a betting system b* as follows:
starting with x, = x < x,, use b until (if ever) X, > x,, then use the b of (4.4). If
X, > x, for some n £ N, let T, = smallest such n. Set T, = oo otherwise. Then

4.7 PX,=1 al mlb*, Xo=1x)
2N PX,21 all m, Ty =n|b* X,=1x)
=YV P(Iy=n|b* Xo=x)P(X, 21 all m|T,=n,b* X,=x}
But
(4.8) P(X,z1 all m|Ty=n,b* X,=x)
=[P(X,21 all m|X,=x",T,=n,b* X, =x)
“dP(X, £x'| Ty =n, b*, X, = x)
2 infys,, P(X, 21 all m|b™, X,=x).
Combining (4.7), (4.8)
P(X,21 all m|b* X,=x)
=2 P(X,>x, forsome n<N|b, Xy=x)

‘infys, PX, 21 all m|b™, X, =x).
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We now combine these two results (A) and (B). For xe[l, x,],
4.9) 1—g(x) =sup,P(X,, =1 all m|b, X, =x)
» > sup, P(X, > x, forsome n<N|b, X,=x)
‘infos,, P(X, 21 all m|bM X,=x).
Dividing through by the last expression, and using (4.5),
(4.10)  sup,P(X,>x, forsome n<N|b, X,=x)
S[1-q)]{1+e[1-qG)] "} < [1—g)N{1 +e[1—-q(x)]7"}
=1—q(x)+¢

since for x < x,q(x) = q(x,).
Now, with N chosen in (B), for xe[l, x,],

inf, P(Xy < 1]b, X, = x)
=1-sup,P(X, 21 all n=N|b, Xo=x).

gy (x)

But, using (4.10) and (4.6)
sup, P(X, 21 all n<N|b, X, =x)
< sup, [P(X, >x, forsome n<N|b, X,=x)
+P(X,e[1,x,] all n<N|b, X,=1x)]
S{l—qgx)+e]+e=1—q(x)+2e.
Therefore
an*(x) 2 1-[1—q(x)+2¢] = q(x) —2e.

Thus g(x) —gy*(x) < 2¢ for x £ x,, and in fact for all x by choice of x; in (4.3).
This proves (ii).

5. Other loss functions. In the last section we made a special choice of loss
function, g,*. The limit as # — oo of the derived minimal expected loss functions g, *
was shown to be the ruin function g. We now show that this same property holds
for any loss function g, satisfying (3.1). Note that for all x, go*(x) < go(x); hence
clearly ¢,*(x) < g,(x) for all n. Recall the definition of the ruin function for strategy
b, in (2.2).

THEOREM 5.1 (Both Models). With any loss function chosen as in (3.1),
(A) for any betting strategy b we have

E[qo(X,)|b, Xo=x]>q"(x) as n— .
(B) 4,(x)— q(x) as n- .
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PRrROOF. Given ¢ > 0, find x, such that g(x,) <e.
(A) Given b, use Lemma 2.1 (ii) to find N such that for n > N, P{X,e[1, x,] | b,
X, = x} <& Then, forn > N,

P(X,<1|b,Xo=x) =< E[qo(X,)]b, Xo = x]
S P[X,<1|b,Xo=x]+P[X,e[l,x,]]b, Xo =x]
+E[qo(X ) (x,, ) (Xa) | b, Xo = x]
SP[X,<l|b, Xo=x]+2e.
Let n — oo the result follows, recalling that P(X, < 1 |b, X, = x) = ¢%x).

(B) Given ¢ > 0, choose b(¢) such that
q"9(x) < q(x)+e.
From (A), there exists N such that for alln = N
E{qo(X,) | b(e), Xo = x} < ¢"®(x)+¢ < q(x)+2s.
Therefore, foralln = N
4,%(x) £ q,(x) = inf, E{qo(X,) | b, X = x} < q(x) +2e.
Let n — oo; the result follows.

6. The continuity of g(x) in Model 1. With ¢* the special choice of the loss
function in Section 4, for any closed interval A = [x,, x,], and positive integer n,
define
(6.1) Var,(4) = q,"(x1)—q,*(x2) (1, clearly).

LEMMA 6.1 (Model 1). If F(p) is not concentrated on the set {0, 1}, then there
exists ann > 0, not dependent on n, such that the existence of an interval A, for which

(6.2) Var,(Ay) = K, iA0| =h<i%

implies the existence of an interval A, for which

(6.3) Var,_,(A;) > K(1+#), |A,| < 2h.
Proor. Choose ¢ > 0 such that

(6.4) 0<e<i,

(6.5) m=m(e) = F(l—g)—F() >0

and set

(6.6) = ({)e*mK.

The choice

n = min (g, (HeZm/(1 —m)), m<1

=g m=1
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will be shown to satisfy the statement of the lemma. It is convenient to introduce

the notation
@u(x, p, b) = pq,*(x+b—1)+(1—p)g,*(x—b—1).

Let A = [x, x+ /] be such an interval as defined in (6.2). Now it is clear from the
proof of Lemma 3.4, or from standard measurable selection theorems such as 6.3
of Mackey [4], that we can find a function y,(p), Borel-measurable in p, 0 < y,(p) <
x4+ h, such that

(6.7) §dF(P)pu-1(x+ 1, p, y2(P)) < 4,*(x+h)+1.

We divide the interval [0,1] into two sets, S; ={p:0=y,(p) < x—h}, S, =
{p:x—h<y,(p) £ x+h} and specify a betting function y, by

y1(p) = y2(p)+h if peS,
=X if peS;.

[Note: the proof breaks down here for Model II. Take x < I, x+h = 1; y,(p) = 1.
Then the bet x is not permitted, since x < 1].

Then y,(p) &[0, x]. Now, for fixed p,
Gn-1(%, P, y1(p)) Z info<p<x P (x, D, b).

Hence, from Lemma 3.5

(6.8) JaAF(D)pu-1(x, ps y1(P)) = q,%(x).

Using (6.7), (6.8) we may now write
é j.dF(p)[d)n—l(x’ b, yl(p) - {d)n— 1(X+h, D, Y2(P))_T}]
= [dF(p)D(p)++

where

D(p) = {pg-1(x—1+y:1(p)) +(1 = P)g—1(x— 1= y1(p))}
—{Pgi 13+ h=1+y,(p))+(1 = p)a;= 1 (x + h—1=y,(p))}.
Two cases are possible:
(i) If pe S,, we get on substituting y, = y, +h,
(6.10) D(p) = (1—p) Var,_,(A,")

where A" = [x—h—1—y,, x+h—1—y,].
(ii) Now suppose pe S;, i.e. x—h <y, £ x+h and y, is chosen equal to x.
Using the fact that g;_,(x) is nonincreasing, and the hypothesis 4 < 4, we can
show
(6.11) D(p) < pVar,_(A,)

where A;" = [2x—1,2x+2h—1].
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Write
(6.12) o(p) =(1—p)Var,_(A,") if peS,
= pVar,_,(A,) if pesS,.

With the value of ¢ chosen at the start, let p be any value of the win probability for
which ¢ £ p < 1—¢ and 3(p) = K(1 —¢?), if one exists. There are two possibilities:
(a) Suppose there exists such a p. If peS,, then §,(p) > K(1—¢?)/(1—p) >
K(1+¢). If peS,, then §,(p) > K(1—¢&?)/p > K(1+¢). In either event, we have
obtained an interval A, namely A," or A,”, for which |A,| < 2h, Var,_, (A,) =
K(1+1n), since n < e.
(b) Suppose on the other hand 3(p) < K(1—¢?) for all pe[e, 1 —e]. Let

SUP[o,g)u(1—2,110(P) = 9'.
Then from (6.9), (6.10), (6.11), (6.12)
K < [dF(p)d(p)+1
= Jto.opu1 —119(D) AF (D) + f(;.1 - 6(p) dF(p) + 7
Z(l—-m)d' +K(1—e*)m+3)e*mK, using (6.6).
If m = 1, contradiction; so that (a) must hold. Assume m < 1.
8 =z K[1—-(1—¢&*/2)m]/(1—m) = K[1 +&*m/2(1—m)].
Since &’ was the supremum, the value 6(p) = K(1+1#) is certainly surpassed for
some p = p* since
n £ em/4(1 —m).
Hence 6(p*) = K(1+1#), which yields the required interval, as in (a).
THEOREM 6.2 (Model I). If F(p) is not concentrated on 1, q(x) is continuous for all x.

(i) Suppose F{(p) gives positive mass to (0, 1). Suppose there exists a discontinuity
of g(x) at x,, say, of size 2K, K > 0. Clearly x, > 1.

Find n > 0 satisfying Lemma 6.1. Choose j, an integer, such that (1+#)/ > K~!.
Let 4 = (1)/*!. Since g is nonincreasing,

q(xy—h)—q(x;+h) = 2K.
Since g,*(x) — g(x) all x, (Lemma 4.1) there exists N, such that
g (x;—h)—qy*(x;+h)> K all N = N,.
Using
Ao =[x, —h, x;+h], n=max{Ng, j}

apply the result of Lemma 6.1 recursively j times. We end up with an interval A; for
which Vary_;(A;) > K(1+n)’ > 1 by choice of j. Contradiction.
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(ii) It remains to show that if F(p) is concentrated at {0, 1}, but not at {1}, g(x) is
continuous.

Suppose F(p) has the distribution P(p =0) =L, P(p =1)= W= 1—L, where
L > 0 (the case L =0 is dealt with in the remark following).

The betting strategy {b*(x,p)} where b(x,1) = x,b(x,0)=0 (allowable for
Model I) is clearly optimal. Suppose the largest discontinuity of g(x) occurs at x and
has size K. Then for all 24>0,

qg(x—h)y—q(x+h) = K.
However, starting at x—#A, we may apply the first bet of our optimal strategy to
obtain

q(x—hy=Wq(2x—-2h—1)+Lg(x—h~1)

and similarly g(x+4) = Wq(2x+2h—1)+Lg(x+h—1).
Hence

Llgx—h—1)—g(x+h—1)]+W[g2x—2h—1)—q(2x+2h—1)]2 K

for all # > 0.

Clearly, there must exist a discontinuity of g(x) at x—1 of size K. By induction,
there exists a discontinuity of size Katx—j,j = 1,2, - -, whichleadstocontradiction,
since g(x) is identically 1 for x £ 1.

ReEMARK. If p = 1 with probability 1, then
gxj=1 for x<1, =0 for x=1
so that g(x) has a discontinuity at x = 1.

7. Stationary Markov betting strategies are optimal. For Model I, we have
shown that g(x) is continuous. For Model II, Breiman, Section 3 of [1], showed
that g(x) is lower semi-continuous (we note that the result of Theorem 5.1(A) is
assumed in the argument). The remainder of this section uses only the lower semi-
continuity of g(x) and hence holds for both Models. With ®(x, p) = inf, ¢(x, p, b)
as defined in (3.3), and with the appropriate range for b understood, let B(x,p) =
{b: ¢(x,p,b) = ®(x,p)}. We may choose b*(x,p)e B(x,p) such that b*(x,p) is
jointly Borel-measurable. (A proof of this statement can be based on Lemma 3.4).

Given this b* we define a particular stationary Markov betting function by

b;*=>b* forall j.
Assuming the existence of such a b*, Ferguson ([3], pages 803-804) showed
4(0) = 4" ().

[His proof is in the context of a game with allowable bets of $1 and $2 only, but
holds also for Models I and II with trivial modifications.]
Thus {b;*} is a (not necessarily unique) optimal betting function.
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8. Asymptotic forms for the ruin function and optimal betting function, for large
fortunes. If F(p) has no mass in the neighborhood of p = 1, then, as x - oo,

(i) the ruin function g(x) ~ cr*, where ¢, r are constants, and ¢> 1, 0 <r < 1
(r is specified in terms of F(p), but no general formula for ¢ has been found)
[Breiman [1]].

(i) the optimal (stationary) betting function, b*(x, p), ~ b°(p) as x —» co where
b°%(p) is an uncomplicated expression involving p and r [Ferguson [3]].

What can we say if F(p) is unrestricted (although we exclude the trivial case where
it is concentrated at 1)? With r, b°(p) as above,

(A) g(x)=r* all x, and as x— ocolimsup[g(x)r *x] < exp[(mass of F at
p =1l :

(B) Given 0<p<1,4>0,0>0,R>r, there exists a stationary Markov
betting strategy b = b(x, p) and an x, such that

(@) |¢" (x)—g(x)| < SR* all x.
(b) |b(x,p)—b°(p)| < n all x = x,, and all pe[0, p].

Details are in Truelove [6].

For one specific case, stronger results have been obtained (David Cantor and
Thomas S. Ferguson, paper in preparation). If F(p) has mass concentrated at
p = 0,1, then (i) and (ii) hold and the constant ¢ can be calculated from a formula.
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