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A DUALITY BETWEEN AUTOREGRESSIVE AND MOVING
AVERAGE PROCESSES CONCERNING THEIR LEAST
SQUARES PARAMETER ESTIMATES!

By DAvID A. PIERCE

University of Missouri

1. Introduction. The methods employed in least squares parameter estimation
for moving average (MA) processes differ from those appropriate for autoregressive
(AR) processes, as only the latter are linear in the parameters. There is nevertheless
an interesting duality between these two classes of time series models: if AR and
MA series, each of the same order and with the same parameter values, are generated
from the same sequence of errors, then to a close approximation the least squares
estimates calculated from the MA series will underestimate the true parameter
values by the same amount that those determined from the AR series will over-
estimate them. This relation is established in Section 3 via a linear approximation
of the moving average errors (considered as functions of the parameters for a given
series) in a neighborhood of the true parameter values. In Section 4 the large-
sample distribution of the estimates in any MA process is then obtained as a direct
consequence of this relation and of known results for AR processes, and some
properties of the least squares estimates in both classes of processes are examined.

Let us introduce notation and terminology to be employed. A sequence {x,}
follows an AR process of order p if it is governed by the relation

(1.1 X, =3P_10;x,_;+a,

where the {a,} are N(0,¢?) and independent, and the parameters 0 = (6, *,6,)’
are such that the roots of the auxiliary equation

(1.2) Ou)=1-0,u—---—0,u?=0

lie outside the unit circle (the set of all @ satisfying this condition will be referred to
as the admissible parameter space). Following [3] we may define a backward shift
operator B by the relation Bw, = w,_, for any sequence {w,}, and equation (1.1)
may then be written

(1.3) 0(B)x, = a,

where 0(B) = (1—Y?_, 6, BY) analogous to (1.2).

In the MA process the recursive relationship is in terms of the deviates {a,}
rather than the observations themselves; a sequence {y,} is a moving average of
order p if ‘

(1.4) Vyi=—3"%_,0;a,_;+a, = 6(B)a,
with {a,} and 0 = (6,,---,0,)’ as before.
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2. Least squares estimation. The equations (1.3) and (1.4) are well defined for
any t=---,—1,0,1,---; however, in practice we will have available a sample
series [say X, X3, """, X, OF 1,2, **,V,], and our problem is then to estimate the
unknown parameters 6. The method of least squares leads us to the minimization
of the sum of squares

@2.1) S0) = Y [a(6)]?

as a function of the indeterminate 0. In (2.1), the quantity a,(d) is obtained by
solving either (1.3) or (1.4) for a, = a,(f) which then becomes (given {x,} or {y,})
a function of the point @ = 6. There is of course a need to determine or have avail-
able a set of “starting values” [xq, x_y, ", X_p4q for (1.3) or ag, @_,"**,a_ 43
for (1.4)]; however, the effect of any particular choice of these values becomes
negligible asymptotically, and we can thus ignore considerations pertaining to the
initialization of the process in the following discussion.

The actual determination of the quantity & which minimizes the sum of squares
(2.1) is facilitated in AR processes by the fact that Equation (1.3) is linear in the
parameters [0a,(0)/00 ; = —Xx,_; independently of 0], whereas (1.4) is not. Thus
(1.3) can be written in matrix form as

2.2) x = X0+a

where a = (a;,"**,4a,), x = (x;,"**,X,), and X is an (n x p) matrix whose (¢/)th
element is the lagged observation x,_ ;. The least squares estimates 6 of @ for the
AR series are then

(2.3) 0V =(x'X)"'X'x

with a large-sample distribution very similar to that of the estimates in the fixed-x
linear normal regression model [7, Section 4].
The situation is fundamentally different for MA processes, however; letting

(2.9 ) =1-y5%, n;u

be the solution of 7(#)0(u) = 1 [whose existence is guaranteed by the admissibility
of (0y,"++,0,)], equation (1.3) becomes

[O(B)]_Iyt = n(B)y, = a,,

and thus a,0) = [0(B)]'y,, whose derivative with respect to 6, is a function of 6.
Thus nonlinear estimation methods are employed in practice to obtain the least
squares estimates, say 8, of 0 in the MA process (1.4).

Despite this basic difference concerning linearity in these two classes of processes,
however, there exists an important similarity in the behavior (asymptotically) of
their least squares estimates, as summarized in Section 1. This duality is obtained
in the following section by considering AR and MA processes each involving the
same parameters 0 and generated from the same deviates {a,}.

3. The correspondence between ) and 8. For a given sequence {a,} of
independent N(0,0?) deviates and a given vector of admissible parameters
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0= (0,,---,0,), suppose we have AR and MA series, {x,} and {y,}, generated by
the relations (1.3) and (1.4) respectively. In particular, then,

3.1 ye=[0B)]*x,.

Suppose @ is a point in the admissible parameter space which is “close” (in a sense
to become evident later) to the true parameter values 0. Then in terms of § we can
define, corresponding to (2.1),

(i) an AR error

3.2 P = a,(0) = 4(B)x,, and
(ii) an MA error
(3.3) dt(2) = at(z)(é) = [O(B)]_ lyt-

Now since d,! is linear in 6, we have for all 6 the exact expression [noting that at
0= 0, dt(l) = dt(z) =a,]
p da, v
(34 aV=Y (0,-0)—+a,
29,

j=1

M'e

(Oj—gj)x,_j-l-a,

j=1

or in matrix form
(3.5) a = X(0—0)+a,
analogous to (2.2). The least squares estimation may then be performed directly
on the “observations” d,®,--+, 4, in (3.5) to give
(3.6) 0V —f=X'X)"1X"aM.

Recalling that the MA error d,® is not linear in 0, the analogue of (3.4) for
moving average series is an approximation via a first order Taylor expansion about
6=0:

) P adt(Z)
(3.7 a,® = Z (Hj—Oj)—a—d;—— +a,
j=1 f)

0=0

where the error thereby introduced is O(|0—0|?), with |0—6| = [}.(d;,—0,)*]*
denoting the Euclidean distance in p-space between 6 and 0. The derivatives in (3.7)

are
04, |

-551’— 0=0
(3.8) = 6"%(B)B’y, |4=0
= 0~2(B)Yt—j

0 _
= 6_9—1 [o(B)J lyt

0=0

= Xi_js



AUTOREGRESSIVE AND MOVING AVERAGE PROCESSES 425

the last equality following from (3.1). Thus (3.7) becomes 4, = ¥ (8;— 0 )x,_ ;+a,
or

3.9) a® = X(0-0)+a
where X is the same as in (3.5) and (2.2). Analogous to (3.6) we now have approxi-
mately
(3.10) 6—0® = (X'X)"1X'a®,
The equations (3.6) and (3.10) both involve the least squares estimates 6,

i = 1,2 and the fixed but arbitrary values . If we now set § = 0, these equations
become

3.11) 0V—0=(X'X)"'X"a and
(3.12) 0—0? =(X'X)"'X"a, ° whence
(3.13) O—0®) = —(0-0V)

where the error of approximation in (3.13) is of order n~! in probability and
becomes asymptotically negligible.

Equation (3.13) shows that for large samples 8 from the MA series under-
estimates the true value @ by the same amount that 8 from the AR series over-
estimates 6, this being for the particular instance when both series are generated
from the same white noise. It follows from this that the asymptotic distribution of
0@ for any MA process (1.4) is the same as that of the dual AR process (1.3),
since the latter distribution is known to be normal and hence symmetric. (The
large-sample distribution of  has been established via other methods by Whittle
[8] and Box and Jenkins [3]; Box and Jenkins also obtain the joint distribution of
the estimates in a mixed AR-MA process.) We briefly discuss this common distri-
bution and the properties of 8% in the following section.

4. Distribution and properties of the least squares estimates; effect of nonnor mality
of {a,}. The large-sample distribution of the least squares estimates in an AR
process was obtained by Mann and Wald [7] who showed (i) that asymptotically,

4.1 n*(0™—0) ~ N(0,6°I' 1)

where " = (y|;_;)) is a (p x p) matrix of the autocovariances y, = E(x,x,,,) of the
AR process (1.3); and (ii) that

4.2) I'=plimn~'X'X

with X as in (2.2). It follows from (3.13) that equation (4.1) also gives the asymp-
totic distribution of the estimates 8 of the MA process (1.4), with the stipulation,
of course, that I is the autocovariance matrix not of this process but of the dual
AR process (1.3).

Furthermore, under the normality assumption the minimization of (2.1) is
equivalent (asymptotically) to the maximization of the likelihood function, so that
09 is also the ML estimate of 0, i = 1,2. Thus for large samples, least squares
estimates in both AR and MA processes are efficient, and the information matrices
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for either are given by (1/6?)I". In particular, the problem of efficient estimation in
MA processes ([5], [6, Chapter 2], [8, page 431]) is seen to be equivalent to the pro-
blem of minimizing (2.1), which is readily accomplished with the aid of a computer
and employing standard nonlinear estimation techniques [2], [4].

While the preceding discussion has been given under the assumption of a normal
distribution for {a,}, many large-sample properties of the estimates 8 hold under
wider conditions. Mann and Wald in their investigation obtained the distribution
(4.1) for 8V assuming only that the {a,} possessed moments of all orders, and
T. W. Anderson [1] showed that the existence of moments of order two is sufficient.
By (3.13) these remarks can also be made for least squares parameter estimates in
MA processes. Clearly also the large sample covariance matrices of 8> and §®
will be the same (and given by (4.1)), though in general these will no longer be
related to the information matrices. What is lost when_the normality assumption
is not satisfied is efficiency, as the ML estimates will no longer necessarily coincide
with the least squares estimates. (The latter will however still have minimum
asymptotic variance within a class of estimates limited in a way analogous to the
restriction of linearity and unbiasedness under which the Gauss—Markov theorem
holds in the non-normal regression model; Whittle [8] indicates these restrictions
in terms of the spectrum.) .

Let us conclude by briefly illustrating these considerations with the first order
AR and MA processes,

4.3) X, =0x,_,+a, and
4.4 Ve=—0a,_,+a,

respectively. The admissibility restriction on the parameter is that ]0[ <l. If
E(a,*) < oo, then the least squares estimate of 6 in either process is asymptotically
normal with mean 6 and variance (1—602)/n [the (1 x 1) covariance matrix is
I’ = Var(x,) = ¢2/(1—6%)]. If in addition the {a,} are normally distributed then for
large samples the information is 1(6) = Y9 6%/ = (1—6%)"?, and 8™, 8@ are
efficient.
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