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SOME STRUCTURE THEOREMS FOR THE SYMMETRIC STABLE LAWS

By MICHAEL SCHILDER

Newark College of Engineering
1. Introduction. The Spectral Representation Theorem for stationary Gaussian
processes

(L.1) x; = [t exp[2nilA] dF(A)

where F(A) is an independent increments Gaussian process has proved exceedingly
useful in the statistical and probabilistic analysis of these processes (see Doob [1]
chapter X or Karhunen [4], for example). In this paper it will be shown that a
similar representation can be given if x,,/=1,2, -+, n is a finite set of random
variables with a stable distribution of type «. It will be shown that there is an inde-
pendent increments process, F(4), of type a, and a set of functions, f;(1), such that

{1.2) X = J.%i%fl(’{) dF(4)

where the stochastic integral of (1.2) will be defined. Some elementary properties
of this representation will also be derived. An interesting by-product of the theory
presented here is that there is an isometric isomorphism between the sets of
symmetric stable variables of type o with a natural norm and the usual L? spaces on
the interval [—1, 1] where p = a.

2. The stable laws. In this paper a random variable x will be said to have a
symmetric stable distribution of type o and scale factor |b| if the characteristic
function of x, ch.f. (x; u), is of the form

2.1 ch.f.(x,u) = exp[ —|b| |u*], breal, 0<a=2.

The stable variables considered in this paper therefore have a symmetric distribution
around the origin, with median zero and a scale or variance parameter |b|

It can be shown (see Loéve [6] for example) that E{x*} = o0 if 0 < & < 2, and
that E{|x|} = o0 if 0 < a < 1 where E{x} denotes the expected value of x. Therefore
the only stable variable with finite mean and variance is the normal distribution—
the stable distribution with « = 2. Since (1.1) is derived with the implicit assumption
of finite variance for the {x;} process, it follows that different methods must be
used to derive (1.2). ‘

If x, and x, are stable variables of type «, then it can be shown that x; =
¢y X1+ ¢, x, is also a stable variable of type a (hence the name stable) if ¢; and ¢,
are constants. If x, , - -+, x, are random variables, then x,, - -, x, are said to have
a multidimensional stable distribution of type « if every linear combination of
X1,°°°, X, is stable of type a.
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Therefore all linear combinations of x;, -, x, generate a linear space, if
Xy, ***, X, have a multidimensional stable distribution.
A metric is now defined on this space.

DErFINITION 2.1. If x has a symmetric stable distribution of type o, 1 < « < 2,
then the length of x, ||x||, is defined as ||*/* If 0 < « < 1, then the length of x is
defined by |b|, where b is the scale factor defined previously.

THEOREM 2.1. The metric defined by Definition (2.1) is a true metric.

ProoF. P. Lévy [5] (see also Rvaceva [7]) has shown that if x,, x,, -, x, are
stable variables of type « that the joint characteristic function of x,, x,, ", x,
can be written in the form

(22) Ch'f'(xl’ s Xps My, '9/";:) = eXp[_”:ul’yl'i'“ '+..un.Vn|adG(.VI’. ' 'ayn)]

where dG(y, , *--, y,) is a measure with all its mass on the surface of the n dimen-
sional unit sphere.
From (2.2) it follows that, for x; and x, stable type x and 1 £ « < 2

(23) ||x;+x,f| = [—log[ch.f.(xy, %551, D] ]V = [[ |1 +y2|*dG(y,, y2)] .
From Loéve [6], page 161, it follows that
[flys+yal dG(ys, y )]V < [f |91*dG(y1, )1V +[[y2[ dGly1, y )]
= lixal+ 1]}

For 0 < « < 1, (2.3) becomes ||x; +x,|| = [|y; +72|*dG (y1, y,).
From Loéve [6] page 161, it again follows that

[H)’1 +)’2|adG()’1,Y2)] = ”yll"G(yl,yz)+_f|y2|“dG(y1,y2) = ||x1“+Hx2ii

which shows the triangle inequality. If ||x|| = 0, then the characteristic function of
x is 1 and x therefore has the same characteristic function as the zero variable. The
only stable variable that has the same characteristic function as the zero variable
is the zero variable itself. Therefore if ||x|| = 0, x = 0. Since the other axioms of a
metric space are easily verified, the theorem is proved.

GOROLLARY 2.1. If a = 1, then the linear space defined above with the metric
defined above is a linear normed space.

ProoF. It is sufficient to show that for a > 1 ||cx|| = Icl ||x|| But
|lexj| = [—log[ch.f.(cx; 1)] T4
=[—log(J*,exp[i0]dP(6))]'"*
= [—log(J®,exp[icO] dP(6))]'"
= [—log(exp[—|c|*||x||1 1'% = |e| ||x]],

where dP,_,(0) and P,(0) are the distribution functions of cx and x respectively.
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3. Stable integrals. In this section a stochastic integral for stable processes will
be defined which is similar to the stochastic integral defined by Wiener [9] for the
Brownian motion process. See also Doob [1] or Ito [3].

DEerINITION 3.1. F() is an independent increments process of type « on [—3, 1]
if F(A) has a symmetric stable distribution of type o for every A between —4 and %;
if F(1,)— F(4,) is independent of F(4,), whenever —$ < 4, <1, £ 4,if F(—3) =0,
and if||F(%)|| < 0.

Doob [1] page 422, shows that except for a set of measure zero the paths of
stable independent increments processes are continuous except for jump discon-
tinuities. The integral (1.2) [, f(1)dF(4) is defined in the classical Stieljes sense
only if one or the other of f(A) or F(A) is continuous and the other is of bounded
variation. We will need (see Section 4) to define this integral when f(4) is not
continuous (or of bounded variation). Since F(X) is in general not continuous, it
follows that the classical approach cannot be used to define (1.2). However, Wiener
and later Ito (see above) showed that integrals of the type (1.2) could be defined as
a random variable for F(1) a finite variance process. We now extend Ito’s method
to symmetric stable processes.

LemMA 3.1. If x, and x, are symmetric stable variables of type o, and if x, is
independent of x,, then ||x;+x,|| = ||x|| +]||x2]| if 0 <o <1, and ||x;+x,||* =
(o] |+ |%2]|* if 1 < & < 2.

PrOOF. Since x,; and x, are independent, the joint characteristic function of x;

and x, is the product of the characteristic functions x; and x,. Therefore if
O<a<l

—log[ch.f.(x,+x,31)]
log[ch.f.(xy,x5;1,1)]

—log[ch.f. (xy; 1) ch.f.(x5;1)]

= —log[ch.f.(x,; —1)]—log[ch.f.(x;;1)]
= [lxali+{lI

A similar proof holds incase 1 < a < 2.

[Ixi 4]

]

LEMMA 3.2. If 0 <a <1, then ||F(3)|| is a bounded monotonically increasing
Sunction. If 1 £ o < 2, then ||F (/'L)||°‘ is a bounded monotonically increasing function.

Proor. This lemma follows directly from the definitions and Lemma 3.1 since
for -3 <1, <A, Ztand0<a<1
[FU)|| = ||FU) = FG) + Fy)|j = ||FG)|| +][F (o) = FRy)|-

Since ||F(1,)—F(4,)|| 20, it follows that ||F(1,)|| = ||F(4,)||, and the lemma
follows. A similar proof applies if 1 < a < 2.
Since ||F(A)||* is a monotonically increasing function for 1 <a <2 and
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—1 < A<, it follows that it can be used as a measure on [—14, 1] in the usual
Lebesgue—Stieltjes sense. We now define (as usual) L* to be the set of functions f(4),
which are measurable with respect to the measure d||F(1)||* and for which the
integral [£, | f(A)|*d ||F(D)||* is finite if 1 < « £ 2. If 0 < « < 1, then L* is the set of
functions which are measurable with respect to d||F(4)|| and for which the integral
J4|FD)|*d||F(2)]] is finite. See Logve [6] for an exposition of this kind of space.
Let now g(4) be a step function on [—14, 4], i.e. suppose g(4) = g;if z;_; <A < z;
j=1,2,-+-, k. For 0 < a £ 2 we now define the integral ji%g(/l) dF(2) as

ft,9(NdF() =Y -1 9,[F(z;—0)— F(z;_, +0)]
(keeping in mind that F(x) is left continuous). It follows easily from the definition
that [*, g(A)dF(2) is a stable variable of type a. From Lemma 3.1 for | S a < 2t
follows that
(15249 aFA|I)f = [[X5 -1 9,(F )= Flz;- 0|
= Y19, lTIiFz) = Fz;- [T = [24 |g@|*d[[FA)[*

1t therefore follows for step functions anyway if 1 < « < 2 that
1259 dF ]| = (f24 lg@*d[|[FD|[ "
In a similar manner it can be shown thatif 0 < o < 1
1§25 90 dF Q|| = 24 |gD[*d|[FR)|
We therefore have the result

LEMMA 3.3. The norm of the stable variable j"i,} g(A) dF(A) is the same as the L*
norm of g with respect to the measure d||F(3)||* if 1 £ o« < 2 or with respect to the
measure d||F(2)|| if 0 < a < 1 if g(4) is a step function.

Let now f(4) be an arbitrary function in L*and 1 £ « < 2. It follows either by or
from the definition of L* that the step functions are dense in L?, and therefore there
is a sequence of step functions g,,(4) such that

lim, . o [% 4 |gu(D)—f (D] d ||[FR)||* = 0.

It follows that the sequence of stable variables, [*,g,(4)dF(1), is a Cauchy
sequence, since the {g,(4) } is in L* and the norms are the same. We now define
[X,f(HdF(A) to be

[ (A) dF(2) = lim,,, o [ 4 gm(4) dF(D).
Since the characteristic functions of %, g,(4) dF(4) are
exp[—[24 |9 (D d||[FD|["|u[]

[Lemma 3.3], it follows that the characteristic functions of ji% gm(A)dF(2) are
converging to the characteristic function

exp[—[2, [l aF ]| M
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Since this characteristic function is continuous at zero, it follows from P. Lévy’s
continuity theorem, Loéve [6], page 191, that ji%f (A)dF(A) has characteristic
function

exp [ =1, [/ D[ d|[FDI[*[w[]-

It has therefore been shown that [*,f(1)dF(4) is a stable variable of type o and
norm ([, |f(D|*d||F(A)||H**. A similar argument shows for 0 <a <1 that
P_ 1 f(A)dF{4) can be defined if f(4) is in L* and that it is of type « and norm
J£4 ]/ ()|*d||F(A)||. The proceeding results will be stated as a theorem.

THEOREM 3.1. If 1 < a £ 2, and f(A) is in L* of d||F(A)||*, then the stochastic integral
ji 1f(A) dF(A) can be defined. It is a symmetric stable variable of type o and norm

VI Ol

If 0<a<1 then [t ,f(2)dF(4) is also a symmetric stable variable of type o and
norm

falf @l d|lFDl-

COROLLARY 3.1. The space L* of d||F(3)||* and the space of stable variables of the
Sorm [t,f(A)dF(A) where f(A)eL* are isometrically isomorphic if 0 <o <1. If
1 < o« < 2 then the space L* of d||F(4)|| and the space of stable variables of the form
X ,f(A) dF (%) where f(A) € L* are isometrically isomorphic.

ProoOF. The correspondence for f(4)e L* with | L4 3 f(A) dF(2) is easily seen to be
one to one and linear. Theorem 3.1 shows that it is norm preserving.

4. A representation theorem. In this section a representation theorem will be
given for a finite number of stable variables of type «. First, however, a lemma is
needed.

LemMa 4.1. If x;, i = 1, * - -, n are stable variables type o, then for 1 S a <2
Xt = fdG(ys,--, ya),
andfor0<a <1
il z faG(ys, -+, v,
where dG(y,, ***, y,) is the measure defined by (2.2).
PRrOOF. (2.2) states that the joint characteristic function of x4, - *+, x,, is
exp[—J|ps yi+e g yu*dG(y1, -, ya).
It follows that the characteristic function of x; can be written as
ch.f. (x;, w) = exp [—I II‘I y,|°'dG(y1, L V)
By definition for 1 < o« < 2 ch.f. (x; 5 u)) = exp [—||x,||* |,|*]. It follows that
Zi|ed* = X wil* a6, -+ y)-
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Since all the mass of dG(y,, ***, y,) is on the n dimensional unit sphere, it can
be assumed |y,| < 1. Since a < 2, it therefore follows that |y,|* = |y,|2. Therefore

z;’f )hladG(J’u“’,yn) g I27|y1|2d6(y1””syn)
=jdG(y1a'“ayn)

since all the mass of dG(y,, ***,y,) is on Y 7|y|*> = 1. Since a similar argument
holds if 0 < a < 1 the lemma is proved.
We now prove the main theorem of this section.

THEOREM 4.1." If X, x,, ***, X, is a set of stable variables of type «, then there is
an independent increments process of type a, F(2), and a set of functions f,(A) in L*
such that )

[’V,=Ié*fl(l)dF(l) l=1,2,°",n
have the same joint distributions as the x,. Therefore the W, process is probabilistically
equivalent to the x, process.

ProoF. From (2.2) it follows the characteristic function of x,, -, x, may be
written in the form

ch.f. (x19' Rt ST 's#n) = exp[—j’ I#l y1+' ~'+,u,,y,,i“dG(y1, o 'syn)]'

Let T(1) = f1(4), - -+, f,(A) be a 1-1 measurable and measure preserving mapping
from [—4, 1] to the unit sphere in n dimensions; for existence of this kind of
mapping see for example Halmos [2] page 153.

We can now write the characteristic function of x,,---, x, as (see Halmos [2]
page 163)

exp[ =L, [ /i D+ + S (D AGU1 (D), -+ £(3))-

If weletfor 1 < « < 2 (Halmos [2] page 179 and Lemma (4.1)1dG(f1(4), " - -, f(A) =
dF*(2) then we may write

(4.1) chf (e, x50y, ) = exp[— 2y | fi(D) + -+ f D dF*(A)].

Define now an independent increments process F(4) of type « by F(—4) = 0 and

“F(iz)+F(;~1)”a = F*(A)—F*(4;) for —$=<A <A =%

This gives the transition probabilities for the Markov process F(4) and therefore
defines it as a process.

Since by construction the f,(A) are measurable and integrable with respect to
dF*(2), it follows by Theorem 3.1 that we may define W) = ji WS(ADAF(A).

! Proof of this theorem for even countably many x’s has eluded the most vigorous efforts of the
author.
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The characteristic function of W, -+ -, W, can be written as
Ch.fe (W, Was lay " < )
=chf.(u Wi+ +u, W, 1)
=exp[—|[lus Wi+ +m W]
= exp[— || [ fu @V AFG)++ -+, 2 4 S (W) dF D[],

By an easy exercise in integration theory, it can be shown that the finite
summation and the integral signs may be interchanged and therefore the joint
characteristic function of W, - -+, W, may be written as

exp[—||[E 3 ( f1) + 4 uafu(A) AF(R)| .
By Theorem 3.1 this is :
exp[— 1, |[uf1(D) +pafo(D+ -+ S D[ 4| [FD*].
Since by construction d||F(4)||* = dF*(2) the last expression is
exp[—[2; | fi() + - + (D) dF*(A)].

But this expression is the same as (4.1), the joint characteristic function of x4, *, x,,
and therefore the W and x variables have the same joint characteristic function
which shows they have the same probability structure. Since a similar argument
may be used if 0 < a < 1, the theorem is proved.

5. Some properties of symmetric stable variables. In this section some elementary
consequences of the definitions and theorems of this paper will be given.

THEOREM 5.1. If0 < a0 < 2 and if
x; = [2,f1(AdF(A) and x, = [Y,f(4)dF(4),

whe(e F(A) is an independent increments process of type a, then x is independent of
x, if and only if fi(A)f>(A) = O except (possibly) on a set of d||F(A)||* measure zero
(d||F(3)|| measure if 0 < a < 1).

PrOOF. x, and x, are independent if and only if their joint characteristic function
factors. Therefore x, is independent of x, if and only if

Tl fu() + maf oI d | FGD
= Hﬂl JELf (A AFQ) +u, [E 4 f2(2) dF(/l)“a
(.1 = —log[ch.fi(u x; +p,X,31)] = —log[ch.f. (x;, %5 sy, H2)]
= —log[ch.f.(xy; 1) ch.f.(x551,)]
—log [ch.f.(xy; u )] —log[ch.f.(x5; u,)]
— il P EG+ sl B4 ol [FCO
for 1 £« <2and all real y, and y, .
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If £1(A)f>(4) = 0 except on a set of measure zero, then clearly (5.1) holds and the
if part of the theorem follows. A similar proof holds if 0 < « < 1. For the only if
part, we note for l < a <2

I#lfl('l) +ﬂ2f2()~)|“ =< Iﬂl |“ Ifl(/l)|“+ Iﬂzla ifz(/l)la-

Suppose f3(A)f2(4) # 0 on the set of positive measure d||F()||*. If f,(4) > 0, £,(1) < 0
then choose y; = p, = 1, then the right-hand side is | f;(4)+/>(4)|* which is strictly
less than | f;(A)|*+|f2(4)|* and hence

§E sl f i@+ fa DA |[FA* < | [* 524 DI FD
i [ [ LD [ [F)

for such uq, pu,. If £1(1) >0, f,(4) >0 or f1(1) <0, f(1) <O0; choosing u, =
—pu, =1 we have the same inequality. This contradicts (5.1). A similar proof

holds if0 <o < 1.

If « = 2, then the stable variables become Gaussian (normal) and, as is easily
seen, the condition for the independence of x; = *_% fi1(A)dF(4) and x, =
{2 4f2(A) dF(2) is that

P fi(DLA) )| FD])? =0,
(their correlation coefficient is zero). This is an example of the fact that analysis of
stable variables for a < 2 is considerably different than for Gaussian variables. It
is clearly much harder for stable variables to be independent. (Independence is no
longer a unitary invariant.)

It is shown in most elementary books on statistics that if x; and x, are Gaussian
variables then x; and x, may be written as
(5.2) x,=23=1 a1y I=1,2,

where y; and y, are independent. It might be conjectured that (5.2) holds for
stable variables as well and therefore that the complicated representation Theorem
4.1 is unnecessary, for at least a finite number of x,’s anyway. Let, however,
1 < a <2 and let F(1) be an independent increments process of type a such that
|[FA)—FA||* = 2,— 4, for =3 <A, <2, <% Let x, =[%,dF(J) and x, =
{24 AdF(4). Then reasoning as before it follows that
chuf.(xq, X35 115 42) = CXP[_”xl Pyt X, sza]
(5.3) ‘ = exP[—l”é;(ﬂl +/1H2)dF()~)”a
=exp[— [, |u; + | d||F(D)||7]
=exp[— ¥, |u +An,|"dA].
Suppose now that x,; and x, have a representation of the type

Xp=Yj=1aY; I=1,2
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and where n is some finite number. Then from Lemma 3.1 it follows that
Ch.f. (1, %23 pys Ha) = exp [ — |1 sy +%2 b2 |]
(5.4) = exp [~ {2 (as; 1 +az;2)y,117]
=exp[—Yj]as; i +az;ma|*||y|[].

If x; and x, had the two representations, it would follow that the derivatives of
the right-hand sides of (5.3) and (5.4) would be the same but it can be seen by
explicit evaluation of the integral in the exponent of the right-hand side of (5.3)
that it has two continuous derivatives with respect to u, if y; # 0. On the other
hand the second derivative of the term in the exponent of (5.4) with respect to p,
for a,; # 0 has discontinuities at u, = —a,; u,/a,;.

Since at least one a,; is not zero and since the same type of argument holds if
0 <a < 1, it follows that in general representation of even two stable variables of
type a, 0 < o < 2 as the linear combination of a finite number of independent variables
of the same type is impossible.

If x, ", x,, y are Gaussian variables, then it can be shown (in many ways)
that there are numbers aj,'-*,a, which minimize ||y—37x,a/|| and that
® = y—Y7} x4, is independent of all the x;’s. It is an easy corollary of Theorem 5.1
that in general a,, ‘-, a, cannot be found so that w is independent of x,, x,,
-+, X, if 0 < a < 2. However, they can be found so that Hy—Zx, a,|| is minimized.

THEOREM 5.2. Suppose
x; = [24f(A)dF () J= 1, .n4l

where F(X) is an independent increments process of type o, 1 < o < 2 and suppose the
f(2) are linearly independent with respect to the measure d||F(A)||* then in order that
the random variable P, =Y x,a, should deviate least in norm from x,, , it is sufficient
and (for « =1 in the case where the difference f,, (A)—Y x,f/(2) is different from
zero almost everywhere dHF(/l)H" measure) it is also necessary that for any f(A)
I=1, -+, nthe equality

LD e kD =Y afi (W]~ sgn(fre (D)= Y aif( D)) d||[FD||*= 0
should hold.

PrOOF. The proof follows immediately from a theorem proved in Timan [7]
page 64, where a similar theorem for L* spaces is proved, since there is an isometric
isomorphism between L* and the linear space generated by the x,’s.

A number of the other results from the second order theory have analogies for
the symmetric stable process.
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