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PRODUCTS OF TWO POLYKAYS WHEN ONE HAS WEIGHT 5!

By P. N. NaGgaMBAL AND D. S. TrRACY

Michigan Technological University and University of Windsor

1. Introduction and summary. Fisher [5] introduced a combinatorial method to
obtain sampling cumulants of k-statistics as linear functions of cumulants of an
infinite parent population. Kendall [6] systematized Fisher’s combinatorial method
by providing rules for the same and their proofs. Tukey [11] considered the sample
statistic k,, __in order to simplify the presentation of sampling moment formulae
of the k-statistics when samples are drawn from a finite population. These &, ...,
termed generalized k-statistics by Abdel-Aty [1] and polykays® by Tukey [12],
were in fact considered earlier by Dressel [3] for the seminvariant case (r, 5, =+ # 1).
Wishart [13] modified the combinatorial method to obtain products of k-statistics
as linear combinations of polykays, obtained products of polykays by algebraic
manipulation, and applied these to the case of a finite population. He provided
formulae for products of k-statistics through weight 8, and of polykays through
weight 6. These have appeared again in David, Kendall and Barton ([2], 196—
200, Table 2.3). Schaeffer and Dwyer [8] provided formulae for products of
seminvariant polykays through weight 8. Tracy [9] supplied formulae for all
products of polykays of weight 7.

Dwyer and Tracy [4] modified and extended the combinatorial method to obtain
products of two polykays. They presented general formulae resulting from this
method for products k(P)k(Q), where k(P) =kp =k,,...,,_ is a polykay having
any weight and weight(Q) £ 4. Such formulae may be looked upon as rules of
multiplication of a polykay by another of weight up to 4. It is the purpose of this
paper to extend these results to the case of weight(Q) = 5. The formulae are
presented together for compactness in a tabular form in Table 1, each column of
which reads a formula for some Q. Checks indicated in Section 4 are applied more
easily in the tabular presentation. Illustrations showing the use of the formulae
appear in Tables 2 and 3.

2. Notation. The formulae feature the notation and concepts of Dwyer and
Tracy [4], to which reference might be made for a more detailed presentation of the
notation and basic theory. Thus P,»|2 denotes a 2-part partition of p; and has
C(P; | 2) for its combinatorial coefficient. The collection of polykays having the
same pattern function and combinatorial coefficient is indicated by a symbolic
addition @.
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2 Kendall and Stuart [7] call these multiple k-statistics or /-statistics and remark [7, p. 304] that
“the l-statistics are called ‘polykays’ by some American authors, but we feel that there are limits
to linguistic miscegenation which should not be exceeded.” David, Kendall and Barton 2],
however, call them polykays.

1114

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[& )2
The Annals of Mathematical Statistics. BINORN

WWw.jstor.org



PRODUCTS OF TWO POLYKAYS WHEN ONE HAS WEIGHT 5 1115

3. Use of Table 1. This table presents formulae for each of the seven cases
k(P)k(Q) where weight(Q) = 5. The seven products appear at the head of the
columns. The linear expansion for each appears in that column. There are 74
terms possible in such expansions, which are listed and numbered. However, not
every term appears in a given expansion. If there is no entry in a column against a
term, it denotes that that term does not appear in the expansion, i.e. the corre-
sponding coefficient is zero. The coefficient of a term in the expansion of a product
is obtained by dividing the corresponding entry by the entry in the “Divisor”
column. Terms are arranged in blocks according to a common divisor.

As an illustration, one would read

(1) k(PYK(5) = k(P5)+ k(P®5)/n — Sk(P@41)/n— 10k(P@®32)jn® +- - - .

The X’s in terms number 37 through 74 indicate summations over all possible
partitions of the indicated order. By the pattern rule [4], all terms represented under
a given X have the same coefficient.

4. Checks. The formulae have been checked by various methods. A useful
expression for checking all the seven formulae simultaneously is [4]

()] KP)k(1) =3 ()W) Y C(DMk(POU, T)[n*""

where 0 < u < 5,t = 5—u, tis the order of T. The detailed expansion of k(P)k>(1),
as obtained from (2), appears in the last column of Table 1. (Multiplication by n°
saves writing denominators). Also k°(1) may be expressed as a linear function of
polykays of weight 5, as in [13], so that

(3)  K(P)K3(1) = k(P)k(5)/n* + Sk(P)k(41)/n® + 10k(P)k(32)/n*
+ 10(P)k(31%)/n? + 15k(P)k(221)/n? + 10k(P)k(213)/n + k(P)k(1%)

as shown in the last row of the table. A check for the coefficients of a particular
term appearing in the various formulae is thus obtained by verifying that the entries
in that row multiplied by the corresponding ones in the last row add up to the
product of the last two entries in the row. Thus, for term number 35, kK(P@®1%4, 1),

(4) —6(5n?) +4(10n3) + 1(151%) — 3(10n*) + 5(n®) = n“(5n).
Another check for Q involving unit parts ([4], pége 1185) has also been applied.

5. Applications and illustration. The general formulae appearing in Table 1 may
be used to obtain linear expansions for specific products by specifying P. To con-
sider a simple illustration, we choose P of low weight, say P = 21, and consider the
product k(21)k(5). Here P;=2,P;=1 and many terms in the expansion of
k(P)k(5) do not appear because of the small number of parts involved. The terms
which appear are listed in Table 2.
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TABLE 1
Formulae for k(P)k(Q) with weight (Q)=5

Term k(P)k(5) k(P)k(41) k(P)k(32)

NNV A WN -

k(P5)
k(P41)
k(P32)
k(P312)
k(P221)
k(P213)
k(P15)

1

10
11
12
13
14
15
16
17
18
19

k(P®5S)
KP®4,1)
KP®3,2)
kK(P®2,3)
kKP®1,4)
KP®3,1?)
kKP®2,21)
KP®2,13)
KP®1,31)
KP®1,2?)
KP®1,21%)
KP®1,14)

20
21
22
23
24
25
26
27
28

kK(P@41)
k(P®32)
KP®31, 1)
KP®22,1)
KP®21,2)
KP®12,3)
KP@21, 12)
KP®12,21)
KPD12,13)

-5
-10

—4
-3

-3
-1

29
30
31
32
33

k(P®31%?)
k(P®221)
k(P®212,1)
k(P®13,2)
k(PP13,1%)

20

-4
-3
12

-1
-3

34
35

k(P®213)
k(P®14,1)

12
-6

36

k(P®1%)
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K(P)k(312) k(P)k(221) kK(P)k(21%)  k(P)k(1%) Divisor nSk(PYk3(1)
1 n
1 5n?
1 10n2
| 1 104°
1 1 1573
1 1 10n*
1 1 n’
n 1
n Sn
n 101
n 10n
n Sn
1 n 10n?
2 n 30n?
1 n 10n3
2 n 20n?
1 n 1512
3 n 30m3
5 n S5n*
n® 5
n@® 10
2 n® 20n
1 n® 15n
2 n® 30n
1 n® 10n
-3 3 n® 30n?
-2 3 n® 30n2
—1 10 n® 1013
1 n® 10
1 nt® 15
-6 -2 3 n® 30n
-2 1 n® 10n
2 -3 10 n® 10n2
-3 -2 1 ne® 10
4 1 -3 5 n“® Sn

2 1 -1 1 n® 1
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TABLE 1—continued

Term k(P)k(5) k(P)k(41) k(P)k(32)

37 X C(P;|2)k(P:P;|2041) 5n -1
38 X C(P|2)k(P:P;|2D32) 10n —1
39 Y C(P;|2)k(P1:P;|2®31) 4n
40 Y C(P;|2)k(P1:P;|2@23) 3n
41 Y C(Pi| k(P2 P;|2821) 3n
42 Y C(P;|2)k(P3:P;|281?) n
43 Y C(P;| Dk(P1%:P;|2821)
4 ¥ C(P|2k(P21:P;|2D13)
45 T C(P;| 2k(P13:P;|281?)
46 3 C(P|3)k(P:P,|3@31?) 10n? —4n —n
47 Y C(P,|3)k(P:P;|3@221) 15n2 —3n —3n
48 T C(P,| 2k(P@1:P;|231) —20n 4n 2
49 Y C(P: | Dk(P@1:P,|222) —15n 3(n—1) 3
50 3 C(P;|12)k(P@2:P|2®21) —30n 6 3n
51 Y C(P | 2)k(PD3: P |212) —10n 4 n—1
52 3 C(P,|3)k(P1: P, 3@212) 6n?
53 Y C(P,|3)k(P2:P,|3013) n?
54 3 C(P;|3)k(P12: P, | 3®13)
55 Y C(P | 2k(PD2,1:P,1281?) —6n
56 3 C(P;|12)k(PD1,1:P,;|2®21) —12n
57 X C(P | Dk(PD1,2: P;|2®1?2) —3n
58 S C(P,|2k(PD1,12:P,|2@12)
59 3 C(P;|4)k(P:P,|4@213) 10n%(n+1) —6n(n+1) —2n(2n—1)
60 3 C(P|3)k(P®1:P,|3®21%) —30n(n+1) 6(n* +3) 6(2n—1)
61 3 C(P|3)k(PD2:P|30D13) —10n(n+1) 6(n+1) n+2)(n-1)
62 3 C(P|3)k(P®1,1:P,|3013) —4n(n+1)
63 X C(P|2)k(P@®21:P,|2812) 60n —6(n+3) —3@2n-1)
64 3 C(P/|2k(P®12:P,|12021) 60n —12n —3(n+2)
65 S C(P/|4)k(P1:P,|4@1%) n2(n+1)
66 3 C(Pi|2k(P@12,1:P;|2@12) 12n
67 TC(Pi|2)C(P;12)k(P:P;|2®21:P;|2®1%) —10n(n—1) 6(n—1) n*—2n+2
68 3 C(P,|5)k(P: P,|5@15) n*(n+5) —n2(n+5) —n2(n—1)
69 X C(P/|4Hk(PD1:P;|14®1%) —5n2(n+5) n(n*+2n+21) Sn(n—1)
70 X C(P|3)k(PD12: P 13D13) 20n(n+2) —4n*+2n+6) —(n*+8n—8)
71 S C(P |1 2)k(PD13: P, | 2®12) —60n 12(n+1) 5n
72 Y C(Pi|13)C(P, |1 k(P:P|3@13: P;|2812) —n2(n—1) n(n—1) n(n?—2n+2)/10
73 X C(Pi12)C(P; |1 2)k(P1: P, | 2@12: P;| 28 12) —n(n—1)(n—4)
74 T C(P |1 2)C(P; |1 2k(PO1: P 12@1%: P, 12012 10n(n—1) —(n+6)(n—1) —(2-2n+2)

nSk(P)k5(1) n 5n? 10n?




PRODUCTS OF TWO POLYKAYS WHEN ONE HAS WEIGHT 5§

1119

k(P)k(31%) k(P)k(221) k(P)k(213)  k(P)k(1%) Divisor n*k(P)k5(1)

n? 0
n? 0
-2 n® 0
-1 n® 0
-2 n® 0
-1 n(2) 0
3n -3 n® 0
2n -3 n® 0
n —-10 n® 0
2 n® 0
2 n® 0
-2 n® 0
-1 n® 0
-2 n® 0
-1 n®» 0
—6n —2n 6 n® 0
—2n 2 n® 0
n? —3n 20 n® 0
6 2(n—1) -3 n® 0
6n 4 -6 n® 0
2(n+1) -3 n® 0
—3n 3(n+1) -30 n® 0
6n 4n -6 n® 0
—6n —2(n+3) 6 n“® 0
-6 —2(n—1) 2 n® 0
2(n*+n+4) 4(n—1) —6(n+1) 40 n® 0
9 2n -3 n“ 0
3n 6 -3 n® 0
—2n(n+1) —n(n—1) 6n -30 n® 0
—6(n+1) —2n 3(n+3) -30 n® 0
—n —2n/3 1 n“ 0
2n(n+2) 2n(n—1) —6n 24 n® 0
—2(n*+2n+6) —(n*+5n—6) 6(n+1) -30 n® 0
n2+2n+16 2(3n—2) —(3n+8) 20 n® 0
—(3n+8) —2(n+1) n+6 -10 n® 0
—(n*+8n—28)/10 —(n*—2n+2)/5 n/2 -2 n® 0
2(n*—5n+4) (n*=3n+3)(n—4)3 —n(n—4) 5(n—4) n® 0
3n—2 (" —n+3)/3 —(+1) 5 n® 0

1043 1543 10n* n® Check
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TABLE 2
Formula for k(P)k(5), with P = 21

No. Term Interpretation Coefficient

1 k(215) k(521) 1

8 k(21®5) k(71)+ k(62) 1/n
20 k(21@41) k(62) + k(53) —5/n®
21 k(21®32) k(53) + k(44) - 10/n®
37 S CRI2)k(21:2|2041) 2k(521) 5/(n—1)
38 >CRI2)k(21:212832) 2k(431) 10/(n—1)
48 > CQ2112)k2101:212@31) 2k(422) —20/(n—1)®»
49 >CRIDk21D1:2(2@2?) 2k(332) —15/(n—1)®
50 > CQRIDk(21@2:2]12@21) 2k(332) -30/(n—1)®»
51 > CQRI2kQ21®3:2]1201%) 2k(422) —-10/(n—1)®»

TABLE 3

Formula for k(P)k(21), with P = S

Term Interpretation Coefficient
k(521) k(521) 1
k(5@2,1) k(71) 1/n
k(5@1,2) k(62) 1/n
SCGIDk(5:512®21)  5[k(62)+k(53)]+ 10[k(53) + k(44)] —1/n®
> C(512)k(51:512011) 2[5k(521) + 10k(431)] 1/(n—1)
S CGI3)k(5:513@111) 6[10k(422) + 15k(332)] —1/(n—1)®

The linear expansion for k(21)k(5) is obtained as the sum of the products of the
entries in the last two columns. On collecting terms, we get

k(21)k(5) = k(71)/n+ (n— 6)k(62)/n'® — 15k(53)/n® — 10k(44)/n>
5) +(n+9)k(521)/(n — 1) +20k(431)/(n — 1) — 60k(422)/(n — 1)'>)
—90k(332)j(n— 1)@,

It may be noted that the last six terms in Table 2 call for partitioning 2 into two
parts and the only possibility is 1, 1. These, when added to the two parts of 5 in
all possible ways, produce the coefficient 2 in the third column.

The product k(21)k(5) could be considered alternatively, and perhaps more
simply, as k(P)k(21) with P = 5. Using the expansion for k(P)k(21) in [4], and
ignoring terms which do not appear with a one-part P, we get Table 3.

Collecting terms again leads to (5). Generally, to expand k(P )k(Q ) with minimum
effort, one should choose P to be the one with larger weight. Thus the formula for
k(P)k(5) is used to greater advantage when weight (P) = 5.

It may be remarked that the formula (5) obtained above for k(21)k(5) is not yet
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available in literature as [2], [13] give formulae of weight 8 for products of k-
statistics only and [8] covers products of seminvariant polykays. This example thus
illustrates how the general formulae of this paper may be used to obtain formulae
for specific products, in extension of those given earlier [2], [8], [9], [13]. Some of
the results here are in fact used in obtaining products of weight 9 [10].

We feel, however, that the main point in obtaining general formulae of the type
presented in Table 1 is not as much to be able to obtain specific ones from them as
it is to set up general multiplication rules applicable to any k(P), providing an
analysis of the coefficients obtained in specific products, and thus to be able to
classify a multitude of specific products formulae into certain types.
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