ON A CLASS OF UNIFORMLY ADMISSIBLE ESTIMATORS OF A FINITE POPULATION TOTAL¹

By W. A. ERICSON

University of Michigan

1. Introduction. In a recent paper Godambe (1969) established the uniform admissibility of a class of estimators of a finite population total. In the present note we extend this class. The notation and definitions of this section follow that of Godambe (1969).

Any subset s of the integers, $1, \dots, N$, which label the N distinguishable population units, is called a sample. A sampling design is defined by a probability mass function, p, on S, the set of all possible samples. Let x_i be the real (unknown) value associated with the *i*th population unit and let $\mathbf{x} = (x_1, \dots, x_N) \in \mathbb{R}^N$. Any real-valued function $e(\mathbf{x}, s)$ which depends on \mathbf{x} only through those values x_i for $i \in s$ will be termed an estimator. We will be concerned with estimation of the population total, $T(\mathbf{x}) = \sum_{i=1}^{N} x_i$, under quadratic losses.

DEFINITION 1.1. For any given sampling design p, an estimator e' is said to dominate the estimator e if for all $x \in R^N$

$$\sum_{S} p(s) [e'(s, \mathbf{x}) - T(\mathbf{x})]^2 \le \sum_{S} p(s) [e(s, \mathbf{x}) - T(\mathbf{x})]^2$$

with strict inequality for at least one x.

DEFINITION 1.2. A pair (e', p') of an estimator e' and a sampling design p' is said to *uniformly dominate* another pair (e, p) if for all $\mathbf{x} \in \mathbb{R}^N$

$$\sum_{S} p'(s) [e'(s, \mathbf{x}) - T(\mathbf{x})]^2 \leq \sum_{S} p(s) [e(s, \mathbf{x}) - T(\mathbf{x})]^2$$

with strict inequality for at least one x.

The notions of *admissibility* of an estimator for a given sampling design and that of *uniform admissibility* of a pair (e, p) for p in a class, C, of designs are then defined in the standard manner.

If $C_n = \{p \mid \sum_s p(s)n(s) = n\}$ where n(s) is the cardinality of s then the main result of Godambe (1969) is that with respect to the class C_n the pair (e^*, p^*) is uniformly admissible where $e^*(s, \mathbf{x}) = \sum_{i \in s} x_i + \sum_{i \notin s} \lambda_i$, $(\lambda_1, \dots, \lambda_N)$ being any fixed values) and where p^* is any member of C_n .

DEFINITION 1.3. For 0 < n < N, $D_n = \{p \mid p(s) = 0 \text{ if } n(s) \neq n\}$ i.e., D_n is the class of fixed size sample designs.

The main result of this note is then

Received July 25, 1969; revised December 19, 1969.

¹ This research was partially sponsored by the National Science Foundation under Grant NSF-GP-8881.

THEOREM 1.1. With respect to the class of designs D_n the pair (e^*, p^*) is uniformly admissible where

(1.1)
$$e^*(s, \mathbf{x}) = \alpha_n \sum_{i \in s} x_i + \beta_n$$

 α_n and β_n being any fixed arbitrary values such that $1 < \alpha_n < N/n$, and p^* is any member of D_n .

Note that for this class of estimators the coefficient of $\sum_{i \in s} x_i$ is realistically allowed to depend on the sample size, n. A proof of this theorem as well as some other results are given in the next section. A brief discussion of the estimator is given in Section 3.

2. Proof of main and supplementary results. It is clear that for any prior distribution, ω , on \mathbb{R}^N

(2.1)
$$e(s, \mathbf{x}) = \sum_{i \in s} x_i + \sum_{i \notin s} E_{\omega}(x_i \mid s, x_j : j \in s)$$

is a Bayes estimator of $T(\mathbf{x})$ provided that the conditional expectation above exists. The following is then immediate.

THEOREM 2.1. For any specified fixed values β_n and $1 < \alpha_n < N/n$ the estimator, $e^*(s, \mathbf{x})$ in (1.1), is a Bayes estimator under any prior distribution, ω , for which

$$\sum_{i \notin s} E_{\omega}(x_i \mid s, x_j : j \in s) = (\alpha_n - 1) \sum_{i \in s} x_i + \beta_n$$

for all $x \in R^N$ and all s for which n(s) = n.

To prove admissibility properties of e^* we will utilize the following definitions:

DEFINITION 2.1. Let Ω denote any class of discrete prior distributions on R^N such that for any point $\mathbf{x}_0 \in R^N$ there exists an $\omega \in \Omega$ such that $\omega(\mathbf{x}_0) > 0$.

Definition 2.2. Let Ω^* denote the class of discrete prior distributions, ω , on R^N such that

- (i) x_1, \dots, x_N when distributed as ω are exchangeable and possess a variance, σ_{ω}^2 and
- (ii) For all $\mathbf{x} \in R^N$, all s for which n(s) = n, and all $i \notin s$ $E_{\omega}(x_i \mid s, x_i : i \in s) = \alpha_n' \sum_{i \in s} x_i + \beta_n'$, α_n' and β_n' being any fixed values satisfying $0 < \alpha_n' < 1/n$. In order to prove the main results we use the following lemmas.

LEMMA 2.1. (Godambe) Let Ω satisfy Definition 2.1. If e, given in (2.1), is a Bayes estimator for all $\omega \in \Omega$ and if p is any arbitrary sampling design, then e is admissible.

LEMMA 2.2. For any point $\mathbf{x}_0 \in \mathbb{R}^N$ there exists an $\omega_0 \in \Omega^*$ such that $\omega_0(\mathbf{x}_0) > 0$.

PROOF. For the given $\mathbf{x}_0 = (x_{10}, \dots, x_{N0})$ let y_1, \dots, y_{r-1} be the set of distinct values of the x_{i0} 's. Let $Y = \{y_1, \dots, y_{r-1}, y_r\}$ where y_r is determined by (2.3) below. For any $\mathbf{x} \in R^N$ let n_i be the number of the N coordinate x_j 's equal to y_i

 $i = 1, \dots, r$. We then assign a discrete probability distribution to R^N as follows. Let

(2.1)
$$\omega_0(\mathbf{x}) = 0$$
 if $\sum_{i=1}^{r} n_i < N$,

$$=P_r(n_1,\cdots,n_r)=\frac{\Gamma(N+1)\prod_1'\Gamma(n_i+\varepsilon_i)\Gamma(\varepsilon)}{\prod_1'\Gamma(n_i+1)\Gamma(N+\varepsilon)\prod_1'\Gamma(\varepsilon_i)} \quad \text{if} \quad \sum_1'n_i=N;$$

where $\varepsilon_i > 0$, $n_i = 0, 1, \dots, N$, $\varepsilon = \sum_{i=1}^{r} \varepsilon_i$.

This distribution, variously called the Dirichlet-Multinomial (Ericson (1969)), the compound multinomial (Mosimann (1962)) etc. clearly satisfies the discreteness, exchangeability, and $\omega_0(\mathbf{x}_0) > 0$ requirements. It also is easily seen that under this prior $\sigma_{\omega_0}^2 = \sum_1^r y_i^2 \varepsilon_i / \varepsilon - (\sum_1^r y_i \varepsilon_i / \varepsilon)^2$. In addition, it can be shown (Ericson (1969)), that for $i \notin s$

(2.2)
$$E_{\omega_0}(x_i \mid s, x_j : j \in s) = \sum_{i \in s} x_i / (n+\varepsilon) + \sum_{i=1}^r y_i \varepsilon_i / (n+\varepsilon)$$

and thus it is clear that one can choose ε , y_r , and the ε_i 's such that for any specified $0 < \alpha_n' < 1/n$ and $-\infty < \beta_n' < \infty$

(2.3)
$$\alpha_n' = 1/(n+\varepsilon)$$
 and $\beta_n' = \sum_{i=1}^{r} y_i \varepsilon_i/(n+\varepsilon)$.

From these two lemmas we then have

THEOREM 2.2. For any fixed sample size, p, the estimator e^* in (1.1) for any fixed β_n and $1 < \alpha_n < N/n$ is admissible.

To prove Theorem 1.1 we utilize the following result.

THEOREM 2.3. (Godambe) Let Ω satisfy Definition 2.1. If e, given in (2.1) is a Bayes estimator for all $\omega \in \Omega$ and if C is a class of sampling designs such that for all $p \in C$ and all $\omega \in \Omega$ the Bayes risk is independent of $p \in C$, i.e.,

(2.4)
$$\sum_{R^N} \omega(x) \{ \sum_{s} p(s) [e(s, x) - T(x)]^2 \} = c_{\omega},$$

where c_{ω} does not depend upon p, then with respect to the class C the pair (e, p), where p is any element of C, is uniformly admissible.

The proof of Theorem 1.1 then follows from Theorem 2.3, Theorem 2.1 and Lemma 2.2 by taking $\Omega = \Omega^*$ in Theorem 2.3, taking $C = D_n$, taking e as in (2.1), and noting that for any $\omega \in \Omega^*$ the Bayes risk of e is constant over $p \in D_n$. The latter observation follows since for $\omega \in \Omega^*$, by (2.1) and Definition 2.2, $e(s, \mathbf{x}) = [(N-n)\alpha_n'+1]\sum_{i \in s} x_i + (N-n)\beta_n'$.

Hence, on interchanging the order of summation and summing first on $x \in \mathbb{R}^N$ such that x_i for $i \in S$ are fixed, the Bayes risk, (2.4), becomes

$$(2.5) \sum_{S} p(s) E_{x_i: i \in s} \operatorname{Var} \left[T(\mathbf{x}) \mid s, x_i: i \in s \right]$$

$$= \sum_{S} p(s) \left[\operatorname{Var} \left(T(\mathbf{x}) \right) - \operatorname{Var}_{x_i: i \in s} \left\{ E(T(\mathbf{x}) \mid s, x_i: i \in s \right\} \right]$$

$$= N\sigma_{\omega}^2 + N(N-1)\rho_{\omega} \sigma_{\omega}^2 - \left[(N-n)\alpha_n' + 1 \right]^2 (n\sigma_{\omega}^2 + n(n-1)\rho_{\omega} \sigma_{\omega}^2) \equiv c_{\omega}$$

for all $p \in D_n$ and where ρ_{ω} is the common correlation coefficient under $\omega \in \Omega^*$ of x_i and x_j . Finally we make the identification $\alpha_n = [(N-n)\alpha_n' + 1]$ and $\beta_n = (N-n)\beta_n'$.

3. Discussion. It follows as a simple corollary of Theorem 1.1 that with respect to D_n uniformly admissible estimators of $\mu(\mathbf{x}) = T(\mathbf{x})/N$ are given by

(3.1)
$$e_{\mu}(s, \mathbf{x}) = n\alpha_{n} \bar{x}/N + \beta_{n}/N \equiv a_{n}^{*} \bar{x} + \beta_{n}^{*}$$

where $n/N < \alpha_n^* < 1$.

Note that the uniform admissibility of the estimators in (1.1) and (3.1) for $\alpha_n = 1$ and $\alpha_n^* = n/N$ respectively was shown by Godambe (1969). The restriction $\alpha_n^* \ge n/N$ seems intuitively reasonable and under the class Ω^* of priors it corresponds to the restriction that $\text{Cov}(x_i, x_i) \ge 0$.

The class of estimators, (3.1), of $\mu(\mathbf{x})$ also has intuitive appeal from a Bayesian viewpoint for it has been shown (Ericson (1969)) that if $e_{\mu}(s, \mathbf{x})$, (3.1), is a Bayes estimator of μ for some $\omega \in \Omega^*$ then $\beta_n^* = (1 - \alpha_n^*) E(\mu(\mathbf{x}))$ and $\alpha_n^* = \text{Var}(\mu(\mathbf{x})) / \text{Var}(\bar{x})$ or $\alpha_n^* = \text{Var}(\mu(\mathbf{x})) / [\text{Var}(\mu(\mathbf{x})) + E_{\bar{x}} \text{Var}(\mu(\mathbf{x}) | \bar{x})]$. It then follows that e_{μ} has the interpretation of being a weighted average of \bar{x} , the sample mean, and $E(\mu(\mathbf{x}))$, the prior mean, with weights inversely proportional to the prior expectation of the sampling variance of \bar{x} and the prior variance of $\mu(\mathbf{x})$ respectively.

REFERENCES

- [1] ERICSON, W. A. (1969). Subjective Bayesian models in sampling finite populations (with discussion). J. Roy. Statist. Soc. Ser. B. 31 195-233.
- [2] GODAMBE, V. P. (1969). Admissibility and Bayes estimation in sampling finite populations V. Ann. Math. Statist. 40 672-676.
- [3] Mosimann, J. E. (1962). On the compound multinomial distribution, the multivariate β -distribution, and correlations among proportions. *Biometrika* 49 65–82.