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ON A CLASS OF UNIFORMLY ADMISSIBLE ESTIMATORS
OF A FINITE POPULATION TOTAL'

By W. A. ERICSON
University of Michigan

1. Introduction. In a recent paper Godambe (1969) established the uniform
admissibility of a class of estimators of a finite population total. In the present note
we extend this class. The notation and definitions of this section follow that of
Godambe (1969).

Any subset s of the integers, 1, - -+, N, which label the N distinguishable popula-
tion units, is called a sample. A sampling design is defined by a probability mass
function, p, on S, the set of all possible samples. Let x; be the real (unknown) value
associated with the ith population unit and let x = (x;, -, xy)€ RY. Any real-
valued function e(x, s) which depends on x only through those values x; for ies
will be termed an estimator. We will be concerned with estimation of the population
total, T(x) = ¥ x;, under quadratic losses.

DEerINITION 1.1. For any given sampling design p, an estimator ¢’ is said to
dominate the estimator e if for all xe RV

Y5 p()[e'(s, )= T(¥)]* < Y5 p(s)[e(s, %) — T(x)]?
with strict inequality for at least one x.

DEFINITION 1.2. A pair (¢’, p') of an estimator ¢’ and a sampling design p’ is
said to uniformly dominate another pair (e, p) if for all x e R¥

s P(9[e(s, %)~ TX)]* £ Ys p(s)[e(s, x) - T(x)]*

with strict inequality for at least one x.

The notions of admissibility of an estimator for a given sampling design and that
of uniform admissibility of a pair (e, p) for p in a class, C, of designs are then
defined in the standard manner.

If C, = {p| Y.sp(s)n(s) = n} where n(s) is the cardinality of s then the main result
of Godambe (1969) is that with respect to the class C, the pair (e*, p*)isuniformly
admissible where e*(s, X) = Y ;o X;+ Y i¢sdi (Ay, ", Ay being any fixed values)
and where p* is any member of C,,.

DEFINITION 1.3. For0 <n < N, D, = {p|p(s) = 0if n(s) # n} i.e., D, is the class
of fixed size sample designs.
The main result of this note is then
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THEOREM 1.1. With respect to the class of designs D, the pair (e*, p*) is uniformly
admissible where

(11) e*(s,x) = anZiesxi-l"Bn

o, and B, being any fixed arbitrary values such that 1 < a, < N/n, and p* is any
member of D,.

Note that for this class of estimators the coefficient of ) ,.x; is realistically
allowed to depend on the sample size, n. A proof of this theorem as well as some
other results are given in the next section. A brief discussion of the estimator is
given in Section 3.

2. Proof of main and supplementary results. It is clear that for any prior distribu-
tion, w, on RY

2.1 e(s,x)=Ziesxi+2i¢sz(xiIS,xjijes)

is a Bayes estimator of 7(x) provided that the conditional expectation above exists.
The following is then immediate.

THEOREM 2.1. For any specified fixed values B, and 1 < o, < N/n the estimator,
e*(s, x) in (1.1), is a Bayes estimator under any prior distribution, w, for which

Ziész(in&xj:jes) = (an-l)Ziesxi-l'ﬁn

for all x € R" and all s for which n(s) = n.
To prove admissibility properties of e* we will utilize the following definitions:

DEFINITION 2.1. Let Q denote any class of discrete prior distributions on RV
such that for any point x, € R" there exists an w € Q such that w(x,) > 0.

DEFINITION 2.2. Let Q* denote the class of discrete prior distributions, w, on
RY such that

(1) xq, -+, xy when distributed as w are exchangeable and possess a variance,
6,2 and

(i) For all xeR", all s for which n(s) =n, and all i¢s E,(x; | S, X, i€s) =
o, ) iesXit+ B o, and B, being any fixed values satisfying 0 < a,,” < 1/n.

In order to prove the main results we use the following lemmas.

LemMa 2.1. (Godambe) Let Q satisfy Definition 2.1. If e, given in (2.1), is a Bayes
estimator for all w € Q and if p is any arbitrary sampling design, then e is admissible.

LEMMA 2.2. For any point X, € R" there exists an w, € Q* such that wy(x,) > 0.
Yy p 0 0 o\Xo

PRrOOF. For the given xq = (x9, ***, Xno) let yy, **+, y,_, be the set of distinct
values of the x;’s. Let ¥ = {y, ***, ¥,—1, y,} Where y, is determined by (2.3)
below. For any xe R let n; be the number of the N coordinate x;’s equal to y;
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i=1,--, r. We then assign a discrete probability distribution to R" as follows. Let
(2.1) we(x)=0 if Yim <N,

LN+ 1)1 T(n;+¢)T(e) . N
[T: T(ni+ DO(N +e) [ 11 Tey) if Yin=N;

wheree; > 0,n,=0,1,---,N,e =) ¢.

= r(nla“'5nr)=

This distribution, variously called the Dirichlet-Multinomial (Ericson (1969)),
the compound multinomial (Mosimann (1962)) etc. clearly satisfies the discreteness,
exchangeability, and wy(x,) > 0 requirements. It also is easily seen that under this
prior a2, = Y% ylefe— (3% y;&/e)*. In addition, it can be shown (Ericson (1969)),
that fori¢s

(2.2 Epo(Xi|s,xj:j€8) = Yo xi/(n+8)+ Y5 yi&/(n+e)

and thus it is clear that one can choose ¢, y,, and the ¢;’s such that for any specified
O0<a,’<l/nand -0 < B,/ < 0

2.3) a, =1/(n+e) and B, =Y} y&/(n+e).

From these two lemmas we then have

THEOREM 2.2. For any fixed sample size, p, the estimator e* in (1.1) for any fixed
B,and 1 < o, < N|nis admissible.
To prove Theorem 1.1 we utilize the following result.

THEOREM 2.3. (Godambe) Let Q satisfy Definition 2.1. If e, given in (2.1) is a Bayes
estimator for all weQ and if C is a class of sampling designs such that for all pe C
and all w € Q the Bayes risk is independent of pe C, i.e.,

(24) ZRN w(x){Zs p(s)[e(s, X) - T(x)]z} = Cos

where c,, does not depend upon p, then with respect to the class C the pair (e, p), where
p is any element of C, is uniformly admissible.

The proof of Theorem 1.1 then follows from Theorem 2.3, Theorem 2.1 and
Lemma 2.2 by taking Q = Q* in Theorem 2.3, taking C = D,, taking e as in (2.1),
and noting that for any we Q* the Bayes risk of e is constant over p e D,. The latter
observation follows since for weQ*, by (2.1) and Definition 2.2, e(s, x) =
[(N =), + 11T ¢ 5+ (N=m)B,.

Hence, on interchanging the order of summation and summing first on xe R" such
that x; for i€ s are fixed, the Bayes risk, (2.4), becomes

(2.5) Y sP(S)Es ics Var[T(x)|s,x;:ies]
= Ysp(s)[Var(T(x))— Var, ;. {E(T(X) | s, x;: i€s}]
= No,>+N(N—1)p, 0,2 —[(N—n)a, +1]*(nc,2 +n(n—1)p, 0,3 = c,

for all pe D, and where p,, is the common correlation coefficient under weQ* of
x;and x;. Finally we make the identification o, = [(N—n)e, + 1] and 8, = (N —n)B,, .
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3. Discussion. It follows as a simple corollary of Theorem 1.1 that with respect
to D, uniformly admissible estimators of u(x) = T(x)/N are given by

3.1 e,(s,x) = nt,X/N+pB,/N = a,*%+B,*

where n/N < a,* < 1. .

Note that the uniform admissibility of the estimators in (1.1) and (3.1) for
o, = 1 and o, * = n/N respectively was shown by Godambe (1969). The restriction
o, * = n/N seems intuitively reasonable and under the class Q* of priors it corres-
ponds to the restriction that Cov (x;, x;) = 0.

The class of estimators, (3.1), of u(x) also has intuitive appeal from a Bayesian
viewpoint for it has been shown (Ericson (1969)) that if e (s, x), (3.1), is a Bayes
estimator of u for some weQ* then f,* = (1—a,*)E(u(x)) and «,* = Var (u(x))/
Var(X¥) or a,* = Var (u(x))/[Var (u(x))+EgVar(,u(x)|3?)]. It then follows that e,
has the interprstation of being a weighted average of X, the sample mean, and
E(u(x)), the prior mean, with weights inversely proportional to the prior expectation
of the sampling variance of X and the prior variance of u(x) respectively.
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