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A NOTE ON UNIFORM CONVERGENCE
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0. Introduction. Our aim in this note is to extend Theorems 5.1 and 5.2 of [4].
Let R(-, *) be the covariance kernel of a Gaussian process with index set .S, here
S will always mean a compact metric space. R is assumed throughout to be con-
tinous on S x S. Let H(R) be the reproducing kernel Hilbert space of R. It is a
Hilbert space of continuous functions £ on S with the following properties:

(0.1) R(-,t)eH(R) for each teS;
0.2) <k, R(, 1)) = k(1),

where {, ) denotes the inner product in H(R). For a discussion of reproducing
kernel Hilbert spaces and their application to the study of Gaussian processes we
refer to [1] and [5]. In what follows C(S) will denote the Banach space of real-
valued continuous functions on S with the sup norm, and % the g-algebra of Borel
sets of C(S). x will denote a generic element of C(S).

Before stating the main results we would like to record here for later reference
the fact that if {X,, 7€ S} is a Gaussian process on some probability space (Q, #, P),
then there is an isometric isomorphism between H(R) and the closure of the linear
space spanned by {X,, teS} in L,(Q, #, P). We shall denote this closure by
ZL,(X,, teS) and this isometric isomorphism by 6, where for teS we have
O(R(-, t)) = X,. We now state the main results.

THEOREM 1. Let {X,, t€S} be a Gaussian process with covariance R and almost
all paths continuous on a complete probability space (Q, #, P). Let {{/;}7-, be a
complete orthonormal system (CONS) in H(R) and let {£;}7-, be the sequence of
independent random variables on (Q, &, P) each distributed normally with mean 0
and variance 1, given by &; = 0(y ;). Then the partial sums

0.3) 2i=18(@W (1) = S,(t, w)

converge uniformly inte S to X,(w) asn — oo a.e. (P).

THEOREM 2. Let {n;}7-, be a sequence of independent random variables on a
complete probability space (Q, #, P), each distributed normally with mean O and
variance 1. Let R be a covariance such that there exists a Gaussian process with this
covariance and with almost all sample paths continuous (on some probability space).
Let {{/;}?-, be a CONS in H(R). If S = [0, 1], then the partial sums
(0.4) Yi=infW (1) =S, (t,w)
converge uniformly in t€ [0, 1] to a Gaussian process on (Q, &, P) whose covariance
is R and almost all of whose sample paths are continuous asn — « a.e. (P).
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We would like to remark here that in the case of standard Brownian motion
H(R) is the space of absolutely continuous functions f(t) = [4f'(«)du with
[6f*(W)du < oo. If {@,};%, is a CONS in L,[0, 1], then [{ ¢, (w)du, n=1,2, -,
is a CONS in H(R) for Brownian motion and so Theorems 5.1 and 5.2 [4] become
particular cases of our theorems 1 and 2 respectively. It should be observed, how-
ever, that in Theorem 5.2 [4] it is not presumed that standard Brownian motion on
[0, 1] can be defined to have continuous paths; this fact is automatically proved
there. However, in a general result such as Theorem 2, one would need some
conditions on R to guarantee that a Gaussian process with covariance R and having
continuous paths exists.

1. Proofs. The following lemma is given for later use.

LemMA 1. Let {1}, be a CONS in H(R), then Y | ,*(t) converges uniformly
inteStoR(t,1).

ProOOF. GiventeS, R(-,t)e H(R), hence by the Parseval relation (R(, 1), R(:, 1)) =

© ARG, W% =Y 2 1, 2(f). On the other hand (R(-, 1), R(-, t)> = R(t, t).
Hence Y., ,%(t) converges to R(t, t) for every teS. Dini’s theorem applied to
£ =R, )-Y"-, :pjz(t) now shows that £,(#) — 0 uniformly in te S as n — co.

Before proceeding with the proofs of Theorems 1 and 2 we introduce some more
notation. z will stand for a generic element of the topological dual of C(S); thus z
is a finite signed Borel measure on S. For xe C(S), (z, x) will denote the value z
takes at x. We define by S,(S,’) the mapping of Q into C(S) (CI[O0, 1]) given for
weQ by S(w)= S, w),teS (S,/(w)=S,( w),0=t=<1). Then S,(S,) are
strongly measurable C(S) (C[0, 1])-valued random variables on (Q, &, P).

PRrROOF OF THEOREM 1. R(-, t) has an expansion in H(R) given by

Z;.; 1 <'pj’ R(C, 1) lp]() = Zf:l 'p,(t)‘p,()

By the isometric ismorphism between H(R) and Z,(X,, teS) we conclude that
Y 2 (D converges in Z,(Q, #, P) to X, for every te S. Since Y 7, Y (1)¢; is a
series of independent random variables, it follows that it converges to X, a.e. (P).
Let X denote the mapping of Q into C(S) corresponding to (X,, 1€ S) defined the
same way as S, and S,’. We now show that S, » X a.e. (P) as C(S)-valued random
variables. The argument is essentially the same as in [4] page 45. It is enough by
Theorem 4.1 [4] ((¢) = (@)) that the random variables (z, S,) converge in probability
to (z, X) for every continuous linear functional z on C(S). We have

E[|(z,S)— (2, X)|] = E[|fs 2(dt)(S,() — X))|]
< Js|z|@E|s, (0~ x|,
< [s|Z|@E[S () - X.])?
= js IZ‘(dt)(Z;;H 1%‘2(0)%,
(where |z| = total variation of z).

But Y %41 ¥ jz(t) — 0 uniformly in €[0, 1] as » —» oo by Lemma 1, hence the last
expression above tends to 0 as #» — oo. This completes the proof.
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ProoF OF THEOREM 2. We will reduce the proof of this theorem to that of
Theorem 1. We first prove that for a fixed 7€]0, 1], S,'(t, w) converges a.e. (P)
to a random variable Y,(w), where {Y,, te [0, 1]} is a Gaussian process on (Q, #, P)
with covariance R. The proof of this is similar to that of Theorem 4 [6]. Note first
that an application of Parseval’s relation as in Lemma 1 shows that the series
Y2 U (s)W1) converges to R(s,t). For te[0, 1], the a.e. (P) convergence of
S,’(t, w) follows from the fact that the random variable n(w)y (1), j=1,2,-"*,
are independent with mean O and variance 1//j2(t) and by Lemma 1 we have
Yoy jz(t) < 0. We denote this limit of S,’(¢, ®) by Y(w), defining Y, arbitrarily
on the P-null set where the limit may not exist. It is now clear that the process
{Y, te[0, 1]} is a Gaussian process on (Q, #, P) with covariance R. Let
{Z,, te[0, 1]} be a separable version of {Y,, te[0, 1]}, which exists by Theorem 2.4
[3] on the same probability space (Q, &, P). Noting that there exists a Gaussian
process on some probability space with covariance R and almost all paths con-
tinuous and the fact that the Z, process is separable, we conclude from Theorem 9.2
[2] that there is a set Q,eF with P(Q,) = 1 such that for w € Q, the Z, process has
continuous paths. Let Z be the corresponding C[0, 1]-valued strongly measurable
random variable on (Q, &, P). For a discussion of such facts as Z defining a
strongly measurable random variable we refer to page 57 [2]; what is needed is that
Z map Q into C[0, 1] and Z, be a random variable for each ¢€[0, 1]. This remark
applies also to the definition of S,, S,’ and X. We thus have proved so far that for
each re[0, 1] the random variables S,’(¢, ®) converge a.e. (P) to Z,(w), where the Z,
process is a Gaussian process on [0, 1] with almost all paths continuous and
covariance R. We now show exactly as in the proof of Theorem 1 that for any
continuous linear functional z on C[0, 1] the random variables (Z, S,’) converge in
probability to the random variable (z, Z); all we have to do is to replace S by
[0, 1] everywhere in the very last part of the proof of Theorem 1. This proves
Theorem 2.

REMARK. Let S = [0, 1]. Let {A;} 7, 4; > 0, be the eigenvalues of R and {¢;}7%,
the corresponding normalized (in L,[0, 1]) eigenfunctions. Then it is known that
{2,*¢;}%=, is a CONS in H(R). Thus whenever Theorem 1 or Theorem 2 applies,
the uniform convergence in ¢ of the “Karhunen-Loéve” expansion for the process
follows as a special case.
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