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1. Summary. In a recent paper R. M. Dudley [2] obtained very interesting
results on the speed of mean Glivenko-Cantelli convergence where the underlying
random variables are supposed to be independent identically distributed (i.i.d.)
taking their values in a separable metric space. In the present paper we shall show
that his method of proof also applies for the case of Markov processes with
stationary transition probabilities fulfilling Doeblin’s condition (D,). The main
additional tool in the treatment of this more general case is the determination of an
appropriate upper estimate for the variance of the empirical p-measure for the
transitions performed in a given set (Lemma 3.2 and Corollary 3.3 (i)) using a
mixing property (Lemma 3.1).

As indicated by Dudley, the results obtained in this way are applicable to
problems in testing statistical hypotheses. An application concerning the speed of
convergence of asymptotically normal estimates for Markov processes will be given
in a separate paper [3].

2. Definitions and preliminaries. Let & be a complete separable metric space, #
the Borel subsets of & and (X,),.n @ Markov process on some probability space
(Q, #, P) with values in & and stationary transition probabilities p({, 4) =
P{X,; 1€4|X,=1{}, AcB, {eZ, fulfilling Hypothesis (D,) (see [1] page 221).
N denotes the set of nonnegative integers, and ““:="" is used for equality by defini-
tion. Furthermore, if P is some p-measure (=probability measure) on a o-field &,
we write P | # for short.

According to Kolmogorov’s Consistency Theorem ([4], V. 5) we may assume
without loss of generality that the measurable space (2, &) is the countable product
space (2N, X, .nB), P | X, N4 is the p-measure uniquely determined by a given
set of transition probabilities plﬁl" x # and initial distribution p, |.93, and where
(X,), < n 1s taken to be the coordinate process.

Let us denote the elements of 2™ by x and let n,'”, ieN, be the projection map
from &N onto & x & defined by 7,'” (x) := (x;, X;.;). Under Hypothesis (D,)
there exists a unique stationary distribution p* ] % (see [11, V. 5), the corresponding
p-measure on X,.n% determined by p|Z x % and p‘|.§3 will be denoted by P*,
the two-dimensional marginal distribution pertaining to P* by P,

If x = (xg, x4, **) is an observation on the process, an empirical p-measure (of
the sample size ») for the transitions performed in a set T € %, where %5 denotes
the Borel sets of S := % x &, is defined by

(2.1 0, X(T): =n~"' 3025 (trom)(x),
where y is the indicator function of the set 7.
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Using Doob’s device ([1] page 231) one obtains the following version of the strong
law of large numbers

THLOREM 2.1. Under Hypothesis (D), if f: S — (— 0, ) is #s-measurable and
P2’[|f[] < 00, then
2.2) P{xeq™:lim,., 0, [f1= P, [f1} =L,
where P,*[f]= P*[fon,] = [sf( m)pC, dn)p(d) and where the superscript s

indicates that the expectation is taken with respect to the stationary initial distribution
p*|B.

CoROLLARY 2.1. (See the classical Glivenko-Cantelli Theorem and its generaliza-
tion in [4] I1, Theorem 7.1). Under Hypothesis (D)

(2.3) P{xexN:Q,*— P,* weak-star as n- oo} =1.

Tet Q(S) be the space of all p-measures on % Then weak-star convergence is
known to be metrizable by various metrics. Let us consider one of them, the
“BL*-norm”-metric B for which Dudley [2], Section 3, obtained his results on the
speed of mean Glivenko—Cantelli convergence in the i.i.d. case.

3. Extension of Dudley’s results. Following the lines pursued by Dudley we shall
obtain that, if for some K < co and k > 2, S can be covered up to a set 4 with
P, (A) £ /*~D by at most Ke™* sets with diameter < 2¢ whenever 0 <e <1,
then for some M = M(k, y, p, K) < o©

PLRQ,, P)] S M -n~ 1% forall nx2,
where y and p, p < 1 are positive constants entering via (D) ([1] V. 5).

LEmMaA 3.1. Under Hypothesis (D), if f:S— (— 0, ) is Bg-measurable and
P23[| f lz] < 0, then the following mixing property holds
(3.1 |P[(foma)(foma)] = (PSS 1)?| < 2y*pU =+ D12P° | 1]7]
foralli,jwithj > i+1.

Proor. Follows from [1] Lemma 7.1 page 222, takingr = s = 2and f = g.

LEmMmA 3.2, Under Hypothesis (Dy), if f: S — (=0, 00) is HBs-measurable and

Pl f|*]1 < oc then an upper estimate for the variance of the random variable
0, [f]1: &N - (=0, ©)is obtained by

(3.2) 0@, LD S B+4 o} (1=pH]- P2 fP] 07! forall nz2
ProOOF. Let n = 2 be arbitrary; then

05:(Q, [f]) = PL(n ™ Xi2g fom, P~ P [ f])]
=0 P PP1= (LS D 42072 Kok PL(foms ) (S o )]
=n" lpzs[lflz] ‘(st[f])2 +2n72 Zoéi<j— 15n-2 P[(fo ;)
(fory )] +2n72 Y123 PL(fom, ) (fom, T 1)].
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Using (3.1) and Schwarz’s inequality we obtain
o3 Qn [/D £ n™ PSP 1- (P D?
+2n72 Yogicjm1gn-2 (P TS D +292pl -0+ 012 P | £12}
+2n7 2 Y128 P S
< 3n7 P fP1-Bn=2n (P, [f])?
+47*n 2P F 2] Yosic o1 snaz pU U2,
Straightforward computations yield that
Yosicj—15n-2 PY IV = (n=2)p¥ /(1 - pP)—(p— p" D)1 - p*)*;
hence
o0, [f]) S [B+4v*p*IA—pHIP][|fPIn . [0

COROLLARY 3.1. Under Hypothesis (D), if S;e &s, j= 1,2, -+, m, are disjoint
with union T, then for alln = 2

() PLY7=1{Qs(5)—P2%(S)}*] < oy, p)P,(T)n™! and
(i) PTYS-1Q,(S)—Po(S)[] S [y, P, (DIn™ - mt, where
(3.3) (7, p): = 3+4y*p¥/(1-p?).

ProoF. (ii) follows from (i) using Schwarz’s inequality. To prove (i) we apply
Lemma 3.2 withf'= y5,j=1,2, -*-, mand obtain

PS[Z?H {Qn'(sj)—st(Sj)}z] = ZT=1 G%s(Qn'(Sj)) < a(y,p) Z?=1 st(Sj)n"l
= aly, p)P,¥(T)n™".

Let BL = BL(S) be the Banach space of all bounded Lipschitzian real-valued
functions fon S with the norm

|1f 522 = |If |0 + 5Py |F ) =f 2]/, 2).
where d denotes the metric in S. If 1, ve Q(S), let | |1 |22 = supy 1. <1 [u[f]] and
3.4 B, v): = ||u—v||5e.

Furthermore, given peQ(S), ¢, 6 > 0, let N(u, ¢, §) be the minimal number of sets
of diameter < 2¢ which cover S except for a set 4 with u(4) < 6.

THEOREM 3.1. Under Hypothesis (D,), suppose that for some real number k > 2,
there is a K < oo such that

(3.5) N(P,%,¢,e/*~2) < Ke™*
whenever 0 < ¢ < 1. Then thereisan M = M(k, y, p, K) < oo such that
(3.6 P[B(Q, . P)] S M-n~1/k forall nz2.



1342 PETER GANSSLER

Proor. For each positive integer r, S is the disjoint union of sets S,;e %y,
j=0,-+-,m, where m,< K-3*"*? for j>1 the diameter of S,; is at most
3771 and P,%S,,) £ 37 ¥r*2/k=2) Given a positive integer n = 2, let ¢ = n™ /%,
Let ¢ be the smallest integer such that 37' <¢ and u be the smallest integer such
that 37* < ¢*~ 2/ Then

3.7 3<3/e and 3*<3e? Mk and ugt
Now, in exactly the same way as in the proof of Dudley’s Theorem 3.2 one
obtains that f(Q,,P,%) < e+M,+Y i_,{(Q, +P,°)S,0)+3'""M,}, where M,: =
Y |0a(4,) —PZS(A,J-)|, the 4,,€e%s,j=1,-"-, m,, being disjoint. Thus an
application of Corollary 3.1 (ii) yields
PL(Q,s P2)] < e+(aly, pymy[n)? +3 0o {2P2%(S,0) +3' " ((y, p)m,[n)¥}
é a+(a(y, p)K/l’l)* . 3k(u+ 2)/2 +Zt=“ {2 . 3—k(r+ 2)/(k—2)
+3177(3 Da(y, p)K [n)t}
< 8+(a('y, p)K/n)* 3k(u+2)/2 +2 . 3—k(u+2)/(k—2)[(1 —- 3 —k(t+1 —u)/(k—2))/
(1 _3—k/(k—2)]
+(a(,y’ p)K/n)* . 3k+ 13(k—2)u/2[(1 _ 3(k—2)(t+ 1 —u)/2)/(1 _ 3(k—2)/2)]
é e +(a(,y, p)K/n)}{3k(u+2)/2 + 27 3(k—2)(t+ 3)/2[1 —- 3—(k—2)(t+ 1 —u)/2]/
(3(k—2)/2 — 1)}
+ 2 . 3 —k(u+2)/(k— 2)/(1 —- 3—k/(k—2)).
Using (3.7) and the fact that 1 —3~ = 2¢+1-w/2 < ] we obtain
PLB(Q,, Po)] < e+(aly, p)K/n)? - e{33%/2g 742 1. 27 . (32~ 2)g™k/2) ;3= 2)12 _ 1)}
+8{2 . 33k/(2—k)/(1 — 3 —k/(k —2))},
hence n™1/2¢7*/2 = 1 yields the result with M : = 1 +(a(y, p)K)*{33/% +.27 - (32*~2)/
(3% 1)} 42 33K/(2=H) (] — 37k/(k=2)y "where a(y, p) is defined by (3.3).
Let us remark that Dudley’s Corollary 3.3 as well as his Proposition 3.4 on page 43
also hold in the present case. The same is true for Theorem 4.1 in [2] page 44,
concerning p-convergence. substituting Dudley’s argumentation via his Proposition
3.1 by Corollary 3.1 (ii) of the present paper.

Finally, according to the definition (3.4) of the metric f in Q(S), Theorem 3.1 yields
the following Corollary.

COROLLARY 3.2. Under Hypothesis (D,), suppose that for some real number
k > 2, there is a K < oo such that (3.5) holds whenever 0 < ¢ < 1. Then there is an
M = M(k, v, p, K) < co such that for every a >0 and each subfamily UBL< BL
withsup, gy ||f]| 5L =:C < 0

(P)*{XE‘%‘N:SUPIG UBLIan[f]—st[f]I >a} S MCa™'n~ 1/

foralln = 2, where (P*)* denotes the outer measure pertaining to P*.
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