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FINITE POPULATION SAMPLING—ON LABELS IN ESTIMATION

By RICHARD M. RoYvAaLL

The Johns Hopkins University

1. Introduction. This paper is concerned with finite, labelled populations—i.e.,
with each unit in the population is associated a number, which is unknown and is
of interest, and a unique label, which has been assigned by some, possibly un-
known, procedure. Some results of an investigation of the role of such labels in
sampling and inference are presented. For an arbitrary fixed sampling plan,
certain aspects of the use of unit labels in estimation are examined. The estimators
of Horvitz and Thompson [7] are familiar practical examples of estimators which
depend, not only on the numbers observed, but also on their associated labels;
artificial examples of estimators which depend on the labels are occasionally
produced as counterexamples to claims of optimality properties for certain
popular estimators (See, e.g., Roy and Chakravarti [10]).

Here it is shown (Theorem, Section 4) that for general sampling plans and for
many parameters of interest, the class of estimators which do not depend on the
labels identifying the units in the sample has a certain property which seems
desirable when little is known about the relation between the number and the label
associated with each unit. In particular, a theoretical (minimax) justification is
given (Corollary 1) for the common practice of ignoring the labels when estimating
from simple random samples. These results are then applied (Section 5) to general
linear unbiased estimators of the population mean, and it is shown that for the
case of simple random sampling, with the parameter space subject to certain natural
restrictions, the sample mean is minimax (convex loss function) among linear
unbiased estimators.

2. Description of the problem. The population of interest can be described as

(i) a set of N distinct units, together with
(ii) a set of N real numbers, one associated with each unit, and
(iii) a set of labels, say the integers 1, 2, - - -, N, which identify the units.

The problem to be considered is that of estimating the value of a real-valued
symmetric function 6(x) of the components of the parameter vector x =
(X1 X350, Xy) whose ith element is the number associated with the unit labelled
“i.” Let n(1), n(2), -+, m(N) be a permutation of the integers 1,2, ---, N. If the
units are relabelled so that “i” now identifies the unit originally labelled “n(i),”
then the parameter vector becomes Xe = (Xp(1)> Xn(2y» " » Xzy)> and the quantity
to be estimated is 6(x,). By symmetry 6(x) = 6(x,) for all permutations =; i.e. 6
is invariant under relabelling.

Let S denote the collection of all subsets, s, (distinct elements) of the set of
labels {1,2,---, N}. If p(-) is a probability function on S, then the sampling rule
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is “Observe {(i, x;), ie s} with probability p(s).” See Godambe [6] for sufficiency
of {(i, x;), ies} under various schemes for accomplishing the actual selection of
the sample in accordance with the probability function p. Denote by n(s) the number
of integers in s and by P(n) the probability, Y (s, nsy=n P(s"), that the sample contains
exactly n(different) units.

Any function #(s, x) which depends on x only through those coordinates x; for
which 7 is in s (i.e., does not depend on the coordinates not observed) can be used
as an estimator for 0.

The pair p:t where p is a sampling plan and ¢ is an estimator will be called a
strategy. A decision-theoretic approach to the evaluation of strategies will be
taken. Thus it is assumed that when 6 is estimated to be a number b, a loss of
I(b, 0) units is incurred. For a strategy p: ¢ and a parameter vector x, the expected
loss, or risk, denoted by R(t, p, X) is

O R(t, p, x) = Y55 p(5) U(t(s, %), O(x)).

Throughout this work the N units and their associated numbers are treated as
being fixed. There are N! ways in which the units might be labelled. If x* is a
vector whose components are the N numbers arranged in non-decreasing order,
then the parameter vector x is one of the (at most) N! vectors obtained by permuting
the components of x*, and the quantity to be estimated is 6(x*). The average risk
over all permutations of the labels is

2 R(t, p, x*) =) . R(t, p, x,)/N!.

It is assumed that the labels serve only to identify the units, and that there is no
available knowledge of any systematic relationship between the labels and the x’s.
This assumption might be expressed probabilistically as: for fixed x* and for every
permutation 7

3) Pr(x =x,*)=I/N!

Equation (3) would be satisfied if the numbers x,, - - -, xy were realized values of
exchangeable random variables X, - - -, Xy or if the units were labelled at random.
More frequently, however, the assumption is met only in terms of personal,
subjective probabilities—in populations where “the labels are uninformative.”
When (3) holds the average risk (2) can be interpreted as a “Bayes risk” with respect
to the a priori probability distribution under which each permutation of x* is
equally probable as the value of x. Note that the present model is not a complete
Bayesian model—the vector x* is fixed, but unknown, and it is assigned no a priori
probability distribution. Ericson [3] has examined finite population sampling
theory under a complete Bayesian model. The present paper is an attempt to gain
further understanding of some situations in which “labels are uninformative” or
“labels are irrelevant” under weak “‘a priori’’ assumptions. A population which is
not of the type considered here is a group of N college freshmen classified
(stratified) according to sex with x; the number of cigarettes smoked per day by the
ith student. If the boys are identified by labels 1,2,---, N,, and the girls by
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Ny+1,N{+2,:+, N, then the labels are “informative’—e.g., if one observation
is (2, 10) then the label 2 indicates that this student who smokes 10 cigarettes per
day is a male, which, assuming a sex difference in smoking habits, is a relevant bit
of information. This population also furnishes a simple example of an important
parametric function which does not satisfy the symmetry condition: the difference
between the average cigarette consumption of freshman boys and girls is

0x) = Y34y xi/Ny =Y i1 Xi/N—Ny,
which is not, in general, equal to ,(x,) for arbitrary =.

3. Symmetric estimators. If data {(i, x;);ies} are observed, let y, i=
1,2, -+, n(s), denote the ith smallest among the observed numbers {x;; ies}. An
estimator #(s, x) will be called symmetric if it depends on the data only through
n(s) and the “‘order statistic” y;,y,, ', Yus)- A Symmetric estimator is one
determined by the numbers associated with the units selected in the sample and
not by the labels which identify these units. The sample mean

1(s, X) = Y s xi/n(s) = Y 1%, yi/n(s)
is symmetric. '
Blackwell and Girshick [2], pages 229-233, showed that, if ¢ is any symmetric
estimator and p is any fixed sample size sampling plan say P(n) = 1, then

“@ max, R(t, p, X,) Z max, R(t, p*, x,),
where p* is a simple random sampling plan—

p*) =1/ if n(s)=n;

= 0 otherwise.

This result says that, when a symmetric estimator is to be used, p* is always a
minimax sampling plan.

Frequently, for administrative or other reasons, a sampling plan other than p* is
used. An example of this is a survey in which the primary objective is to investigate
a characteristic y, and for meeting this objective a stratified sampling plan is used.
However, the characteristic x, which is not believed to be related to y or to the
stratification criterion, is also of interest. Rao [9] has investigated a problem of this
general sort. In such problems, for estimating the total, T = ZfL 1 X;, the (generally
non-symmetric) unbiased estimator of Horvitz and Thompson [7] is frequently
used. This estimator is iy = ) ;¢ X;/q(i), where g(i) is the probability Y s ies P(S)
that unit i is in the sample. The estimator is used despite the intuitive feeling that
the simple fact “unit i had smaller probability of being selected in the sample than
unit j had” is, of itself, quite a weak excuse for attaching a larger weight to x; than
to x; in estimating T. The next section, in which certain properties of symmetric
estimators are studied for arbitrary fixed sampling plan, p, as well as for p¥*,
supports this intuition.
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4. Average risk of symmetric estimators. For any sampling plan p and estimator
t, a corresponding symmetric estimator can be produced by a procedure of

averaging: if p(s) > 0 let
) i(s, X) = Yo Un 1 (s), X)p(w ! ())/(n(s) (N —n(s))!P(n(s))

where 7 1(s) = {J; n(j)es}. Define ¥(s’, x) = 0 if p(s') = 0.

Here t(n™!(s), x,) is the value the estimator ¢ would assume if the population
were relabelled, the unit originally labelled “n(i)”” now bearing the label ‘““i,”” and
the same set of units were selected in the sample. (Of course #(n~(s), x,) # (s, X)
in general.) The probability of selection of this set of units, which now is identified
by the labels in n~'(s), is p(r~'(s)). Note that t(s, X) is symmetric—it depends on
the data {(i, x;); ies} only through n(s) and the “order statistic” yy,y;, """, Yn(s)-
Thus #(n~1(s), x,) = (s, x) for all permutations 7.

The following theorem shows that, in terms of average (over labelling systems)
risk (2), # is a better estimator than .

THEOREM. If the loss function, l(a, 0), is convex in the first argument, then
©) R, p, x*) < R(t, p, X¥)
Proor. Recall that 6(x,) = 6(x*) for all x.
N'R(, p,x*) = Y 2 I ™ 1(5), () )P(m ™ 1(5))/m(s) (N — n(s))!
* P(n(s)), 0(x*))p(s)
S Y 2s 2 Mt (), (X)), OX™)p(n ™1 (8))P(s)/((5))!
* (N —n(s))!P(n(s))
= Yo s 2 U7 (5), X), O(X*))(m ™ (5))P(8)/((s))!
" (N—n(s))!P(n(s))
= D s Di'mtsy =nisyy LS, X, O *)p(s")p(s)/P(n(s))
= Zn' ZL 1 Z(s’;n(s')=n} I(t(s’, %), 0(x *)p(s’)
=Y 2o WK, Xp), OX™))P(s")
=YoRp %) [

For a strictly convex loss function, the inequality in (6) is strict unless #(s, X,) =
t(s, x,) for all s in S for which p(s) > 0 and all permutations 7.
In case p(s) = p(s’) for all s, s’ having n(s) = n(s’), expression (5) reduces to

@) (s, X) = Y t(n ™" (), X,)/N!

Since in this case R(f, p, X,) does not depend on the permutation =, the following
is immediate from the theorem:
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COROLLARY 1. If p(s) = p(s’) for all s, s’ having n(s) = n(s’) then
(8) nlaxn R(Z, p, Xﬂ) é maxﬂ R(t’ p, xﬂ)

with strict inequality unless (s, X,) = (s, X,) for all s with p(s) > 0 and all .

Thus for a simple random sample of »n units without replacement, unless ¢
depends on the data {(i, x;), i€ s} only through the ‘“‘order-statistic”” y;, ¥2, ***, Vn»
there is another estimator such that (i) it is a function only of this ‘“‘order-statistic,”
(ii) its risk function depends only on x* and not on the way in which the units are
labelled, and (iii) unless #(s, x,) = #(s, x,) for all = and all s containing » elements,
f has smaller average (and smaller maximum) risk over the N! parameter points
obtained by rearranging the labels on the N numbers x;*, x,*, - -, xy*.

5. Symmetric estimators for the population total. Let 6(x) be the population
total, 7= Y ]~ X;, and let 7, be any linear unbiased estimator for T, i.e. (Godambe
[3]) t.(s, X) = Y.1=; b(s)x; where by(s) =0 if i¢s, and ) gic bi(s)p(s) = 1. In this
case

1 Y £ ’ ’
) (s, x) = %)'(Z,iesxi) Zﬁ=1 Zk bi(s")p(s")/P(n(s))

where Y i denotes summation over the set {s’; kes’ and n(s’) = n(s)}. If the sample
size is fixed, say at n, and if 7o(s, X) denotes N Y, x,/n(s), then (9) reduces to

(10) tL(S’ X) = tO(S’ X).

In particular (10) applies when stratified random sampling is performed and ¢, is
the conventional unbiased estimator.
Thus the theorem yields

COROLLARY 2. If P(n) =1 for some n (fixed sample size) and if t,(s, X) is any
linear unbiased estimator for T, then

(]1) R(th D, X*) § R(tL’ D, X*)‘

COROLLARY 3. For the simple random sampling plan p*, if t, is any linear unbiased
estimator for T, then

(12) max, R(to, p*, x,) < max, R(t, p*, x,).

Corollary 2 and Corollary 3 imply that, for simple random sampling of » units
without replacement, and for any convex loss function, the sample mean Y ;. x;/n
is a best linear unbiased estimator of T/N, in the sense of minimizing both the
average and the maximum risk over the N! parameter points obtained by relabelling
the units in the population.

For the case of simple random sampling Aggarwal [1] proved that the sample
mean is a minimax estimator for 7/N (not just minimax among linear unbiased
estimators) if the parameter space is given by {x; Zf;l (x;—(T/N))* < const.} and
I(b, 0) = (b, 0)*. At least one attempt has been made (Joshi [8]) to extend Aggarwal’s
result to arbitrary ‘“‘symmetrical” parameter spaces. But it is well known (Ferguson
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[4] page 92) that the sample mean is not minimax (unless » = N) over the parameter
space composed of the 2V vectors in which each component is either +1 or —1.
This parameter space is ‘‘symmetrical” according to most definitions which the
author can imagine, but if N > 1 and n =1, then the estimator which takes the
value y/2 when y is observed has smaller maximum risk than that of the sample
mean, y. The results of the present section, however, apply to any parameter space
which is closed under relabelling (vermutation) of coordinates.
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