The Annals of Mathematical Statistics
1970, Vol. 41, No. 5, 1735-1748

LINEAR SPACES AND UNBIASED ESTIMATION—
APPLICATION TO THE MIXED LINEAR MODEL'

By JusTus SEELY?

ITowa State University

1. Introduction and summary. Exemplification of the theory developed in [9]
using a linear space of random variables other than linear combinations of the com-
ponents of a random vector, and unbiased estimation for the parameters of a mixed
linear model using quadratic estimators are the primary reasons for the considera-
tions in this paper. For a random vector Y with expectation Xf and covariance
matrix Y ,v;¥; (v, ", v,, and B denote the parameters), interest centers upon
quadratic estimability for parametric functions of the form Y ;. ;A;;8:8;+ Y shavi
and procedures for obtaining quadratic estimators for such parametric functions.
Special emphasis is given to parametric functions of the form Y , 4, v,.

Unbiased estimation of variance components is the main reason for quadratic
estimability considerations regarding parametric functions of the form Y ;A,v.
Concerning variance component models, Airy, in 1861 (Scheffé [6]), appears to
have been the first to introduce a model with more than one source of variation.
Such a model is also implied (Scheffé [6]) by Chauvenet in 1863. Fisher [1], [2]
reintroduced variance component models and discussed, apparently for the first
time, unbiased estimation in such models.

Since Fisher’s introduction and discussion of unbiased estimation in models
with more than one source of variation, there has been considerable literature
published on the subject. One of these papers is a description by Henderson [5]
which popularized three methods (now known as Henderson’s Methods I, II, and
IIT) for obtaining unbiased estimates of variance components. We mention these
methods since they seem to be commonly used in the estimation of variance com-
ponents. For a review as well as a matrix formulation of the methods see Searle [7].
Among the several pieces of work which have dealt with Henderson’s methods, only
that of Harville [4] seems to have been concerned with consistency of the equations
leading to the estimators and to the existence of unbiased (quadratic) estimators
under various conditions. Harville, however, only treats a completely random
two-way classification model with interaction. One other result which deals with
existence of unbiased quadratic estimators in a completely random model is given
by Graybill and Hultquist [3]. '

In Section 2 the form we assume for a mixed linear model is introduced and the
pertinent quantities needed for the application of the results in [9] are obtained.
Definitions, terminology, and notation are consistent with the usage in [9]. Section 3
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1736 JUSTUS SEELY

considers parametric functions of the form Y ;. ;A;;8:B;+ Y 44V and Section 4
concerns parametric functions of the form Y ,4,v,. One particular method for ob-
taining unbiased estimators for linear combinations of variance components is
given in Section 4 that is computationally simpler than the Henderson Method III
procedure which is the most widely used general approach applicable to any mixed
linear model. The method described in Section 4 has the added advantage of giving
necessary and sufficient conditions for the existence of unbiased quadratic esti-
mators which is not always the case with the Henderson Method IIIL. In the last
section an example is given which illustrates the Henderson Method III procedure
from the viewpoint of this paper.

2. The mixed linear model—preliminary notions. In the sequel Y denotes an
n x 1 random vector with expectation X and covariance matrix

(2'1) Z:n= Vi I/ia

where X is a known n# x p matrix; each V;is a known n x n symmetric matrix; the
unknown parameters are f=(B;, -, B,) and v= (v, ", v,); and Q = {0}
describes the range of the parameter 6 = (8, v). The parameter space Q is included
for similarity with the general framework in [9] and to allow the possibility of
functional relationships among the parameters. Generally the form of Q would be
implicit from assumptions associated with the random vector Y. Note that the
usual forms for a mixed linear model may be put into this framework. For example,
consider a typical mixed linear model representation ¥ = X+ Y t_; Wy, where
the W,’s are known matrices and the y;’s are random vectors with zero expectation.
Provided that E[y;y;'] exists for each i and j, the covariance matrix of e = Yh o W
may be expressed, regardless of the parameters and the structure of E[y;y;’], in
terms of ¥;’s and v;’s as in (2.1). To see this observe that one possible representation
for the covariance matrix of e = (e, ***, €,)" is

Zi Var(e;)d; 0, + ZK,- Cov(e;,e;)[6;0,+6;0,],

where §; is the ith unit vector in R". This representation would of course not gener-
ally be used, i.e., under the usual assumptions on such a model the covariance matrix
of e is of the form ¥ ,0,2W, W/ so that the natural choice here is v; = ;> and
V,= WW,.

To obtain a convenient inner product representation for the quadratic estimators
let o denote the set of n x n real symmetric matrices, let (-, -) be defined on
o x o by (4, B) = tr(4B) for all 4, Bes/, let U= YY’, and let o = {(4, U):
Aest} = {Y'AY: Aes/}. With the usual rules of matrix addition and scalar (real)
multiplication &, (-, *), U, and &/ provide an inner product representation for the
quadratic estimators. For 6 = (§, v) eQ observe that

Aesd =E[(A,U)|0] = (4, XBBX'+Y 1= vi V).
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Thus u,, the expectation of Uat 0€Q, and & = sp {u,: 0€Q} are given by
(2.2) (@) po=XPBX +37= vV and
(b) & =sp{XBB'X'+ 7, v, Vi:(B,v)eQ}.

Note that p, is simply the usual expectation of the matrix YY",

For quadratic estimability considerations regarding parametric functions of the
form Y ;. ; 4;;B:B;+ Y sAxvk some results in [9] are applicable without any additional
assumptions. In this paper, however, only the results obtained in Section 4 of [9]
are utilized. To use these results we make the following assumption regarding the
parameter space Q:

2.3) If {A,4;} isany set of real numbers ‘such that
Bv)eQ=Yi<; A BiBi+ Y xAvi =0,
then 4, =4;=0 forall i,j, and k.

Although (2.3) appears quite restrictive, the condition is actually satisfied by most
mixed linear models commonly in use. Further, mixed linear model representations
for which (2.3) is not satisfied can be reparametrized to satisfy the condition. In the
situation that (2.3) is not satisfied and one does not wish to reparametrize, the
results in Section 3 of [9] may be employed. Note that using the results in Section 3
of [9], without assuming (2.3), would be similar to the development we give
assuming that (2.3) is true, although the final results would be altered according to
the statements in Section 3 of [9].

Perhaps the place where (2.3) is most noticeable is in the structure of the sub-
space &. Assuming (2.3) is true it is easily verified that

2.4 E=sp{Vy,Vy, ", Vo) +{XAX": A=A},

Some characteristics of the subspace {XA X} are given in the following lemmas.
For proofs see Seely [8].

LeMMA 1. Letxy, x,, ** *, X, denote the columns of the matrix X and define
B;; = x;x/ 1Zi=Zp
B = x;x;' +x;x/ 1Zi<j=p.
The following expressions describe the same subspace:

(a) sp {(XBF'X": Be R?},
(b) sp {xz'+2zx": x, zeR(X)},
(c) sp {xx": xeR(X)},

(d) sp{Bi;: 1 i <j<p),

(&) {XAX’: A=A}, and

(f) {d: 4 = 4', RA)<R(X)}.
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LEMMA 2. If r(X) =+, then the dimension of the subspace {XAX:A =N} is
equal to ($)r(r+1).

Let B, = {B;;: 1 £i<j<p} where the B;;’s are defined as in Lemma 1, let
By ={Vy, ", Vn},and let B = {Byy, By5, ", B,,, Vy, ", Vyu}. It is clear from
Lemma 1 and from (2.4) that

(2.5) <§=spé&=sp£30+sp£31.
Now define £, and ¢;; from Q into R’ by the following:
0=(B,v)eQ=4(0) =, lsksm
$ij(0) = BB, lsigsjsp

From these definitions it is clear for 0 e Q that

o =D i<;Ci/(O)B;+ Y E(O)V.

Thus, the set of elements # and the parametric functions &y, **, &pp &y, 77, &
provide a representation as specified in Section 4 of [9]. Moreover, the assumption
that (2.3) is true implies that Condition 4.2 in Section 4 of [9] is also true. Some
results which may be stated immediately (Theorem 4 and Corollary 4.1 and
Corollary 4.2 in [9]) are given in the next theorem and corollaries. In the remainder
of this paper we use the terminology estimable to mean .o/-estimable in the

terminology of [9].

THEOREM 1. The parametric function v, is estimable if and only if V,¢sp B+
sp{V;:i#k}.

COROLLARY 1.1. The parametric function v, is estimable if and only if there does
not exist {o;} and A = A’ such that Vi, = XAX'+ ) je,0 V.

COROLLARY 1.2. Each v, (k=1,2, -, m) is estimable if and only if Vi, -+, V,
are linearly independent and sp %, and sp B, are disjoint subspaces.

In Corollary 1.2 if p=1 and X=(1,1,---, 1), then the result reduces to
Theorem 8 of Graybill and Hultquist [3]. Incidentally, the Graybill and Hultquist
result at least tacitly assumes a condition like (2.3). Note that the above results
may be stated with inclusion of parameter products ;.

3. Quadratic estimators via a p,= H¢, representation. Continuing from the pre-
vious section we consider a linear transformation H which will serve for a yy = HZ,
representation. As noted previously, the set # and the parametric functions
Eits s Epps €15 7075 &,y are such that the results in Section 4 of [9] may be used
directly. The set # has M = m+($)p(p+1) elements (we consider elements to be
distinct if they have different indices, although two distinct indices might denote
the same element) and so H will be a linear operator from RM into <. For con-
venience the elements of a vector p € RM are indexed in the form

p =(plla P12> """ s P1ps P225 """ s Ppps P1> ””pm)l'
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From the theory developed in Section 4 of [9] and using similar notation, it follows
for pe R™ and 0 eQ that

(@) &o=1(£11(0), "+, &,p(0),£1(0), -+, &u(0))',

(3.1) (b) Hp = Zi§jpijBij+kak Vi
(©) py=HE = Zigjfij(e)Bij‘FZk OV, and
(d) H*4 = ((B;;,A4), " ** ,(Bpp, ), (V1, A, s (Vs A))'.

Using these definitions we illustrate some results from [9]. The symbol (-, ->
denotes the usual inner production on R,

Since H*H is a linear operator from R™ into RM, it s clear that H*H may be
thought of asan M x M matrix and that H*Hp denotes usual matrix multiplication.
In matrix form

_(BuaBn)" '(311,Bpp) (Bn, V1)' ' '(Bu, Vm) ]

(Bpp‘!Bll) ”‘(Bpp’Bpp) (Bpp’ ’1).‘.(Bpp’ Vm)

3.2 H*H = )
32) (VuBiy) - (ViB,) (Ve Vi) - (Vi Vi)

_(Vm’Bll) '“(VmﬁBpp) (Vrm Vl) “'(Vm’ Vm) _
and the vector H*U is given by

(3.3 (H*U)' = ((Byy, YY)+, (Byp, YY), (V1, YY), -, (V,,, YY)
From Corollaries 2.2, 2.3, and 3.1 in [9] the following results may be stated.

THEOREM 2. The parametric function (A, &g =Y ;< ;Ai;BiB;+ D sV is estimable
if and only if there exists a p such that H*Hp = A.

COROLLARY 2.1. Suppose that {1, &) is estimable, then the estimator (Hp, U) =
Yi<ipif(Bij YY)+ Y pi(Vio YY) is an unbiased estimator for {A, &) whenever p
is such that H*Hp = 1.

COROLLARY 2.2. If {A, &) is estimable and if & is such that H¥*HE = H*U, then
A& = z,-é i jfi ; +Zklkfk is an unbiased estimator jor {1, £p).

Using the expression for H¥H given in (3.2), it is possible from Theorem 2 to
determine estimability for a parametric function of the form {4, &,>. Also, unbiased
estimators, when they exist, may be obtained from either Corollary 2.1 or
Corollary 2.2.

To make the ideas and expressions in this section more tangible, consider the
completely random model

Yip = p+o+B+vi+ e
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where i=1,2,--*,a; j=1,2,:-+,b; and k=0, 1, -+, n;;. Write the model in
matrix notation as

Y= ﬂX+Wla+W2B+W3?+e.

Assume, as is generally the case in the completely random model, that the expecta-
tion of Y is pX, that the covariance matrix of Y is Y -, 6,2 W; W + 0?1, and that
the parameters are completely unknown. In the notation of this section the corres-
pondences are

(@) Q= {p:peR'} x{(6,%0,%03%06%) :0,%0,% 05%,0% 20}
and 0eQ isof the form (u,06) where ¢ = (0,2 0,2 052 0%).
(b) p=1,m=4, and M =5. ’
(B4 (¢) B, =XXV,=W, W, fori=1,2,3and V, =1.
(@) &,(0) = 12, £(0) = o2 for i = 1,2,3, and &,(0) = o>.
©) po=p*XX'+Y 316 W, W/ +0°I

To obtain H*H use (3.2). Substituting the syinbols used in this example the form of
H*H s

((XX’, XX’) (XX, W W) (XX', WoWy') (XX, WsW5') (xXx,I
WWy, WaWy)y (Wi, WaWy) (Wi Wy, WsWs) (W Wy, 1)

H*H = (W W', WoWo') (W Wo', WaWs') (WaWy', 1)
(WsWs', WaWs') (WaW3', D)
€ n
-n..z Z,n,.z 2]”.]2 Zun,z, n..
Y2 211”121 Eljnlzj n..
= . Tymy n..
Sy n..
n..

Since H*H is symmetric only the upper half of the matrix is indicated and n;. =
b ymg; n.y=Yi-my; n.. =) ;n; A necessary and sufficient condition for
(A &> = A2+ Y21 462+ 2407 to be estimable is that A’ be a member of the
row space of the matrix H*H. Further, if p is such that H*Hp = A, then (Hp, U) =
P Y2 4o YR 40, Y Y. 2 sy Y5+ pa Y Yikis an unbiased estimator
for (A, &,». To see this note that

C (XX, YY) T Y2..
W, w,/',YY") Zi Y2.
HU=| W, w,, YY) |=| 3,7, 2
(W W5, YY) Zij Yj .
@&YY) | | Xin Y
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A dot indicates summation over the missing subscript. Also note that if 1,,u%+
Y31 Ao 2+ 2,07 is estimable, then (A, &) is an unbiased estimator for {1, &>
provided that & satisfies H*HE = H*U.

We do not go into any more detail with this example. However, it may be noted
that Harville [4] has considered this same example in detail from the viewpoint of
the Henderson Methods I and III. As a final point it is clear that the general
approach of this section will work with any mixed model; however, from the
dimensions of H*H it is equally clear that the approach is computationally more
suitable to a completely random model when interest is in parametric functions of
the form ), 4.

4. Quadratic estimators via Theorem 5 in [9]. Necessary and sufficient conditions
for estimability of parametric functions of the form ) ;< ; A;;8:8;+ Y 44V, and ways
of obtaining unbiased estimators for such functions are considered in Section 3.
Usually, however, interest is not centered upon the estimability of an arbitrary
{4, &, but only on parametric functions of the form ), A,v;. The methods of the
last section, although applicable to parametric functions of this form, require that
one consider an M x M matrix to determine estimability. For a fixed m it is clear
that the size of the matrix H*H increases in relation to ({)p(p+1), and thus can
become extremely big and unmanageable if p gets very large. Thus, this section is
devoted to ways of reducing the size of the matrix involved when emphasis is on
parametric functions of the form ), 4,v,.

Considering only parametric functions of the form Y, 4, is similar to focusing
attention on a subset of the parameters in the fixed part of the random vector Y.
Such considerations regarding only a subset of the fixed parameters, as discussed
in Zyskind et al. [10], can be obtained by application of Theorem 5 in [9]. For
example, consider the fixed part Xf of the random vector Y. Suppose that Xj
is in the partitioned form X = X,f, + X,f, and that interest is in estimability of
parametric functions of the form A’'f, within the class {a¢'Y: a e R"}. For any matrix
W such that

(4.1) R(W)+N(X') = N(Xy),

it follows from Theorem 5 in [9] that a necessary and sufficient condition for 4’8,
to be estimable within the class {a’Y} is the existence of a p such that X,'Wp = 1.
In [10] the matrix used for Wis (I— X,(X,'X,)” X)X, where (X,'X,)” denotes any
g-inverse for the matrix X,’X;. This matrix yields a direct sum in Equation 4.1 so
that Corollary 5.1 in [9] is also applicable. This same technique, i.e., choosing W =
I—X(X,"X,)” X,")X, for linear estimability considerations regarding parametric
functions 1’f,, may be employed to obtain an m x m matrix for estimability con-
~ siderations regarding parametric functions of the form ) ,4,v,. Although such a
technique could be used, we utilize Theorem 5 of [9] to investigate another way to
obtain a more manageable matrix for estimability considerations for parametric
functions of the form ) ,4,v,.
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To utilize Theorem 5 in [9] we need alinear operator W such that R(W) + H(H*) =
%,", then the pertinent condition for ) ,4,v, to be estimable is the existence of a
p such that H¥*Wp = A(4;; = 0 for 1 £ i < j < p). In order that the linear operator
H*W be conveniently represented in the form of a matrix, W is selected as a linear
operator from R™ into &/ ; and to show that W satisfies the required condition the
following two lemmas are given. For proofs of the lemmas see [8].

LemmA 3. If T is any symmetric and nonnegative linear operator on of and B is a
linear operator into of, then R(TB)NN(B*) = {0}. Further, if N(B*)<R(T) then
R(TB)®N(B*) =R(T).

LEMMA 4. Let P denote the symmetric idempotent matrix such that R(P) =R(X)
and let N = I—P. Define T from o into of by Aeof =TA = NA+ AN, then T
is a symmetric and nonnegative linear operator on s/ such that R(T) = %, .

Let N and T be defined as in Lemma 4. Observe that N(H*)c%," so that
Lemma 3 and Lemma 4 imply R(TH)@N(H*) = %,*-. Let Q denote the linear
operator from R™ into &/ defined by Qp = )7, p;V; for all pe R and define

W= )TQ,i.e., for pe R" ’
Wp = (3) 201 NV +V;N).
Note that R(TQ) = R(TH); and so W satisfies the relationship R(W)® N(H*) = %,*.
From the preceding paragraph it is clear that W is a suitable linear operator to

utilize Theorem 5 of [9]. Let 0 denote a ()p(p+1) vector of zeros and note that
(B;;, Wp) = 0foralli,j,and p. For A’ = (4,, -+, 4,,) it is clear for pe R™ that

0 0
H*Wp = I:Q*Wp] = [A‘J@Q*Wp =1

Hence, estimability considerations regarding parametric functions Y ,4,v, may be
obtained through the linear operator Q*W. The matrix form for Q*W and the
vector form for W*U are

Jjo

[ tr(V,NV,)---tr(V, NV,)
(4.2) Q*W = : :
| tr(V,,NV,)-tr (V,,NV,)
and
YNV, Y
W*U = :
| Y'NV, ¥

Using these expressions the following statements, which are immediate consequences
of Theorem 5 and comments in Section 4 of [9], may be made.

THEOREM 3. A necessary and sufficient condition for Y A, to be estimable is the
existence of a p such that Q*Wp = A.
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COROLLARY 3.1. Suppose p and A are such that Q*Wp = A, then the estimator
(Wp, U) =<p, W*U) = >I"_ p;Y'NV,Y is an unbiased estimator for Y A v,.

COROLLARY 3.2. Suppose % =Dy, -+, 9,) is such that W*Q9 = W*U, then
Y WAV is an unbiased estimator for any estimable parametric function of the form
Y Ve

k™ k¥ k

As in Section 3 we illustrate the preceding results with a specific example. Con-
sider the mixed linear model

Y =p+Pi+v;+e

where i=14,2,-:*,b; j=1,2, -+, ¢; k=0,1, -, n;; pu, B; are fixed effects;
and y;, e;;; are random. Write the model in matrix notation as

Y=Xﬁ+G)’+e (ﬁ=(#,ﬁl,”"ﬁb)I);

then making the usual assumptions on such a model the notational correspondences
are

(@) Q= {B:1,B;€R'} x {(0,%,0%):0,%,6% 2 0}
and 0eQ is of the form (f,06) where o = (0,2, 0%).
®) p=>b+1, m=2,and M =2+@E)(b+1)(b+2).
4.3) (¢) V;=GG' and V,=1.
(d) X =(x0,x1,"**,X;) andthe B;’s are formed as previously defined.
(e) po= XBBX' +0,°GG +0’I.
() ,={B;;0<i<j<b} and %, ={GG,I}.

From (4.2) the following description for Q*W may be obtained:

o | T [(G'G)*]-tr[(G’'GNG'PG)] tr(G'G)—1r(G'PG)
44 Q w_[ tr(G'G)—tr (G'PG) tr(I—P) ]

___[Zjn'jz—Zini-_len.jnizj n"_Zlni'_IZjniZj]

n..=yun."tY n} n..—b

In the last expression we have assumed that n;. #0 for i =1,2, -+, b. A dot in
place of a subscript indicates that summation has been carried out over that
subscript. It is now straightforward to apply the results stated in this section. For
example, a necessary and sufficient condition for 1,0,%+A0? to be estimable is
that (4,, 1) be a member of the row space of the 2 x 2 matrix Q*W.

5. The Henderson Method III procedure—an example. In this section the Hender-
son Method III procedure for estimating variance components is illustrated, via
an example, from the viewpoint of this paper. In addition to obtaining the pertinent
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estimating equations, their status with regard to the following two conditions is also
indicated:

(CBY) (a) R(W)+NH*) = B,* and
(b) ROW*Q) = R(W™).

That is, does the Henderson procedure provide necessary and sufficient conditions
for estimability of linear functions of the variance components (5.1.a) and are the
estimating equations consistent (5.1.b)? Although these two questions, i.e., estima-
bility and consistency, are not generally considered in the literature on Henderson’s
procedure, they would seem to be relevant questions. An exception to this state-
ment is the treatment of a completely random two-way classification model with
interaction given by Harville [4]. Harville considers Method I and Method III of
Henderson and answers both the questions of estimability and of consistency.

For the example consider a mixed linear model Y = Xf+e with covariance
structure ¢,2V+02l. As is usually the case assume that Q= {f: feRP} x
{(6,2, 6%): 0,2 6* 2 0}. The parameter 0 € Q is taken to be of the form 0 = (8, o)
where ¢ = (0,2, 6%)'. Let P denote the matrix in &/ which is the orthogonal pro-
jection on R(X), i.e., P= P’ = P? and R(P) =R(X), and let L denote the matrix
in & which is the orthogonal projection on R(X)+ R(V).

Let W be the linear operator from R? into o/ defined by Wp = p, P, +p, P, for
all pe R* where P, = L—P and P, = I— L. Using the definitions previously given
for H and Q, observe for ae RM and p = («,, «;)’, i.e., p denotes the last two com-
ponents of «, that

iy o], [®uW], [®uD
W*Ho = Zi;j%'[o]”‘ |:(P2, V)]Mz[(f’z,l)]

(5.2) _ (P, V) (Pi,D ||
0 (P, 1) ][ o,
= W*Qp.
It is clear that R(W*H) = R(W*Q) and that we may consider W*Q as the 2 x 2
matrix given in (5.2). The following is a statement of the Henderson Method I11

procedure for our example.

Henderson Method II1. Suppose that & = (8,2, 6*)’ satisfies the following:

(P, V) (P, I)|[é, Y'P,Y
53 W*Qé = = = W*U,
(5-3) Qe [ 0 (P,D || 6 Y'P,Y
then A,6,2+ 482 is an unbiased estimator for 1,0,%+ As? provided that (4,, 1) is
a member of the row space of the matrix W*Q.
The statement referred to as the Henderson Method III will follow immediately

from Theorem 3 in [9] after we demonstrate the consistency of the equations in
(5.3). In most references to the Henderson procedure it is apparently assumed, and
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is usually the case, that the 2 x 2 matrix W*Q is nonsingular so that no complica-
tions arise with regard to estimability or with regard to consistency. With regard to
estimability, however, it is shown later than even if 6,2 and ¢? are estimable, it
does not follow that W*Q is nonsingular. The way the equations in (5.3) are
usually obtained is by taking expectations; that is,

E[Y'P,Y|0] =0, %(P,,V)+0*(P,])
E[Y'P,Y|0] = 6*(P,,1).

The procedure is then usually stated as follows: Set the expectations equal to their
respective functions and solve to obtain the estimates. This type of argument,
however, does not demonstrate that the equations are consistent.

One way to demonstrate that the equations W*Qé = W*U are consistent is to
show that R(W*Q) =R(W*) or equivalently that R(W)nN(Q*) = {0}. Suppose
that Wp eN(Q*) for some p, then it must follow that

p1(V,P)+p(V,Py) =0
pl(I9Pl)+p2(19P2) = 0

These conditions may be shown to imply that p,P;+p,P, = Wp =0 so that
N(Q*)NR(W) = {0}. Thus, the equations are consistent.

In determining whether Condition 5.1.a holds for the example we use a dimen-
sion argument. Since it is already established that R(W*Q) =R(W*H) = R(W*),
we need only determine if (W) = dim #,* — n(H*). Note that R(H) = sp %, +sp %,
so that by appropriate substitution the condition on r(W) reduces to

(5.9 r(W) = dim [sp %, ] —dim [sp #,nsp %, |.

In words (5.4) says (Corollary 5.2 in [9]) that the rank of W must equal the number
of linearly independent estimable functions of the form 1,6,2+ A¢? in order for
Condition 5.1.a to be satisfied.

Table 1 summarizes the various relationships between %, and %, and gives

TABLE 1
The possible relationships between #, and %,.
Basis for Basis for estimable dim [sp #,]
Line sp %, sp %o Nsp &, functions —dim [sp #, Nsp #,)

1 1 1 e 0
2 I(V=kI) 0 ko,? +ao? 1
3 v, 1 v, I — 0
4 Vv, 1 14 o2 1
5 v, 1 1 impossible impossible
6 V,I kIt+k,Vikk, #0) o?— (klk)o,? 1
7 v,1 0 a2, 62 2
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dim [sp #,]—dim [sp B, sp %,]. The results in this table may be easily verified.
For example, in Line 6 the matrices V and I are independent and k/+k,V is a
basis for sp Z,nsp#,. Thus, dim [sp#,]—dim [sp B,nsp#;] =1 and there is
only one independent estimable function of the form As?+ 1,0,2. To obtain the
form of the estimable function in Line 6 use Theorem 4 of [9]. That is, define a linear
functional F on & as follows:

F(B;;)=0 ' for 1gsisj=sp
F(I) = 4,

and extend linearly. Since kI+k,Vesp%B,, it follows that 0 = F(kI+k,V) =
kF()+k,F(V) = kA+k,A,; and so kA+k A, must be zero. Therefore, A; must be
of the form —(k/k,)A.

To determine if Condition 5.1.a is satisfied we need to obtain the rank of W
under the various relationships between %, and 4,. This is done in Table 2. Note
that r(W) = dim [sp {P,, P,}] is equal to the number of non-zero elements in
{P,, P,}. The results in Table 2, as those in Table 1, are easily verified. For example,

TABLE 2
The rank of the operator W
Basis for Basis for
Line sp %, sp %, Nnsp B, P, P, r(W)

1 1 1 P,=P,=0 0

2 I(V=kl) 0 P, #0,P,=0 1

3 vV, 1 vV, 1 P, =P,=0 0

4 v,1 14 P,=0,P,#0 1

5 V, 1 1 impossible impossible
6 v, I kl+k,V(ky,k#0) P, #0,P,=0 1

7 v,1 0 P, #0,P,="? r(w)=1

suppose (Line 7) that ¥V and I are independent and that sp B,nsp %, = {0}. If
P, =0 then ¥ must be in sp %,; but by assumption this is not true so that P, # 0.
Since P, =0 if and only if R(X)+ R(¥) = R" the only conclusions which may be
drawn regarding P, are

(5:5) (@) RX)+R(V)=R"=r(W)=1 (P; =0) and
(b) R(X)+R(V) #R"=r(W) =2 (P2 #0).

Thus we may conclude that Condition 5.1.a is true provided that the following
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conditions are not simultaneously satisfied :
(a) V and 1 independent,

(5.6) (b) sp&onsp &, = {0}, and
() R(X)+R(V)=R"

Note that Corollary 1.2 implies that both ¢,? and ¢ are estimable when (5.6.a)
and (5.6.b) are satisfied. Hence, if Conditions 5.6 are satisfied the Henderson
Method III will not provide estimators for both ¢ and o,2 even though such
estimators exist. In the second of the following two specific examples we illustrate
that such a situation can exist.

Consider the linear model Y = uX+ Ga+ e arising from the one-way classifica-
tion model Y;; = u+a;+e;;, where «;, e;; are random and u is fixed. Make the
usual assumptions on the covariance matrix, i.e., 6,2GG’ 4+ ¢2I. It is easily verified
that R(X)+ R(GG’) = R" if and only if G = I. Thus, the conditions in (5.6) cannot
all be satisfied so that the Henderson procedure satisfies Condition 5.1.a and
Condition 5.1.b.

Now consider the example in Section 4. That is, the mixed linear model Y =
XB+ Gy+ e, which arises from a two-way classification with one factor random and
the other fixed. For a more complete description see the expressions in (4.3). The
following observation arrangement

u B4 B> Y1 Y2 Y3

1 1 0 1 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 1 0 0

0
0

can be shown to satisfy Conditions 5.6.a, 5.6.b, and 5.6.c. Thus, there can exist
situations such that the conditions in (5.6) are all satisfied. As a side point note that

the 2 x 2 matrix in (4.4) is
8/3 2
2 20

and its determinant is 4. Thus, we have another verification that both ¢,% and ¢*
are estimable. Harville [4], using a somewhat different approach and considering a
completely random two factor model with interaction, found an analogous situa-
tion with regard to the Henderson Method III, although he did find that the
Henderson Method I procedure satisfies both Condition 5.1.a and Condition 5.1.b.
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