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THE SEQUENTIAL GENERATION OF
D-OPTIMUM EXPERIMENTAL DESIGNS!

By HENRY P. WYNN

Imperial College, London

0. Summary. It is possible to obtain convergence to a D-optimum measure, as
defined by Kiefer and Wolfowitz, by successively adding points to a given initial
experimental design. The points added correspond to points of maximum variance
of the usual least squares estimate of the response mean for the particular regression
model at each stage. A new bound is given for the generalized variances involved
and an example is worked out.

1. Introduction. Difficulties may arise in choosing an experimental design which
is optimum in some sense in situations in which a linear regression model is
assumed. A procedure is described which may help in overcoming at least two of
these difficulties. The first difficulty arises when the model, or the design space, is
sufficiently complicated to prevent the immediate calculation of an optimum
design. The second difficulty occurs when some observations, not necessarily
forming part of an optimum design, have already been taken and it is required to
take further observations in an optimum way, possibly including a change of model.
Both difficulties may of course arise together.

The procedure prescribes the sequential addition of points to a given initial
design in such a way that an optimum design is approached. This enables one
either to compute an optimum given an arbitrary initial design or to choose extra
points for a partially completed experiment. The extra set of observations, though
not necessarily giving an optimum improvement itself, usually brings the design
closer to optimality. It is also possible to calculate bounds which indicate how
close one is to an optimum design at any stage without knowing the true optimum
design but only the improvements up to that stage. The procedure and bounds
are valid for general linear regression models.

The basic criterion of design optimality which we shall use here is that of
D-optimality developed largely by Kiefer (1959, 1961a, 1961b, 1962a, 1962b) and
Kiefer and Wolfowitz (1959, 1960). More recently some of the results in these
papers were proved again and extended by Karlin and Studden (1966a, Chapter X ;
1966b). D-optimum designs have been calculated for many different models; see
also Hoel (1958, 1965). However, difficulties like those mentioned above still
arise. Furthermore, the general design measure introduced by Kiefer and Wolfowitz
which enables analytical results to be obtained does not always give optimum
discrete designs which can be used in experimental work. But good approximations
for large designs are possible. Thus, while relying heavily on previous work in this
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field, we shall demonstrate further connections between the theoretical results and
procedures which can be used in practice.

Since this paper was first submitted similar and extensive work in the field by
V. V. Federov (Preprint No. 7, Department of Statistical Methods, Moscow State
University) has come to the author’s notice.

2. Definitions and background. Following Kiefer and Wolfowitz, we suppose
that f}, - -+, f; are k given linearly independent functions on a space & which are
continuous in a topology in which & is compact. The space & will usually be a
closed compact set in a Euclidean space of a particular dimension. We assume
that at each point x in & a random variable Y, is defined and is such that

E(Yx) = elf(x),

where f(x) is the k x 1 column vector of functions f; evaluated at x and 0 is a
k x 1 column vector of unknown real parameters. We assume also that
Var(Y,) = o2, Cov(Y,,, Y,,) = 0 for x, x, x, in Z(x; #x,).

In defining experimental designs, it is important to distinguish carefully between
discrete designs and design measures. A discrete design with » points is a set of »
points x;, -+, x,, in &, not necessarily distinct. A discrete design will be denoted
by D,, where the subscript always denotes the number of points in the design. A
design measure, referred to in future merely as a measure, is a probability measure,
denoted by &, on Z. Specifically, ¢ is a member of the set, 9, of all measures
defined on the Borel Field, 4, generated by the open sets of 2 and such that

fx&(dx)=1.

It is assumed that & contains all one-point sets.

For the discrete design D, in & we have the corresponding n x k design matrix
X,, whose ith row is the vector f(x;). The design matrix corresponding to a discrete
design will always be given the same subscript. For a measure £ on & we write

mif(&) = [ fix)f(x)&(dx).

Let M(&) be the k x k matrix whose 7, jth entry is m;{(£).

Now from any discrete design D,, we can form a measure, &,, by attaching a
mass of 1/n to each point of D,. We call &, the associated measure of D,. Again, a
discrete design and its associated measure will take the same subscripts. We have,
therefore, from these definitions

21 X, X, = nM(G,).
A measure £* is called D-optimum if
2.2 det {M(£*)} = sup,.q det {M()}.

Kiefer and Wolfowitz have investigated the equivalence of several types of
optimality. Defining

2.3) d(x,€) = f(x) M~ Of),
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they show (Kiefer and Wolfowitz, 1960) that D-optimality of &* as defined by
(2.2) is equivalent to

(24) infée@ SUPyeq d(x’ 6) = SUPyeq d(x,f*)
and also to
2.5) SUD,eq d(X,E*) = k.

Recall that k is the dimension of f.

A discussion of the statistical meaning of D-optimality is given by Kiefer
(1959). First, det(X,’'X,)”! is proportional to the generalized variance of the
parameters forming 6. Also, suppose that the Y, are normally distributed and
therefore independent. Maximizing det (X,’X,,) is then equivalent to maximizing the
Gaussian curvature of the power surface of the usual F test, or x? test if o2 is
known, at the null hypothesis 6 = 6,, where 0, is some fixed value of 0.

From (2.1), we have
(2.6) d(x,8,) = nf(x)' (X, X,)” ()
and o?f(x)'(X,’X,)” 1f(x) is the variance of the usual least squares estimate of the
expected response, E(Y,), at x. Thus the equivalence of (2.2) and (2.4) means that
if D, is such that £, is D-optimum then the design minimizes the maximum over &
of the variance function derived from using that design.

It should be mentioned (see, for proof, Karlin and Studden 1966a, page 323) that
given any measure ¢ we can find another measure ¢’ which has a finite support
comprising fewer than 1k(k+1)+2 points such that M(&) = M(&'). If €* has a
finite support x;, ***, x,, then another condition which can easily be seen to be
equivalent to (2.5), and therefore to (2.2) and (2.4) is that supd(x, &*) is achieved
at x;, - -, x,. Note that the fact that £* possesses finite support does not necessarily
mean that it is the associated measure of some discrete design since the masses at
the support points may well be irrational. It is the coincidence of support points
and points of maximum variance for D-optimum measures that leads intuitively
to our procedure.

3. The procedure. Let D, be a discrete design with n, points, x,, * -, x,, which
is admissible in the sense that X, X, is non-singular. From D,, by successive
addition of points, we shall generate a sequence of designs such that in the limit the
associated measures become D-optimum. Thus, we first find a point x,,,; in &
which maximizes the variance function obtained by using D, ; that is choose
Xno+1 SUch that
(31) SUPyea d(x’fno) = d(xno+ lacno)*

Then form a new design D, ., with ny+1 points by adding X,,,, to D,, and
continue this process to obtain a sequence of designs, D,,c D, ;< *** <D,c -,
where D, is obtained from D,_; by adding a point of maximum variance, over
Z, of the estimated response mean obtained from using D,_,. The basic result
of this paper concerns the sequence of associated measures {£, } and is contained in
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THEOREM 1. As n— o, lim det {M(£,)} = det {M(&*)}, where £* is a D-optimum
measure.

The following simple identity in matrix algebra which has been referred to by
several authors, for example Scheffé (1959, page 417), is important in what follows.
Its proof is simple and will be omitted.

LEMMA. If W is a symmetric positive definite k x k matrix and a ak x 1 column
vector, then
det (W +aa’)
det (W)
Now consider the sequence of X, corresponding to our constructed sequence of
D,. If we add any point x in & to D, to get D, ., we must add a corresponding
row, f(x), to X,. Thus

Xne1Xne1 = X' X, +f)f(x)'.
Putting W = X,'X, and g = f(x) in (3.2) gives
det(X,+1X,+1)
det(X,'X,)
This important relationship implies that if we choose x to maximize det (X, X, +1)s
we also maximize the variance function, which is proportional to the right-hand
side of (3.3). Theorem 1, therefore, implies that we can approach a D-optimum

measure by maximizing det(X,’X,) one point at a time, or if det(X,*’'X,") is the
maximum possible over all discrete designs with » points, then

3.2) —1=aWla.

(3.3) —1=f()'(X,'X,) " f(x).

det(X,'X,)
AP SR
Using (2.1) and putting x = x,,, in (3.3), we have
n+1\* det{M(£,+1)} _
(34) n[( ' ) e —1] — ),

where d(£) = sup,.q d(x, £). Now Kiefer (1961b) gives an inequality connecting the
nearness of d(¢) to k with the nearness of det {M(£)} to det {M(¢*)}, the optimum.
The inequality is

3.5) - det{M(©®)}

det {M(¢%)} =

Putting ¢, = ¢ in (3.5) and substituting for d(¢,) from (3.4), we have, after
rearrangement,

det {M(&,. 1)} n V(. 1 det {M(£*)}
@6 det (M(E)) = (n ¥ 1> {1 +5(k+l°g [det ME)) D}

It is this basic inequality which we shall use to prove Theorem 1.

exp {k—d()}-
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Since 0 < det {M(&,)} < det {M(¢é*)} for all n, to show that det {M(¢,)}—
det {M(&*)}, we must show that given an & > 0 there is an n* such that
det{M(&,)} > (1—¢g)det {M(¢*)} forall n=n*.
Divide the sequence {£,} into two disjoint subsequences E, and E, such that
¢,€8, if and only if det {M(&,)} = (1—3%e)det {M(£%)},
¢,€8, if and only if det {M(&,)} < (1—3%e)det {M(£*)}.

We show first that =, is non-empty; that is that we can, at least, find det {M(¢&,)} as
near as we please to det {M(¢¥*)}.
Suppose =; were empty. Put é =log(1/(1—4¢)) and use (3.6) to obtain

det (M)} _ [ n Y, .1
3.7 det (M(Z)) > <n+1> {1 +;l(k+5)} s

since then
det {M(&%)} 1
>
det{M(¢,)} = 1—13¢
for all n(= n,). Expanding the right-hand side of (3.7) in powers of 1/n we have
det {M(¢,+,)} 0 a, as
— S IS5+t ...,
det (M)}~ tatmtet

where the coefficients a,, a; - - - depend only on k and 4. Thus we can find ann > 0
and an n* such that

det {M(&,+1)}
det {M(¢,)}

Choose an n > n*, say n = m. Then, for any integer r > 0, we must have
det {M(6p+n)} Z det {M(&,)} x [T,=n(1 +n/n).

Thus, since [[,25(1+n/n) > 1434521 (1n/n), det{M(,+,)} > © as r— 0. But
det {M(£,)} > 0 and we know that det {M(¢*)} is finite under our assumptions
of a compact & and continuous f;. Thus we have a contradiction and E; must be
non-empty. Moreover, since the choice of ¢ was arbitrary, Z; must contain an
infinity of &,.

For ¢, €&, we have, from (3.6)

det {M(§n1+1)} ny \ k
38 det {M(¢,)} = (n1 + 1) (1 +Z> ’

= 1+g forall n>nt.

since certainly

=0

det {M(2%)
log[det {M(él)}]
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Expanding the right-hand side of (3.8) in powers of 1/n,, we obtain
det (M, s} b2 by
det{M(,)} = n? n
where b,, b, -+ - depend only on k. Therefore, we can find an »’ such that for all
ny>n' and £, €5,
(39 det {M(&,,+1)} 2 (1 —3e)det {M(&,,)}-
This implies that for £,, € E, and n, > n’,evenif &,, . isnotin &, we must still have
(3.10)  det {M(&,,+1)} = (1 —3e)(1—3e)det {M(E*)} > (1 —e)det {M(£¥)}.
Furthermore, from (3.7), we can find an »"* such that fgr all ¢,,e8, with n, > n”’
det{M
(3.11) dei{]\fli%:)l—})} >1.

Now select n* so that £,.€E,, n* >n’ and n* > n'’, then the two inequalities
(3.10) and (3.11) compel any &, with n = n* to satisfy

det {M(£,)} > (1—e)det {M(")},
where £,€E, or E,. Thus, the theorem is proved.
4. Bounds. Kiefer (1961b, Theorem 2.34) proves, in addition to (3.5), that

dot (M@} | @Ok
det (M@} = P 2k(k+1)

provided d(é)—k £ 1.
We now derive an inequality, which seems to be better than the above and is

valid for all d(&).
If ¢ is a measure for which M(€) is non-singular, x a point in & and o a number

(0 <« < 1), we can use the lemma to obtain
@) SAMOL LI = (2w,
But aM (&) +(1—a)f(x)f(x) = M{aé+(1—a)f'}, where &’ is the measure attaching
mass unity to the point x in . Put aé+(1—a)¢’ = &"”. Then (4.1) becomes
det{M(E")} . (1-a
det(@M@) "~ (T)d("’ 2
Choose x so that d(x, &) =d(£). We must have
1—a _ det {M(é”)}_
(T) 1= gt @am®)

o det{MC™} |
= aFdet {M(%)}

b
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since det {M(£")} < det {M(£*)}, the optimum. We can make this inequality as
strong as possible by noticing that since « is arbitrary in (0, 1)

B
@ w00 (i)
_ det {M(£%)}
e P e @}

To find the value of the right-hand side of (4.2) we differentiate (1 —oa) ™ a(B/o* —1)
with respect to « and put the result equal to zero to obtain

(4.3) ok — kpo+B(k—1) = 0.

Since f = 1, this has a unique solution in (0, 1) and gives the required minimum.
Rather than solve this kth order polynomial equation for «, we let

inf ( )(——1)
0<as1 1-a

Let the solution of (4.3) be a*. Then a** = f(ka*—k+1) and

PR ! 1
T 1—a*\ka*—k+1

eliminating f. Thus,

— kor* ivin
T ka*—k+1 giving
d(k—1)
* =
4.4) = =1y But
a*k
b= ka*—k+1’

thus, substituting for a* from (4.4) we have

=(e) (@)

This gives an inequality explicit for B, rather than (d¢), which takes the form,

det {M(E*)} _ (dEN*( k—1 !
(4.5) p= { ( } = 4(c) S—
det (M@} = |k § ld@-1
The bound (4.5) is valid for all d(¢) whereas Kiefer’s holds for d(¢) £ k+1.
Furthermore, a simple calculation involving the derivatives of the two bounds
shows that (4.5) is strictly better at least in the neighbourhood of d(¢) = k.

When f =1 in (4.2) we have d(¢) < k. It is easy to show that d(£) = k. Thus, in
this case d(¢) = k and we must have equality in (4.5). This provides a proof that
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(2.2) implies (2.5) which is an alternative to the proof given by Kiefer and
Wolfowitz (1960). The inequality (4.5) is interesting in its own right, especially as
it holds for any linear model for which we can find non-singular M(&). In order to
get an inequality explicit for d(£), we would need to plot the value of the right-hand
side of (4.5) against d(¢) and then read off the correct upper bound for d(¢&) given S.
Our application of (4.5) is to the procedure described in Section 3.

Together with (3.5), we use (4.5) to give bounds for det {M(¢*)} when we know
both det {M(&,)} and det {M(¢,,,)}. These take the form 4, < det {M(¢*)} < B,,

where
A k=1
An = det {M(én)}{%”)} {3?)1_1} ’

B, = det {M(&,)} exp {d(&,)—k}. .

Here d(&,) is given by (3.4). We can combine the bounds for r steps of the procedure
and state that

(4'6) maxno§n§n0+r {An} é det {M(é*)} é minno§n§n0+r {Bn}°

5. Applications. In considering any specific example some general points should
be borne in mind. First, instead of dealing with the design space, &, and the model
separately it is natural to consider the space f(&) of all k-dimensional vectors
which, given fand &, can be chosen as a row of a design matrix X. Also we can
always find a D-optimum measure such that the image in f(%) of its support in Z
lies on the boundary of f(%). It can easily be shown, furthermore, that D-optimality
is preserved under non-singular linear transformations of f(Z); that is transforma-
tions for which the model can be re-written in the same form by taking a non-
singular linear transformation of the parameters.

Another important point is that if we are using the procedure of Section 3, and
a D-optimum measure with finite support, or merely the support itself, is known,
then maximizing the variance function over the support at each stage will be
considerably easier computationally than maximizing it over the whole space Z'.

We give an example to illustrate some of these ideas. The model chosen is simple
but the design space is a little unusual.

Consider the two-dimensional polynomial model

E(Y,) = 0o+ 0,x; +0,x,, x = (%1, %3).

The usual regression assumptions outlined in Section 2 are made. Let the design
space be the area whose boundary is the quadrilateral with vertices A(2, 2),
B(—1,1), ¢(1, —1) and D(—1,—1). We can say immediately that it is impossible
to transform this by a non-singular linear transformation to, say, a rectangle for
which the D-optimum measure is known to consist of masses  at each vertex.
However, the support points of the D-optimum measure are still 4, B, C and D,
for the variance function is a maximum at at least one of these points. This follows
from the convexity, in f(%), of the variance function and the polygonal nature of
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the boundary of f(&). Thus, in generating successive points, we restrict ourselves
to the points 4, B, C and D.

Table 1 gives the results for the first few steps using B, C and D as the initial
design. For this initial design det {M(&;)} = 0.5926, d(¢3) = 25.5, A5 = 2.4252 and
B, = 5.9 x 10°. This example is interesting in that the design with 32 points gives

TABLE 1 _
Points generated up to n = 12 with det{M (¢,)},d (&), A, and B,

Points
added to _
n formD, det{M(.)} din An B,
3 B C, D 0.5926 25.5000 2.4252 5.9x10°
4 A 2.3750 3.5790 2.4252 4.2374
5 A 2.3040 3.7500 2.3802 4.8776
6 B 2.3333 4.2857 2.5205 8.4403
7 C 2.5190 3.2407 2.5297 3.2046
8 A 2.4688 3.3165 2.4863 3.3878
9 B 2.4527 3.6846 2.5220 4.8634
10 C 2.5200 3.3429 2.5240 2.9076
11 A 2.4883 3.3478 2.5094 3.5235
12 D 2.5000 3.2000 2.5075 3.0535

an exactly D-optimum measure; d(£3,) = 3, det {M(&5,)} = A3, = B3, = 2.53125.
The complete sequence of points, starting with BCD from the initial design, up to
32 points is

BCDAABCABCADBCABCADBCACBADCBABAC.

The D-optimum measure can be found by counting up the number of times each
point is selected in the above sequence. It places masses of 10/32 at 4, 9/32 at B
and C, and 4/32 at D. Thus the procedure reaches a D-optimum measure in the
minimum possible number of points. It also returns, it was found, to the D-optimum
measure at multiples of 32 points, though after selecting the points in a somewhat
different order. It is interesting also that 4, and subsequent lower bounds are
fairly accurate, more accurate than the corresponding upper bounds. In Table 1
the best bounds for det {M(&*)} up to n = 12, as given by (4.6), are 4, = 2.5297
and B,, = 2.9076.

Since for some steps there was a choice of alternative points which maximized
the variance function the particular sequence given above is not unique.
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