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ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS OF THE ROOTS
OF TWO MATRICES FROM CLASSICAL AND COMPLEX
GAUSSIAN POPULATIONS!
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1. Introduction and summary. The distribution of the characteristic (ch.) roots of
a sample covariance matrix S (one-sample case) or the matrix S;S, ! (two-sample
case, see Section 3) depends on a definite integral over the group of orthogonal (in
the complex case replaced by unitary) matrices. This integral, either in the one-
sample case or the two-sample case, involves the ch. roots-of both the population
and sample matrices. Usually the integral in either case is expressed as a hyper-
geometric series involving zonal polynomials [4], [6]. Unfortunately, these series
converge slowly unless the ch. roots of the argument matrices lie in very limited
ranges. Furthermore, the computations of these series are not so easy and not
convenient for further development. In the one-sample real case, Anderson [1]
has obtained an asymptotic expansion for the distribution of the ch. roots of the
sample covariance matrix. In the two-sample case, however, the situation is more
complicated. Chang [2] has obtained an asymptotic expansion for the first term.
In Section 3 and Section 4 of this paper, we extend Chang’s results obtaining the
second term and also derive a general formula which includes the formulae of
Anderson [1], James [7], Chang [2] and Roy [12] as limiting or special cases. In
Section 5 we are dealing with the asymptotic expansions in the two-sample case in
the complex Gaussian population, from which the one-sample results are obtained
as limiting cases. Finally, Section 6 gives a comparison of the four asymptotic
expansions.

2. Notation. Before proceeding further, we list the notations which will be used
throughout.

The letters j, k, s, t, p, q, m and n with or without subscripts will denote positive
integers, and i =(—1)%. Matrices will be denoted by bold face capital letters and
their dimensions are all p x p unless otherwise stated. In particular, S and X with
or without subscripts denote the sample and population covariance matrices
respectively. A, B, R, and ® are diagonal matrices, and I, identity matrix. H, Q
and U denote Hermitian, orthogonal and unitary matrices respectively. U’ is the
transpose of U, and U* is the complex conjugate and transpose of U. O(p) and
U(p) are the groups of all p x p orthogonal and unitary matrices respectively.
|| denotes the absolute value of a, and |X| denotes the determinant of X. ki, is the
conjugate of /j,. h;x and hj,; are the real and imaginary parts of 4. hj, denotes
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either /1,5 or hj;,;. Summation Y ;_; or ) ;. means Y 5_; or ¥ 2_,. Product [[;-,
or [ [;<, means [ ]2, or [ |2« unless otherwise stated.

3. The asymptotic expansion of .#. Let S; (j = 1.2) be independently distributed
as Wishart (n;, p, £;), and let the ch. roots of S,S,7! and (X,E,”")"! be b, and
a,(k=1,---, p)respectively such thatb; > b, > -+ >b,>0and0<a; <a, <**
< a,. Further, let us denote

A = diag(a,, a5, +, a,),
B = diag(by, by, "+, b))
and n = ny +n,. Then the joint distribution of b,, b,, - - -, b, is given by [6], [9]

(3.1) Cllj=1af™ b ="V (b;—b)[];=1 db;
7*(Q'dQ),

where
(32) C=T,amT,Gn)NEm) ", T = D[, M4+,
and (Q’ dQ) is the invariant measure on the group O(p).

From (3.1) we know that the distribution of the ch. roots of S;S,7! depends on
the definite integral

(3.3) I = Jomn |I+AQBQ’'|"#(Q’ dQ).
Let us transform first
(3.4) Q =exp(S)

where S is a skew symmetric matrix (note that “S’’ was also used as the sample
covariance matrix). The Jacobian of this transformation has been computed by
Anderson (cf. (2.3) of [1]), and is given by

=2 o, . Sp*—20p+14
tr t
ar ST 4(6') S 36

LEMMA 3.1. Let A and B be defined as before; then f(Q) = |1+ AQBQ’|, Qe0(p),
attains its minimum value L+ AB| when Q is of the form

+1 0
+1

(3.5) J=1+ (tr$?)* +

(3.6)
0 +1
Proor. See [1]and [2].
Lemma 3.1 allows us to claim that, for large #, the integrand in (3.3) is negligible

except for small neighborhoods about each of these matrices of (3.6) and I consists
of identical contributions from each of these neighborhoods, so that

3.7 I =2% [y |I+AQBQ’|'*"(Q’ dQ),
where N(I) is a neighborhood of the identity matrix on the orthogonal manifold.
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LemMa 3.2. Let g(j =1, -+, p) be the ch. roots of G such that max, <<, |g;| <1
then

[I+G| " = exp{—4m tr(G—3G* +1G>—-")}.

ProoFr. See [2].

Since we wish to compute up to the second term in the asymptotic expansion of
#, we need to investigate the groups of terms up to the fourth order of S. Using the
transformation (3.4), we have

1+ AQBQ/| ™ = [I+ AB|™#[L+ {8} + {87} + (8} +{8% ++- | ¥,

where
{S} = RSB—RBS,
{S?} = 4(RBS? +RS’B—2RSBS),
{S*} = 4(RS’B—3RS’BS + 3RSBS?—RBS?),
{S*} = 74 (RBS*—4RSBS? + 6RS?’BS” — 4RS’BS + RS*B)
and
- . a .
R = (I+AB) A = diag(ry, 75, " 7)), F;= 1+aj,b, (j=1,""",p).

Under transformation (3.4), we have N(I) - N(S = 0). If we put G = {S}+ {S?} +
{S*}+{S*}+ -+, then in the neighborhood of S = 0, the elements of S are very
small, and hence the maximum ch. roots of G can be assumed to be less than unity.
Therefore Lemma 3.2 is applicable. By Lemma 3.2, we obtain

[1+AQBQ'|™# = |I+AB| *"|I+G|*

= [T+AB| #exp {—4ntr ([S]+[S*]+[S*]+[S*]+ - )},

where
[S]={s}
[s?] = {s?}-3{S}%,
[S3] = {8%} —4{S}{S*} —3{S*}{S} +4{s}®
and

[$*] = {S*} —4{SHS®} ~4{S*HS} - 4{S?}* +4{S}*{S?}
+3{S}HS?HS} +3{S?}{S}* —4{S}*.
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Since S = (s;), 5 = —suforallj,k=1,---, p,nowwe have
tr[S] = tr (RSB—RBS) =0,
tr [S?] = tr ({S?} —1{S}?)
= tr (ARBS? + 1RS?B — RSBS — 4(RBSRBS + RSBRSB —RBSRSB
—RSBRBS))
= tr (BS—SB)(I- RB)SR
= Y.<k CinSik
where
(3.8) cix=(ri—r;rbdbu = c;
P =T;—Ty and bj=b;—by.
Similarly, after simplification, we find
tr[S%] = tr {S*} —tr {SHS?}+31r {S}> + X ck<efike " S Sia St
where
Sie = Tiuba—Tie b+ 7 Fre Db+ 17 by by
+ 7 by by =211 7 by by by
(3.9)  tr[S*] =tr{S*} —tr {S}HS*} —$tr {S*}* +tr {S}*{S?} -t {S}*
=Y k@ St = LyenceViuShshit Ljenes Vi SiicSia
+ <kt Vesk ShSie+ Lj<utr#ud " Sjk Skt StuSujs
where
(3.10) Q= (r;r b}k_?l{)rkj b+ 3r; rk_%rfj)bfk_%rjzrkzb?k
= —dep—dch
(3.11) Ve = =31 bp—3r;bje+iryby
+4r(r b+ 1 b3 +r(re+ by,
—r2by by —4rer(bj+b)’
=1 bt r by rirr bbby b
= —¥ep+cj)+icu—Cucje

Note that ,;, and ¥, can be obtained from ¥, cyclically, i.e., by changing j
to k and k to 1, Y, becomes ¥, ;, and ¥, ;, becomes ¥ respectively. Moreover, we
need not know the value of g, because any term containing an odd power of a
factor s, when integrated with respect to s, reduces to zero. From (3.9) it is not
difficult to show that f7, = ¢k + c% + ¢t — 2(¢uCje + CjCue + CjeChe) — 4CiaCuiCe-



DISTRIBUTIONS OF ROOTS OF TWO MATRICES 1545

Finally, we can write (3.7) to be
(3.12) I =2T];=1(A+a;b) " fys=0exp(—3nY j<kCish)
'exp(—‘%ntr[Ss]—%ntr[S‘t]—'")Jl—[j<kd3jk.

If this integration is to be performed term by term on the expansion of
exp (—4n tr [S®]— -+ -)J then for large n, the limits for each s;, can be put to + o,
since each integration is of the form

jN(s=0)exP(—%” Zj<k Cjksjzk) Hj<k S;";cjk dsj
and most of this integral is given in a small neighborhood of S = 0. The m;,’s are
positive even integers or zero since any term containing an odd power of an s;, as

a factor will integrate to zero. We expand exp (47 tr [S*]— ~ )J, writing the terms in
groups, each group corresponding to a certain value of m. We have

(3.13) exp(-—;—ltr[Sﬂ-—gtr[S“]-—-”)J
=1-= tr [Ss*] + (tr [83])2 lr S?
- tr [S6]+% (tr [S*D*+-

Using (2.6a) and (2.6b) of [1], we obtain the following theorem.

THEOREM 3.1. Let A and B be diagonal matrices with0 < a; <a, <‘** <a,and
by > by >+ >b,> 0. Then for large n, the first two terms in the expansion for S

are given by

(3.14) F =2¢ H (1+a;b)~* ] (-g£> { [z Cii +oz(p)] }
Where j=1 i<k jk i<k

(3.15) «(p) = p(p—1)(4p+1)/12.

Proor. In the proof, we include only terms without an odd power of an s;.
First note that only the second, third and fourth terms on the right-hand side of
(3.13) contribute terms of order n~!. After integration, the first term unity has been
shown [1] to give

2n \*
(3.16) K = <———) .
jl:Ik nejy

The second term —n tr [S*]/2 contributes

1
(3.17) K{E Y c,—",‘1+43 < >+——— Y i

J<k J<k

1 c C; C; 3
8n Z ( v + p + « )+_<p>} ’
8n,<k<, CikCjt  CikCre CjtCut 2n\3
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and the third term n2(tr [S®])?/8 gives

1 Cut Cit Cik p—2 - 1(p
3.18) K{-— ( +—L ) cpt—— .
( 8nj<§,;<, CixCjt CixChr CjtCus 4n J;,, * on\3

Finally, since trS*> = —2Y ", 5%, it is easy to see that (p—2) tr S?/4! contributes

p—2 _
3.19 ———KY ¢z
( ) 12n j;k I

Adding (3.16)—(3.19) and factoring K out, we obtain (3.14).

THEOREM 3.2. The asymptotic distribution of the ch. roots, by > by > +++ > b, >0,
of S;S,7! for large degrees of freedom n = n,+n, when the roots of £,X,” ' are
Ay >A> >, >0whered;=a;"'(j=1, -, p), is given by

(3200 C2[j=1af™b;*™ 7?7 V(1 +a;b)) "] <u(b;—by)
Tli=1db;TTi<x@afnc; ) {1+@n) " '[3 <kt + @)1+,
where C, cj; and o(p) are defined by (3.2), (3.8) and (3.15) respectively.

4. The asymptotic expansion of .# when roots are not all distinct. In the previous
section we restricted the roots of population matrix (£,X,!)~?! to be all distinct.
However, the roots need not be all so. And when we are interested in the likelihood
of equality of population roots, the asymptotic formula of Section 3 breaks down.
Overcoming this situation a general formula is derived which includes the case of
distinct roots as a special case. The one-sample case has been studied by James [7];
his result would follow from ours as a limiting case.

Nowlet0 <a; < <@y <@y ="""=a,=a,(1 k=< p—1). Then

A = diag(a,, " *,az,a, ", )
and the joint distribution of by, b,, - * -, b, of (3.1) becomes
@41  Cat™[k, a™ fo. [I+AQBQ'|"#(Q dQ)
TL=1 02" PO < (b;=b) [1;=1db,,

whereg =p—k.
Asin Section 3, we consider the integral
4.2) I = fo [I+AQBQ’|"#%(Q’ dQ).

Now we partition the matrix Q into the submatrices Q, consisting of its first k,
and Q,, the remaining g rows. If the integrand of (4.2) does not depend on Q,,
then we can integrate over Q, for fixed Q, by the formula

(4~3) ,fQ; Cl(dQ) = C2(dQ1)
where
C,=n"{I,(4p}~", Cy=n*{I}dp)} ",
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and the symbol (dQ,) denotes the invariant volume element on the Stiefel manifold
of orthonormal k-frames in p-space normalized to make its integral unity. Make
transformation (3.4) whose Jacobian is given by (3.5).

A parameterization of Q; may be obtained by writing

_(Q1) _ Si1 Si2
@9 Q_<Q2>_exp{(—slz 0>}

where S, , is a k x k skew symmetric matrix and S, , is a k x g rectangular matrix.
From (3.5), it is not difficult to show that

C,(dQ,) = (dS;,)(dS;,) {1 +0O(squares of s xS}

where the symbols (dS;,) and (dS;,) stand for []%<,ds;, and [T5=1[Te=x+1ds5
respectively.

Since we are only interested in the first term, all we need to investigate is the
groups of terms up to the second order of S, which is denoted by [S?]. As we did
in Section 3, but remembering that the last g ch. roots of A are equal, it is easy to’

show that
tr [Sz] = Z§<tcjtsft+Z§=IZt=k+1 c?,sf.,,
where
(4.5) cj,=r,jbj,—l’jl’,b§,=6,j, j,t= 1,"',k,j<t;
C?,=r,jbj,—l’jr,b§,=cg~, j=1,"’,k,t=k+1,"',p
a; . .
r;= lf =1"”’k>
4 1+a,b1 J
a
=2 il j=k+lp,
L+ab; J b
ri=rj—r, and by =>b;—b,.
Therefore,

(4.6) [T+AQBQ| ¥ =[Tj- (1 +a; b) ¥ 1jzks1(L+aby)™?
: H?QCXP(—%"%& s_?t) H§= 1[Te=r+1 exp(—%ncj?, SJ%:
- {1 +O(squares of s;,s)}.
Substituting (4.6) into (3.7) and using

Jo [I+AQBQ’| "#(Q’ dQ) = 2°C, fo(,) |I+AQBQ’|~**(dQ)
yields

4.7) s f[ (L+a;b)™* ] (L+ab)™*

Fq(%q)j=l j=k+1
’ .fSu jsll ]._Bf“exp(_%ncjt sjzt) dsjt

Thi=1ITe=ks1 exp(—4nchs3) ds;, {1+0(1/n)}.
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For large n and a;’s and b;’s (j =1, - - -, k) well-spaced, most of the integral in
(4.7) will be obtained from small values of the elements of S,; and S,,. Hence, to
obtain an asymptotic series, we can replace the finite range of s;, by the range of all
real values of s;,. Thus

4>k
= (1+a;b)™ L+ab)™*
r g L et 11 d+ab,
’1€<t_f°—°ooexp("'%ncjt312't)dsjt
) H§= k1020 exp(—4ncj, Sﬁ) ds; {1+0(1/n)}.

Hence we have the following theorem:

THEOREM 4.1. The asymptotic distribution of the ch. roots, by > b, > -+ >b,>0
of S;S,™1, for large degrees of freedom n = ny +n,, when ch. roots of (2122 1)"
are0<a << <a@,='"=a,=a,(1 2k=p-1)isgivenby
(4.8) C3 a%q”‘ l_.[§= 1 aj*"‘ ]._If= 1 bj%(nl_p— 1)1_.[,,;= 1 (1 +aj bj)_%n

=1 (A+ab) ™[« (b;—b) [T5< 2n/ne;)?
TLi=1TTe=k+1@r/nct)*1;-4 db;,

where C; = n*%* T,(3n){T,(39)T,(37,)T ,(3n,)} " and ¢, and ¢, defined by (4.5).
The result (4.8) was given by Chang [3], but he had an error in the constant; he
had

pip(p—1)—%kp
[Canl™t

instead of C a’l""“l_["-_ a;*". He had also error in the factors; he had

2n \*
n (I+a;by)” 4‘"1—[(1+an1) %"1_[ H ( > .

j=k+1 j= j=1 t=k+1 \NCj;

H CENT,Gn) {T,(3p)T,(3n)T,(3n,)} ! n af"

instead of

k %
H(1+ajbj)"*” n (I+ab))~ *"H l_[ ( )
j=1 j=k+1 j=11t=k+1 ncﬁ

Note that for k =0, [T5=; (1+a;6) ™%, TT4=; [Ti=e+ 1 (2n/(nc%))* products should
be assumed to be unity. Similarly for k = p, l_[ j=k+1(1+ab;)~*" etc. are unity, and
define Ty(x) = 1,then 1 < k < p—1canbe written 0 < k < p.
(i) fk=0,ie.,g=p,thena, =+ =a,=aand (4 8) reduces to
4.9) miP°T,(3n) (T, ,(3n,)T,(3n,)} o™
L= 0" 7P P =1 (A +ab) ™ [« (b= b) [ 1;-1db;,

(4.9) is the joint distribution of b, b,, * -, b, under null hypothesis £, = aX, [12],
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and is an exact form where we assume no asymptotic condition. Moreover, in this
case, the integrand of (4.2) is independent of Q.
(ii) Ifk = p,ie,,q=0,then0 < a, < a, < ‘** < a,, and reduces to

(4.10) Fp(%n) {r‘u(%n1)rp(%’12)}~ ! nj= 1 aj%"l bj%(m_p_ 1)(1 +a; bj)—%n

T1b;—b)T] (i’i) T db,
i<t i<t\Cjt/ j=1
This is Chang’s result under condition0 < a; < a, < *** < a, (cf. [2]).

Now let b; = nyv;/n, (j=1, -+, p) and let n, tend to infinity, then (4.8) reduces
to (3.12) of James [7]; (4.9) becomes the joint distribution of b,, b,, : **, b, under
the null hypothesis X = al [12]; and (4.10) is the first approximation of (1.8) in [1].
This is when Fis taken as one.

5. Two-sample complex case. Let S; (j =1, 2) be independently distributed as
complex Wishart (n;,p, X)), and let b, 2b,2--2b,>0 and 4, 21, ="
>1,>0 be the ch. roots of S;S,”! and X,E,”! respectively. Let B =
diag(by, by, *++, b,), A =diag(dy, 45, ", 4,), A=A""' so that aq;=24;""
(=1,-,p)0<a, Sa, < < a, Furthérmore, let n = n, +n,. Then the dis-

tribution of by, b,, - -+, b, can be expressed in the form [6],

(5.1 Cy |A" B ~PT] <k (b= ) Jucp) I+ AUBU*| (U dU)
where

(52) _ F(ni+ny)

b))

where (U*dU) is the invariant measure on the group U(p). The group U(p) has
volume

(p) = fupy (U*dU) = a??~ VT (p)

where [',(p) is defined in [6].
However, this form is not convenient for further development. We have
(5.3) F1 = Ju [I+AUBU*| 7" (U* dU)
- [n]x éx( - A)CK(B)
=C s
PP k! C(I)

k=0 x

where C, = n?®~Y{[",(p)} ", and [b], and the zonal polynomial of a Hermitian
matrix L, C,(L), are defined in James [6]. The use of (5.3) in (5.1) gives a power
series expansion, but the convergence of this series is very slow, unless the ch. roots
of the argument matrices are in limited ranges. In this section, we obtain a beta
type asymptotic expansion of the roots distribution of S;S,~! involving linkage
factors between sample roots and corresponding population roots. If the roots are
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distinct, the limiting distribution as 7, tends to infinity has the form (5.29). If,
moreover, n, is assumed also large, then it corresponds to Girshick’s result [5] in

the real case.
We here require that 4, >4, >+>4,>0and b; >b,> - >b,>0. It is
easy to see that II + AUBU*| is positive real for all B and every U € U(p).

LEMMA 5.1. Let A and B be defined as before, then f(U) = |1+ AUBU*|, Ue U(p),
attains its minimum value |I + AB| when U is of the form

el 0

5.4 e

0 ‘ei""’
where0 < ¢; <2m,j=1,"",p.
PrOOF. Since A is positive definite
[I+AUBU*| = [I+A*UBU*A?|

df(U) = d [T+ A*UBU*A}|

= |I +A*UBU*A?|tr (I+A*UBU*A%) " 1(A*dU - BU*A? + ATUBAdU* - A?)

= |[+AUBU*|tr(A™' +UBU*)"(dU-BU*-UBU*dU- U*)

= |I +AUBU*|tr (BU*(A™' + UBU*)" ' —U*(A™' + UBU*)~ 'UBU*)dU
for every dU. Therefore df (U) = 0 implies

tr(BU*(A™' +UBU*)" ' —U*(A™! +ﬁBU*)‘ 1UBU*) =0,
for every B and U, which implies
BU*(A"!4+UBU*)"! = U¥(A~' +UBU*)" 'UBU*,

ie. BU¥(A™!4+UBU*) U = U¥(A™! +UBU*)"'UB which means that B and
U*(A~!+UBU*)~'U commute. But B is a diagonal matrix with positive distinct
elements. This implies that U*(A™'+UBU*)"'U is a diagonal matrix, say A.
Thus A~! = U(A~!—=B)U*. This can happen only if U = DP where D is of the
form (5.4) and P is a permutation matrix. After substituting those stationary values
in f(U), we get

(5.5) [I;=1(1+a;b.)

where b, is any permutation of b; (j =1, **, p). It is easy to see that (5.5) attains
its minimum value |I+ AB| when U is of the form (5.4).

Now we impose conditions on U (see reasons later), that all & (j=1,-, p)
are positive real, say. Then e'?’ = 1 for all j, and (5.4) reduces to I
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The above lemma allows us to claim that, for large n, the integrand of .#, is
negligible except for small neighborhood of I. Therefore

(5.6) I = IN(,)|I+AUBU*j'”(U*dU)

where N(I) is a neighborhood of the identity matrix on the unitary manifold.
LEMMA 5.2. Let U be a unitary matrix, and make the transformation

5.7) U =exp(iH)

where H is Hermitian matrix. Then the Jacobian of this transformation is
58) J=1-LuH? tr H)? ——StH—tH“
(5.8) LUH +5 (r)+2(6,){(r) ptr
—11tr H? tr H—10p tr H(tr H)? +(5p? =3)(trH*)?*} +- -

PROOF. Let ® = diag(0,, 0,, ', 0,) where 6;(j = 1, - - -, p) are distinct numbers.
Since U is unitary, there exists a unitary matrix U, with real diagonal elements,
such that

U =exp(iU,*OU,).
PutH = (h;) = U, *@U |, then from Murnaghan [11], we have
(5.9) (U*dU) = [];<x4sin’30,—0)[];-, do(U,*du,).

Since H is Hermitian, from Khatri [8], we have
(5.10)  J;=1dh;;[1j<xdhjrdhjg = [Li<k(6;—0)*[1;=1d0,U,*dU,)
where h;;(j =1, -+ -, p) are real diagonal elements of H. Note that
trH"=3%,_, 0™

Then using (5.9) and (5.10) we obtain (5.8).

Since we want to compute up to the second term in the asymptotic expansion of
41, we need to investigate the groups of terms up to the fourth order of H. Under
transformation (5.7) we have

AUBU* = AB+i(AHB— ABH)+(AHBH — JABH? — {AH?B)
+(i/6)(ABH? —3AHBH? + 3AH?BH — AH’B)
+7%(ABH* —4AHBH? + 6AH2BH? — 4AH*BH + AH*B) + - - -

Hence

[I+AUBU*|™" = |1+ AB|™" [I+ {H} + {H?} + {H>} + {H*} +--- | ™"
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where
R = (I+AB)™'A =diag(ry, 75, ", 1)),
{H} = i(RHB—RBH),
{H?} = RHBH - }RBH? - {RH’B,
{H*} = (i/6)(RBH? - 3RHBH? + 3RH’BH — RH"’B) and
{H*} = 4(RBH*—4RHBH? + 6RH’BH? — 4RH’BH + RH*B).

After the transformation (5.7), one has N(I)» N(H =0). If we put G=
{H}+ {H?}+ {H3} + {H*} + - - -, then in the neighborhood of H = 0, the absolute
values of the elements of H are very small, and hence the absolute values of maxi-
mum ch. roots of G can be assumed to be less than unity. Since |I+G| ~"is positive
real, Lemma 3.2 is applicable. Thus we have

[I+AUBU*|™" = [[+AB| ™" |I+G|™"
= |I+AB| "exp {—ntr ((H]+ [H*]+[H*]+[H*]+-- )},

where [H], - - -, [H*] are of the same form as [S], - - -, [S*] in Section 3, only that S
should be replaced by H.
Since H = (hy), hj, =hy;forallj,k =1,-, p, we have

aj; X
r.= —— =1"'-, s
1= T¥a,l, G p)

where
(5.12) Cjk=(rkj_rjrkbjk)bjk=ckj
"jk=rj—rk and bjk=bj_bk‘

Since k;; (j=1, ", p) are real, each one may range in a certain interval, and
since they do not occur in the right-hand side of (5.11), may lead to the divergence
of the integral [10]. So we need to impose conditions on H..We may put 4;;
(j=1,%:-, p) to be constants, but the result is quite complicated. For simplicity,
we set h;;=0(j=1,+,p). In view of (5.7), this is equivalent to imposing p
conditions on U. Thus each side of (5.7) contains p*> —p parameters. Under these
conditions, (5.8) reduces to

p 2, | 2 2\2 4
5.13 =1——trH?’+—[(5p*=3)(trH*)*—ptrH
(613 I == B e [P N - pr ]

As before, after simplification, we find
tr[H?] = Zj<k<s Fs (hjhyshgy—hy hys hsj),
where
(5.14)  Fjg=4i(ryjbs—racbp+1rirabpbys

+"k"sjbjkbks+"s"skbjsbks"z"j"k"sbjkbksbjs),
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and
tr[H*] = Y5 cu @i i j)® + g <es Wins M i s B
+Zj<k<s'pkjs' hjk Ejk hks Eks+Zj<k<s lstk : hjs Ejs hks Eks
+ Y j<krset G (hphghg hyy+hj o hg k),
where (asin 3.10)

(5.15) D = _%cjk_%cjz'k’
and (asin 3.11)
(5. 16) l//jks = - %(cjk + cjs) + %cks - cjk cfs‘

From (5.14), it is not difficult to show that Fl,= —1{ck+cl+ci—
2(cjuCjs+ CirCrs+ CjsCrs) —4CjCisCjs ) Also note that ;o and ¥, can be obtained
from ¥ ;, cyclically as in Section 3. Moreover, we need not know the value of G,
because any term containing an odd power of a factor 4, will integrate to zero.

Finally, we can write (5.6) as

(517 Iy =1l=1(1+a;6) 7" [nm=0yexp (=1 Y ;< Ciihph )
* exp(_ntr[HS]_ntr [H4]_' * .)Jl—_[j<kdhij dhjk]

where Jis found in (5.13).

If this integration is to be performed term by term on the expansion of
exp (—n tr [H3]— - - +)J, then for large n the limits for each A, can be put to =+ o,
since each integration is of the form

IN(H=0)exp(_an<k Ciihj Ejk)nj<k W nj<k dhjgdh s

and most of this integral is concentrated in a small neighborhood of H = 0. The
my’s are positive even integers or zero, since any term containing an odd power of

an h;,. will integrate to zero. Now we expand exp(—n tr [H3]— ---)J, writing the
terms in groups, each group corresponding to a certain value of m. We have
(5.18) exp(—ntr[H¥]—nte[H*]—--)J
= l—ntr[H*]+1n*(tr [H*])® - (p/12) tr H?
1
—{(5p*=3)(trH?)>—ptrH*} +---.
Now

(5.19) LR Dl CXD(—an<k)’jk h j Ejk)Hj<kdhij dhjy

I_[ T (n %p(p—l)l_[ Si_c

= —_— = ‘y a = 0,

j<kNYjk n) j<k a

(5.20) RN R jo—ooo exP(‘"Zj<k)’jk hjk Ejk) hszr':l__[j<k dhij dhjk]

=C1-3:5---2m—1)QRnyy) ™"
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and
(5.21) _fa—ooo e jo-?oo exp(— n2j<k Vit P B ) (B )™ Hj<k dhjig dh g
= C(mY)/(nys)™
Using formulae (5.19), (5.20) and (5.21), we obtain the following theorem:
THEOREM 5.1. Let A and B be diagonal matrices with 0 < a, <a, <'** <a, and

by > b, >+ >b, > 0. Then for large n, the first two terms in the expansion for %,
are given by
anpp T 1 -
(522) Fy=[1A+a;b)™"[] _{14“‘[2 Cjkl+ﬁ(p)]+"'} ,
j=1 j<kNCjk 3n{ %k
where .

(5.23) B(p) = p(p—1)2p—-1)/2.

PrOOF. In the proof, we include only terms without an odd power of an 4;,,., and
do not write C (where C is defined in (5.19)) which appears with each term after
integration, and denote

S =Y cq' and
S" = j<k<s (Chs/Cix Cjs C1of € Cus+ € € s Ch)-
Note that only the second, third and fourth terms on the right-hand side of (5.18)

contribute the factor n™!, using formulae (5.19)-(5.21). After integration, the
second term —n tr [H*] contributes

2 1/p\ 20-2 .. 1. 3(p
2 e (P) e gy (P,
(5:24) 3n +n(2>+ 3n 4n +n 3
and the third term n?(tr [H3])?/2 gives
1 p—2 1{p
5.25 L P25 1(P)
(5.23) 4n S 2n § n<3>
Since trH? =23, ., hh,, itis not difficult to see that —p tr H?/12 gives
p
5.26 -8
(5.26) 6n

Adding (5.24)—(5.26) we obtain (5.22).

THEOREM 5.2. The asymptotic distribution of the ch. roots,b; > b, > -+ > b, >0,
of S;S,7! for large degrees of freedom n = n,+n, when the roots of £,£,” ! are
A >Ay> 0 >A,>0,whered;=a;"' (j=1,---, p)is givenby

(527) Ci[lj=1a b P(1+a;b;) "[1;<c(b;~b)*[1;=14db;
T 1
JlT—S31+=| ¥ ex'+ ]+}
1 { - [Ek e
where Cy, c; and B(p) are defined in (5.2), (5.12) and (5.23) respectively.
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Now replace b; by n,b;/n, (j =1, -+, p) and let n, tend to infinity, then (5.22) and
(5.27) reduce respectively to

(5.28) J’Z:exp(_nlzajbj)r[ n {1+_1_27j-k1+“.}’

j=1 i<kM17Vjk 3n1j<k

and

(5.29) Ciexp(—ny Zj=1 a; bj) nj<kyj_kl(bj_bk)2 nj=1 aj”'bjm_p

1
-dbj{1+3— Zy;1+---},

Ny j<k
where
C,= nl%p(Zm-xﬁ Dptp(p- 1){f‘p(nl)}— 1

and

Vi = (ay—a;)(b;—by) for j,k=1,---,p,j<k.

(5.28) and (5.29) give the formulae in the one-sample case corresponding to
(5.22) and (5.27) respectively.

6. Comparison. It is interesting to compare the formulae in the one-sample case
with the corresponding ones in the two-sample case, and the real situation with the
complex situation. In the real case, there is a factor 1/2n but a factor 1/3n arises in
the complex case. Unlike the one-sample case, in the two-sample formulae, we find
that there is an extra term a(p)/2n in the real case and B(p)/3n in the complex case
(in the second term of the asymptotic expansion for .# in (3.14) and #, in (5.22)),
which is a function of » and p only. In (3.14), if we write

j=1 i<k \NCjx

then the expansion for # with the first term alone, and with both the first and second
terms included, are respectively w and w{l+[), cj_kl +a(p))/2n}. A similar com-
parison can be made from (5.22) for the complex case.
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