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Let Xy, X2, be independent and identically distributed. We give a
simple proof based on stopping times of the known result that
sup (| Xy + -+ + Xul/n) has a finite expected value if and only if E|X|log|X]|
is finite. Whenever E|X|log|X|= oo, a simple nonanticipating stopping
rule 7, not depending on X, yields E(|X; + *** + X;|/7) = 0.

Let X, X,, --* be an i.i.d. sequence and set S, = X, + - - +X,. Marcinkiewicz
and Zygmund [2] proved that if

1) E|X,|log|X,| < o then
2 - Esup,|S,/n| < co.

D. L. Burkholder [1] proved the converse and showed further that (1), (2), and (3)
are equivalent, where

(3) Esup, |X,/n| < 0.

We give a simple proof of Burkholder’s results by using stopping times. We
extend his results by proving that (1)~(5) are equivalent, where

(4) SUPrule NE |SN/N| <®©
(5) SupruleNEIXN/Nl < o0,

the sup in (4) and (5) being taken over all nonanticipative stopping rules (times) N.
As an immediate corollary we see that whenever anticipative stopping with reward
sup |S,,/n| gives infinite expected reward, then there is a (nonanticipative) stopping
rule which also has infinite expected reward. In fact, this rule is very simple: stop
the first time that |X,,| > cn; the rule thus does not depend on the distribution of X
(except for the constant c).

Finally, we give a one-sided version of the equivalence of (1)-(5) in terms of

" S,/n rather than |S,/n|.

We learned from D. L. Burkholder after writing this paper that Burgess Davis
[4] and Richard F. Gundy [5] have also obtained stopping time proofs of Burk-
holder’s theorem [1], among other results. We have decided to publish our proof
because of its simplicity.

A universal stopping time. We begin the proof of the equivalence of (1)~(5) with
the implication (5) = (1). It is clearly no loss of generality to suppose that p, =
P(|X| < 1) > 0 and we do this for convenience. Taking N = 1 in (5) shows that
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E|X,| < co. To prove that E|X,|log|X;| < co as well, take N = the first n = 1 for
which |X,| > n; N = oo if there is no such n. We then have from (5)

(6) © > Epy <oy |Xn/N| = Y2y P(N = n)n *E[|X,|| N = n]

=Y POV = myn ™ 'E[|X,|

|X.| 2 n]

since the X’s are independent. If F denotes the common distribution function of
the X’s (6) yields

(M) 0>y P(NZmn~ [, 5.|x|dF(x) 2 P(N = 0) Y2, n~! Jix120 |X| dF(x).
But P(N = o0) > 0 because P(N = o) =[], P(|X,| Sn)and Y2, [1-P(|X,| <

n=1

n)] =Yt f1x1>nF(X) = [2 0 Cne i) DAF(x) £ [©, |x|dF(x) = E|X;| < c0. Thus
from (7),
2az it fazalX| AF(x) = 2 [X|[(Tag s n ™" dF(x) < 00

and so [*, |x|log|x| dF(x) < oo and (1) is proved.

We next prove (4) = (1). We define N exactly as before and again we have that
E|X,| < co. Observing that (4) gives
(8) 0 >Eycqy ISN/NI 2 Eneo IXN/Nl_E[N<oo][(|X1|+ T +|XN—1|)/N]

we see that (1) follows exactly as before if we can prove that the last term on the
right of (8) is finite. This term is

©) Y1 POV = mn ™' Ty, E[|X,) | N = n]

= T PN = min™" Tac, ELIX,) |1 X < K]
by independence of the X’s again. We have

|x| <k lxl dF(x) < E'Xll <
fadFx) = p, -7

and so (9) and the last term on the right of (8) are finite. Thus (4) = (1).

The implication (2) => (4) is trivial because for every rule N, |Sy/N| < sup |S,/n|.
Similarly, (3) = (5). Since ‘-, (|X,|+|X2[)/2, | X,|/1 is a martingale, ([3] page 317)
shows immediately that (1)=(2) and consequently (1)=(3). Thus (1)=(2)=
(4)=(1)=(3)=(5)=(1) and the equivalence is proved.

Burkholder also gives a one-sided version of the equivalence of (1)~(3) replacing

(1)-(3) by

1) EX logX,* <
(2) Esup,(S,/n) < ©
(3" Esup,(X,/n) < .

B ||, < 41 =



2168 B. J. MCCABE AND L. A. SHEPP

He proves that (1')—(3) are equivalent (and each is equivalent to an additional
statement about X, in terms of conditional expectation operators) provided that
E |X l| < 0. We can easily modify our proof to obtain the one-sided version and to
prove that (1')~(5') are equivalent, where

(4,) SUPryje N E(SN/N) <o

(5,) SUPryie N E(XN/IV) < 0o,

provided that E|X,| < oo. Indeed the only change required in the proof of (5) = (1)
to prove (5')=(1") is to let N’ = the first n = 1 for which X, > n; N’ = oo other-
wise. The proof (5') = (1) then proceeds exactly as before. The proof of (4') = (1")
is also exactly as before. Again (2') = (4'), (3') = (5') trivially and the final impli-
cations (1')=(2) and (1') = (3') are proved by observing that - --, (X; " +X,")/2,
X,*/1 is a martingale and again applying the martingale theorem ([3] page 317).

We should point out that of course the one-sided version becomes false if
EX,” = oo since the negative side of X; could then overwhelm the positive side
and hence the implication (4’) = (1’) would break down.

We remark that in case (1) fails, there is a stopping rule N * which makes the
left side of (4) or (5) infinite and satisfies P(N* < o0) = 1 aswell. Indeed, if N is the
stopping rule we used above (with P(N = o) > 0) we can easily find an integer
valued random variable T independent of N and having a sufficiently long tail for
which N * = min(N, T) does the trick. By shifting the sequence X, X, --- and
defining T as a function of X, we can even take N * to be defined on the original
sample space.
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