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A MARKOV STOPPING PROBLEM
FOR WHICH NO ENTRY TIME IS ¢&-OPTIMAL'

By HowaArRD M. TAYLOR

Cornell University

1. Introduction and summary. Let (X (¢#):7=0) be a Markov process with
lifetime ¢, let g be a bounded continuous nonnegative function on the state space
of the process, and let P, (respectively, E,) be the probability measure (respectively,
expectation operator) associated with paths starting at x. For any (extended real-
valued) Markov time T let f(x,T) = fr<;9(X(T))dP, and let f(x) = suprf(x, T).
For any nonnegative ¢, a Markov time T* is called (i) e-optimal at x if f(x, T*) 2
f(x)—e; (ii) optimal at x if f(x,T*) 2 f(x); (iii) e-optimal if f(x, T*) = f(x)—e¢
for all x; and (iv) optimal if f(x, T*) Z f(x) for all x.

We interpret g(X(T)) as a reward associated with stopping at time T in state
X(T) and we are searching for stopping rules or Markov times T* which maximize
or nearly maximize the expected value of this reward. Since the process is Markov
and the reward depends only on the state in which one stops and not on the time
nor the previous process history, one would anticipate that an optimal stopping
time (provided one exists) would be of the form ““Continue as long as f(X(?)) >
g(X(1)) and stop when first f(X(1)) £ g(X(#)).” That is, at time ¢ in state X(¢) = x,
one continues if the optimal reward from continuing f(x) exceeds the reward from
stopping g(x); otherwise, one stops. This reasoning leads one to hope that the
search for optimal rules can be restricted without loss to rules specified by a
partition of the state space into two sets, one of continuation states and one of
stopping states. Thus we ask under what conditions

(8)) f(x) = supf(x, T(T)

where the supremum is over all appropriately measurable sets I' and T(I') is the
process entry time to I':

2 T@)=o0 if X(t)¢I' forall t=0;
=inf{t:t20 and X(1)el}, otherwise.

Dynkin (1963) shows that if X is a standard process then for &= 0,
I, = {x:f(x)—¢ £ g(x)} is closed in the fine or intrinsic topology and for & > 0,
T(T,) is e-optimal, so that in particular (1) holds. When g is unbounded, Dynkin
(1968) interprets a result of Chow and Robbins (1967) to state that for & 2 0, if
P[T(T,) < o] = 1 for all x, then T(T",) is e-optimal. Taylor (1968) shows that if in
addition the transition semigroup of the process is Feller (leaves invariant the space
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of bounded continuous functions) then Iy, is closed, and if there exists an optimal
Markov time, then T(I',) is optimal at all points x for which f(x) < co.

In this paper we present a Markov process on continuous path space and a
bounded continuous nonnegative g such that for some positive ¢ and some point x,
no entry time is e-optimal at x. It follows that no entry time can satisfy any of the
other, more stringent, criteria for optimality. Our process is Markov but not strong
Markov (hence, not Feller) and was suggested to me by a related example I learned
from David Freedman (1969). Our construction is based on a transformation by a
singular continuous strictly increasing function. A local time transformation serves
the same purpose in Freedman’s example.

The idea behind the example is quite simple, but the details are many and tedious
and tend to obscure the basic picture, which is this: Let () be a Brownian motion
process starting at the origin. Our process x(t) is a distorted version of (). In
particular, begin with x(¢) = y(t) and continue until first y(¢) hits + 1. Beginning
then, distort the process by setting x(t) = G~ ![)(t)], where G is strictly increasing,
continuous and G(1) = —G(—1) =1. Continue until y(f) next reaches —1, at
which time, revert to x(f) = y(f). Repeat, again waiting until y(¢) hits +1, then
switching to x(t) = G~ ![y(¢)], and so on.

For the x(¢) process it is clear that a good decision on whether or not to stop
should be based in part on whether currently x(r) = y(f) or x(t) = G~ ![y(?)], or
equivalently, whether the process is on a —1 to +1 section, or ona +1 to —1
section. In particular, entry times cannot be good because they do not include this
information. Granted, to nail down an example, a sufficiently simple stopping
problem must be chosen so that a variety of calculations can be made, but it is
intuitively clear why entry times cannot be good and how to improve them. This
part of our example is presented in Section 3.

It is not clear, however, that we can distort the Brownian motion as we have
described and yet maintain the Markov property. Here is where we require G to
be singular, so that G~ carries a set of full Lebesgue measure into a set, call it A,
which is Lebesgue null. At a fixed time ¢, y(¢) is not in A with probability one, since
A is Lebesgue null. Thus, if we observe x(¢) in A we may infer, with probability one,
that x(t) = G~ ![y(r)]. Similarly, still for fixed ¢, if we observe x(¢) not in A, we
infer, with probability one, that x(¢) = y(¢). This feature preserves the Markov
property. A careful development of this idea is given in Section 2.

2. The process. Let G be a singular continuous strictly increasing function of
the real line onto itself for which G(—1) = —1, G(0) =0 and G(1) = 1. Let u be
the measure on the Borel real line that is induced by G and let m be Lebesgue
measure. Then for any linear Borel set E, u(E) = m[G(E)] where G(E) is the forward
image of E under G. Since m and u are mutually singular, there exists a linear Borel
set A*, with complement denoted by A*¢, for which

3) m(A*) =0 and
4) U(A*) = m[G(A*)] = 0.
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Define

5) A =[1,0)u{(-1,1)nA*}
and note that

©6) G(A) = [1, 0)u{(—1,)NG(A*)}.

Let Q be the set of real-valued continuous functions on [0, o) and for weQ
and t€[0, o0) let X(¢, w) = w(t). For ¢t = 0 let &(t) be the o-algebra in Q generated
by {X(5):0 < s <t} and let & be the c-algebra generated by {X(s):0 < s < c0}.

Fori=1,2 and n=0,1,- - define the extended real-valued random variables
Sin) and T(n) by

51(0) = S$,(0) =0,
Ty(0) = inf{t:¢t =0 and X(¢) =1},

@) T,(00=0, andfor i=1,2 and n=12,--,
Sin)=inf{t:t 2 T(n—1) and X(¢) < —1}, and
T(n) = inf{t:t = Sy(n) and X(¢) = +1}.

As usual in these definitions, the infimum of an empty set is + co. Then fori = 1,2,
n=0,1,---and t 2 0,

8) {T(n) < t}eAB(t) and {Sy(n) =< t}eB().

Let B, be Brownian motion with drift —4 and starting at x. By this we mean B,
is a probability on %, B,[X(0) = x] = 1, and {X(¢):¢ = 0} is a Gaussian process
with stationary independent increments, | X(f)dB, = x—t/2 and Var(X(1)) = 1.

Let Q= {X(t)»> —oo ast— 0}. Then Q €% and B,[Q,] =1 for all x. Let
Bo(t) = B)NQ, = {ANQy: A B(t)} and let By = BNQ,. On Q,, for i=1,2
define

) I, = min {n: T(n) = oo}.

For i = 1,2 define the mapping =; of Q, into Q, by

(10) mw() =G w(®)] for T(n—1)<t<S(n),n=1,-,I,
= o(t) for S(n)<t<T(n),n=0,---,I;.

Briefly, if the last hit was at + 1, then =, distorts the path . if the last hit was at —1,
then =, leaves the path unchanged.
Using (8) one can verify that fori=1,2and t =0

(11) AeBy(t) implies m;~'(A)eB(1).

For any real y let P, be the measure which specifies for Be %, the value
(12) P,[B] = Bg,,m, '[B] if yeA;
= B, =,  '[B] if yéA.
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It is routine to verify that P [X(0) = y] = 1 and that P, [B] is Borel measurable in x

for Be %,.

Let t > 0 be fixed and define
13) E=Q,n{X()eA}, andfor i=1,2
(14) E;=n"'E={weQy:ma(f)eA}, and
(15) Fi=Qyn{T(n—1) <t < Sy(n) forsome n=1,--,1;}.

Roughly speaking, E; is the set of paths for which the transformed point
x(t) = m;[w(t)] belongs to A, and F; is the set of paths whose last hit was at +1.
Let

(16) Q, = Qyn{w: For i=1,2,wekE; if and only if weF;}.
Finally, let S, be the shift so that S,w = w(t+ -).

ProposiTION. (i) E, E;, F; and Q; are in B, and
17) B,[Q,]=1
for all x; that is, with probability one, the transformed point x(t) = n,[w(t)] belongs to
A if and only if the last hit was at +1.

(ii) Fori=1,2 and BcQ,,

(18) Fiom™'S,”Y(B) = FinS, ™ 'n,”'(B),
F,-cﬁni_ IS‘— l(B) = F,-cﬁS,— lﬂl - I(B).

ProoF. Since 7 is fixed, the measurability easily follows from (8) and (11). We
first show the symmetric difference E; A F; is B, null for all x. For weF;,,
a(t)e[—1,00) by (7) and m;0(t) = G~ [w(t)]e[—1, ©) by (10) and (15). Thus
using (14) and the complement of (6),

. F)\E,c{weQy: () e[—1, 0)\G(A)}

c{weQy: () e G(A*)}
which is B, null since G(A*°) is Lebesgue null by (4). Similarly, for weQy\F;,
w(t)e(—o0,1] by (7) and 7; w(t) = w(t)e(— o0, 1] by (10) and (15). Again, using
(14) and (6),

E\F,c{weQy:w(t)e(—o0,1]nA}

c{weQy: a(t) e A*}
which is B, null since A* is Lebesgue null by (3). Thus, B,[E; A F;] =0 for all x
and we conclude B, [Q,] = 1.

We only show the first part of (18), the second being similar. Take we F; and
7> 0. It is enough to show

(19) Si[n(w)](z) = 7, [S(@)](x)
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and we may suppose
(20) o(t+1) # G [o(t+1)]

since otherwise, (19) is trivially satisfied. By considering all possible cases, one may
verify that we F; implies

(21) T(n—1,w) £ t+1t < S{n,w) forsome n if and only if
(22) T,(m—1,S,w) £ 1< S,(m, S, w) for some m.
From (10) and (20) we have that (21) holds if and only if

(23) ma(t+1) = G a(t+7)]

and (22) holds if and only if

(24) 1, [Sd@))(7) = G [e(t+7)].

Then (23) and (24) yield (19) for we F; as desired. (]

Roughly speaking, P, is Markov because, given x(f), we can decide, with pro-
bability one, whether the last hit was at +1 or — 1, by noting whether x(f)eA or
x(t)e A°.

THEOREM. {P,} is Markov.

PROOF. Let 1 > 0, Ae B,(t) and Be B, be given. We wish to show
Py[Af'\S,_lB] = _‘.A Px("w)[B]Py[dw].
Suppose yeA, and let 4’ = n,”'4. Then

P,[ANS,”'B] = Bg,[A'nm, 1S, B] by (12)
= Bg,)[A'NE,nFynm, ™S, 1B]
+Bgy[A'NE,*nF,°nm, ™ 'S, B] by (17)
= Bg,)[A'NE;nF,nS,~'ny 7 1B]
+Bgy[A'NE,°NF,°AS, " 'ny "' B] by (18)

= [ 4 nEsnF Bx(,on[m2 " ' B]Bgyy[do']
+jA’nEz‘an‘-’ Bya,onlm2” 1B_]BG(y)[d“"]

by using the Markov property for {B,}, (11), (17) and that E; and F; are in %(t).
Changing variables with o’ = 7, ® and using (10), (12), (14) and (15) we continue
with

= jAn{X(r)eA) PX(t,w)[B]Py[dw]+jAn{X(t)¢A) PX(t,m)[B]Py[dw]

= jA PX(‘,w)[B]Py[dw]’
as desired. The case y¢ A is entirely similar and the proof is omitted. []
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3. The stopping problem. Let g(x) = min {1,x*} for xe(— o0, + ). For any
linear Borel set I' let T(I") be the entry time to I' as defined in (2). Let E, be the
expectation operator associated with P, as given in (12). For any Markov time T
let f(x,T) = [r<, g[X(T)]dP,. In this section we specify an x and a positive &
such that for any linear Borel set I there exists a Markov time T-* for which

(25) fG, Te*) 2 f(x, T(D) +e.

In order to perform the calculations we found it necessary to specify a particular
G. Llet Z,Z,,Z,,- - be independent identically distributed random variables on a
common probability space with Prob{Z =0} =1-Prob{Z =1} =p, where
O<p<l.Let V=)727"Z,; thatis, .Z, Z,Z;- - is a binary expansion for V.
For x€[0, 1] let H(x) = Prob {V < x}. Then for p# 4, H is singular continuous
and strictly increasing on [0, 1]. Page 85 of (Dubins and Savage, 1965) contains
further remarks and references. Let

(26) G(x) = H(x) for xe[0,1]
= —H(-x) for xe[-1,0]
and extend to (— o0, + 00) by
G(j+x) =j+G(x) for xe[0,1],j=1,2, -,
= —j+G(x) for xe[—-1,0],j=—1,—-2,---.
Then G satisfies the requirements of Section 2 and in addition
27 G3)=-6(-H=p.

Since G is strictly increasing, A* is dense in (— o0, + o) and [—4,0)nA is not
empty. Throughout this section fix x*e[—4,0)nA and set y* = G(x*).

For b < a let T,, be the entry time to (— 00, b)U[a, ) as defined in (2) and let
T, be the entry time to [a, ). For ae[0,1] and ye[—1,0] let

28) oy, a,p) = a{ef;:a_f;, +[ef;;(i‘iyl]e_““)} .
ProposITION. For a€0, 1],
(29 fG*T) = o(y*, a, p).
PRrOOF.
FG*T) = fr,<0 [ X(T)] dP,.
=aP,.[T, < 0]

= a{th[T'a < T_1]+ch[T_1 < n < oo]}
= a{B,s[Tg) < T-1]+B[T-, < Ty, and T,oS;_, < 0]}
=u(y*,a,p),
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where we have used (10) and (12), the continuity of the paths, that for b < x < a,
B.[X(T,) = a] = (¢*—¢€")/(e"—¢P), and the strong Markov property for Brownian
motion. [] )

Let ¢; for i = 1,2 be strictly positive with 0 < ¢, +¢, < }—1/e. For x*e[—14,0],
we have y* > —p = G(—1), and

—e! [er—e" _
v(y*,%,p)=%{ e"—e'l+[e"—e"]e ‘”}

and
liminf, o v(y*,4,p) 2 4.

Fix p* > 0 such that v(y*,1,p*) = 1 —e¢,.
Next, note that

v(y*, a,p*) < (0,a, p*)
1—e™! @] _
=a{ G(a) -1+[ G@ _ -1 |€ @ns,
e —e @ ¢

limsup,,, v(y*,a,p*) < e !.

and

Fix 6 €(0, 1) such that ae[1 -4, 1] implies v(y*, a,p*) < e ! +¢,. Then
v(y*’%,P*) g %—81
(30) N\ 2 l/e+e,
2 u(y*,a,p%) for 1-6<axgl.

Thus a = 4 dominates any ae[1—4,1]. Consider a€[0,1—4]. Let T,* be the
Markov time

T*=T, on T,<T,
=T, on T_, =T,
Note that 7,* is not an entry time.

PROPOSITION. For ae[0,1-4],

‘_ -1 G(a)_ ad
@31) _f(x*,r.,*)=a{‘” e }+{e "f}e-a

S@ _ -1 8@ _ -1

PROOF. Similar to (29).
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Thus
G(a) _ ov*

€ - —(a
f(x*’ n*)—”(y*’a,ll*) = e—G(‘a)—_e_l{e z_ae ( +1)}.

Let
e =inf,cpo,1-5{f(x*, T,¥)—0v(y*, 4, p*)} > 0.
Then f(x*, T,*) = f(x*, T,)+¢ for ae[0,1—46] and
FOH TN 2 f(x*, T)+e
2f(x*T)+e for ae[1-6,1].

Let I" be a linear Borel set and 7(T") the entry time. Then T(I') is a Markov
time relative to the appropriate completion of the g-algebras #(t). To complete
the example we need only show that a Markov time of the form T, for a€[0,1]
dominates T(T).

PROPOSITION. Let I' be a linear Borel set, « =inf{yel:y 2 x*} (=0 if
Fn[x* ) = &), B =sup{yel:y < x*} (= -0 if [N(— o0, x*] = &).
Then P [T(I') = T,g] = 1. Let a =min {1,a*}. Then f(x*, T,) = f(x*, T(I')).

Proor. The first assertion follows from the continuity of paths and the
corresponding fact for Brownian motion. Then

J&*T(D)) = f(x*, T,p)
=g(®)fr, <1, AP +9(B)|1,51.dP
= g(0)Po[T, < Tj]
S 9(0)P.[T, < ]
S 9(@)Pu[T, < 0]
=f(x*T). 0

This completes the example. For a fixed x*, I do not know if a Markov time of
the form T,* is optimal at x*, nor do I know if an optimal Markov time even exists.
I am not even sure how to attack the problem in the absence of the strong Markov

property.
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