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EXACT CONFIDENCE INTERVALS IN REGRESSION PROBLEMS
WITH INDEPENDENT SYMMETRIC ERRORS'

By J. A. HARTIGAN

Yale University and University of California, Los Angeles
0. Summary. Subsamples are used to generate confidence intervals for a para-
meter of a linear regression model, under the assumption that the error variables
are independent, continuous and symmetric about 0 in distribution.

1. Introduction. Confidence intervals for the parameters of a linear regression
model are usually based on the assumption that the errors are (1) independent,
(2) have constant variance, (3) are normally distributed with mean zero. All three of
these assumptions may be sufficiently violated in practice to make the confidence
intervals significantly misleading. The model considered here assumes that the
error variables are independent and symmetric about zero, but does not assume that
they are identical. In other words, the normality and homogeneity of variance
assumptions are relaxed.

Tests for zero constant and slope parameters in a straight line regression have
been considered by Adichie [1] when the error variables are symmetric and identical,
and by Daniels [3] with the assumption only that the error variables have zero
median. A number of “distribution free”” procedures are available for testing the
hypothesis of all linear parameters zero in a general regression; for example, the
median tests of Brown and Mood [2], the rank tests of Friedman [4], permutation
tests, and others. These procedures may be used to generate joint confidence regions
for the parameters.

Here a method is proposed for generating confidence intervals for a single para-
meter, which applies only to certain special but common regression models. The
technique used is an extension of those used in Hartigan [6] which perform error
analysis of a statistic ¢ by recomputing # for selected subsamples of the data. There,
a set of random variables ¢,, - -, t, was defined to form a set of typical values for a
parameter 0 if the ordered variables ?;), 1), ", 4, are such that the intervals
(=00, t1))s (1) t2))s "+ (2, 0) €ach include 6 with probability 1 /(k+1). Given
a set of typical values, a number of confidence intervals for 6 of probability sizes
0, 1/(k+1), 2/(k+1), -+, k/(k+1), 1 are available. For example suppose Y, Y,, Y5
are independent, continuous and symmetric about p. Then Y;, (¥Y,+Y3)/2,
(Y, +Y,+Y,)/3 form a set of typical values for u; and Y, Y,, Y3, (Y;+Y,)/2,
(Y, +Y3)2, (Y,+Y3)/2, (Y,+ Y, + Y;)/3 form a set of typical values for u. More
generally if Y,, Y,, Y, -+, Y, are independent, continuous and symmetric about u,
if S;,S,,::*,S, are subsets of the set Y;,Y,, -, Y, satisfying a certain group
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theoretic property, and if Y, denotes the mean of the random variables in S;, then
Y5, Ys,, 0+, Ys, are typical values for pu.

To extend the subsample technique to linear regression, it is necessary to use only
subsamples which are fractions, a property which depends on the linear model and
the parameter of interest. The confidence intervals obtained in this way are not
very much wider, on average, than the normal based intervals, if the normality
assumption is valid. The existence of fractions, from which the typical values are
computed, is demonstrated for certain common linear regression models, including
estimation of a mean, estimation of a straight line, n-factor analysis of variance,
and comparison of two means.

2. Definition of fractions and typical values. Let Y be an n x 1 observation vector,
let X be an n x m matrix of constants, let § be an m x 1 parameter vector. A
regression model is expressed in the form

E(Y) = Xo.

An estimable linear function /(0) = Y7, a;6; is a linear combination of 0,0,
which is the expectation of a linear combination of Y,, Y,, -, Y,. Let 8 be a least
squares estimate of 6 (minimizing Y ;(Y; ZI i 0,)%). Let Z; a0, =114, Y,
be the corresponding estimate of /(0); /() is unique though  may not be; the
constants {A;} are functions of the constants {a;} and the matrix X. A subset S of
the observations Y, -, Y, is an /(@)-fraction if the least squares estimate of /(0),
using only the observatlons in S, is of form «Yy,.s4;Y;. It may be shown that
=Y A2/Yy,csA> The fraction S is relevant if not all 1, equal zero. A set T of
subsets is balanced if S;eX,, S,eX, implies S; 05, = (S1 S,)uU(S,—S,) lies in
Xy =(Z, 0); X, forms a group under the product, symmetric difference, with a
unit element equal to the null set ¢. Finally, the random variables Z,,Z,, -+, Z,
form a set of typical values for the constant parameter /(0) if, the probability that
/(6) lies in the intervals (— 0, Zy)), (Z,4), Z:3y), 5 (Zgy, ) is 1/(k+1) for each
interval; here Z ,, Z 3y, Z iy denote the ordered values of Zy,- -+, Z,.

3. The use of fractions as typical values. The logic of the main theorem follows
Fisher’s ([4] page 46) sign randomization test. Let Y, Y,, -+, Y, be independent,
continuous, symmetric about 0. Consider the 2" variables {+ Y, +Y,+ -+ Y,}.
By symmetry the probability that } 7., Y, is less than exactly k of these variables is
27" k=0,1,--(2"—1). The event Y y,.sY; <0 is equivalent to the event
2res Yi=Yy.es Yi> Y Y, Thus the probability that exactly k of Yy, . ¥; are
less than zero is 27"; thus the 2"—1 random variables (3 y,.s Y;, S # ¢} form a
typical set for 0. More generally,

LeMMA. Let Y,,Y,, Y, be independent, continuous, symmetric about 0. Let
S1,82,°*, S, be a balanced set. Then {} y,.5,Y;, 1 < j < k} is a typical set for 0.

This is proved in Hartigan [6]. Or follow the above argument with a subgroup
of the group of 2" sign transformations.
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" THEOREM l. Let Y satisfy the regression model E(Y) = X0; let I(0) be estimable;

let Sy,---, S, be a balanced set of relevant fractions; let I, denote the least squares
estimate of 1(0) using the observations in S;; let Y,,Y,,"-*,Y, be independent,
continuous, symmetric about their expected values. Then l,,1,, - I, form a set of
typical values for 1(0).

ProoF. We may assume all 4;# 0. (Omitting all Y; with 4; = 0 leaves S;,*, S,
as a balanced set of relevant fractions.) Now define

Z,= i(Y,—EY).

Then Z,, Z,,--+,Z, are independent, continuous, symmetric about 0. From the
lemma {Yy,.s,Z;, 1 £j < k} form a typical set for zero. Since the S are fractions,
L= ajzyiesjl, Y; for some «; Taking expectations, /;—I(0)= ajzy,esjz,..
Since each S; is relevant, a; > 0. So the probability that exactly r of ;) y,.s,Z;
are less than zero, is the probability that exactly r of Yy, s ,Z; are less than zero,
which is 1/(k+1). Therefore {/;—I(0)} are typical values for 0, or I,,--*,l, are
typical values for /(0) as required. '

4. Generating balanced sets of fractions.

THEOREM 2. Let S,,S,," ", S, be a balanced set of fractions. Then the Boolean
field generated from S, S, (by unions and complements) consists of fractions.

Proor. If Y7, 4, Y, is the least squares estimate of /(), define u; = 1,/ 7-, 4.2,
and reparametrize the model

E[Y] = I(®)u+ Xy,

where ¥ is a linear transform of 8, and X°is an n x p matrix of rank p with w’X°=0.
Define

[“,Xo]s = ZY,es uiX?j-

The condition that S be an /(6)-fraction is equivalent to [u’'X°]s = 0. (The constant
« in the estimate a Yy, s4; Y; is then given by Y 71—, 1.2/Y v, csA%.)
Now note that [’ X%]s = —['X°]s

[u,Xo]slnSz = [u’XO]Sl + [u,XO.]Sz - [u,XO]Slo S

and generally, for any Boolean expression in S;, S5, * -, S, [u’X°] may be expressed
as a linear combination of [u’'X] terms over products of S,,S,,: -,S,. Since
S1, 85,7+, S, and their products are fractions, [u'X 0]s = 0 for any Boolean set S;
the Boolean field consists of fractions.

This theorem indicates how to search for balanced sets. We will assume A; # 0,
1 £i £ n. Define a minimal fraction to be one which has no proper subset as a
fraction. Define a base to be a partition of the set of observations into minimal
fractions. Then the theorem guarantees that X is a balanced set of relevant fractions
if and only if (Z, ¢) is a subgroup (under the product, symmetric difference) of the
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group of all unions generated from a base. Balanced sets are therefore determined
by enumerating bases, or more simply, all minimal fractions.

5. Efficiency of sets of typical values.

THEOREM 3. Let S, S,," ", S, be a balanced set of fractions. Let the observations
Y., Y,, -, Y, be independent normal variables with known constant variance, and
suppose that each observation appears in at least one fraction. Let I;, the estimate of
1(0) based on the observations in S, have the same variance, 1 < j < k. The interval
(Upy lk-p+ 1)) is a confidence interval for I(8) of probability size 1—2p|(k+1). The
ratio of length of this interval to the length of the interval based on standard normal
theory, is distributed as

(Z(k-p+ 1)_Z(p))[k/(k+ 1)]*/(Zk—p+ 1 —Zp)
where Z 1), Z 5)," "+, Z, denote the order statistics of a sample Z,,2Z,, ++,Z, from
a unit normal variable Z, and where P(Z £ z,) = p/(k+1).

PROOF. Let [; = ;) y,c5,4: ¥i, Where a; = 3" A.2/Y 'y, .5, A% Since [; has the same
variance all j, it follows that « and also )y, .5 jliz are the same for all j. If j # m,
YviesjosmAi = Dyies; A = DyiesmAiss 80 that Yy s Ns, 4% =3 Y yies,4 It
follows that /; and /,, have correlation 3.

If an observation Y; appears in S}, it appears in S¢S, if and only if it does not
appear in S,. Therefore every observation appears (k+1)/2 times in the set
S, 8 ThusY ; Yy 5,42 = (k+1)Y A*2and Varl; = 2k Y 1> Var Y /(k + 1)=
2ko,%/(k+1) where 0,2 denotes the variance of the estimate of /(@) based on all
observations. We now set /; = o(k/(k+1))}(Z;+ Z)+1(0) where Z,,Z,, ", Z,, Z
are independent unit normal variables. This is justified by noting that /,,7,, -,/
are normal with mean /(6), variances 20,2k/(k+1) and correlations 0.5.

The interval (/,y, /- ,+1)) has length (Z_ ,+ 1y—Z )0 (k/(k + 1))¥; the interval
based on normal theory has length ¢,(z; -, —2z,). The ratio of the lengths is as
stated in the theorem.

Exact values of the expected relative length, for small numbers of fractions, are
given in Table 1. The subsample intervals may be as much as ten per cent longer
than normal intervals. For large k, with fixed probability size 1—2p/(k+1) =«

L+ (mexp(z,2)(1 —a?)/4—1k™ 1+ O(k™);
is an asymptotic expression for the expected relative length, which approaches one

TABLE 1

Expected length of confidence interval of size o based on k typical
values, divided by length of normal confidence interval

* 1 3 7 1s
k 2 4 8 16

3 1.0858
7 1.0503 1.0996
15 1.0262 1.0504 1.0956

31 1.0133 1.0251 1.0468 1.0866
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as k — 0. The relative length is 1+ O(k~%) and approaches one as k — oo with
probability one.

These exact and asymptotic results show that the subsample intervals are not
much longer than the usual intervals if the errors are independent normal with
constant variance. The most important requirement is that the fractions used give
estimators with constant variance. This requirement is met approximately in many
cases; for example, in estimating a mean from a set of n observations, all 2"—1
subsamples are fractions; and for large n almost all subsample means have variance
nearly equal to twice the variance of the sample mean.

6. Examples of fractions and balanced sets.
A. A location parameter.
MODEL : E(Y)=up.
The least squares estimate of u is fi = Y. Any subset of the observationsis a fraction.
For example, suppose given observations (1.3, 6.2, 1.4, 2.7, 4.3); the 31 subsample
means are (1.3, 6.2, 1.4, 2.7, 4.3, 3.8, 1.4, 2.0, 2.8, 3.8,4.5, 5.3, 2.1, 2.9, 3.5, 2.8, 4.4,
4.0, 3.4, 2.8, 2.3, 1.8, 3.9, 3.4, 3.0, 3.7, 2.4, 3.6, 3.3, 2.9, 3.2). Confidence intervals
for p are SIZE +£—(1.3, 6.2), SIZE §—(1.4, 5.3), SIZE $—(1.4, 4.5).
B. Estimation of a straight line.
MODEL : E(Y) =a+px;.
The least squares estimates are
&=Y-px
B = Z(xz“'f)Yi/Z(xi—x_)z-

The subset S is a p-fraction if Y y, . s(x;—X) = 0. For example with x = (=5, —4,
-3,-2,-1,0,1,2,3,4,5),aset of disjoint fractions (which may be combined to
give 31 fractions) are (-5, 5), (—4, 4), (-3, 3),(—2,2), (1,0, 1).

C. Two-way analysis of variance.
MODEL: E[Y;]=w +p Islsng, I1sjsn,.

Linear contrasts ) a;p; and ) b;u ; are estimable if Y a; =0, Y b; = 0. A subset
S forms a ) a, u; -fraction if for each a, # 0, Y;;€ S implies Y, ;€S for all g, # 0.
The rows form a set of disjoint fractions from which typical values for column
contrasts may be generated—and similarly columns for row contrasts.

D. Comparing two means.
MODEL: E[Y]=up,i=1,""",n,
E[Yi] = U, i= n1+1, e, Ny,

The least squares estimate of p; —p, is Y 1L, Yy/ny— Y 12,4+ Yi/n,.
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Let n, and n, have greatest common denominator d; minimal fractions are sub-
sets containing (n,/d) observations with expectation y, and n,/d observations with
expectation u,. Any disjoint set of k minimal fractions is suitable as a base for a
balanced set.

E. Three-factor analysis of variance.
MODEL: E[Y] =t 1+ ot g+ Bt B

For an I contrast, the minimal fractions (ignoring subsets irrelevant to that contrast)
are the observations {Y,;|i=1,2,---,n;}, one minimal fraction for each JK
interaction. Similarly for an 1J contrast, the minimal fractions are the observations
{Yiu|i=1,"-,n;, j=1,---,n;} one for each K effect. This pattern extends to n
factor models.

7. Concluding remarks. The general purpose of the method is to provide valid
confidence intervals for a regression parameter under weak assumptions about the
error model.

(1) It will be noted that least squares estimates are used in generating the con-
fidence intervals; these estimates will not be optimal under the weak error assump-
tions, but nevertheless the confidence intervals using them will be valid.

(2) Choice of good or best balanced sets of fractions has not been settled. Under
the usual normal assumptions, I surmise that the expected length of confidence
intervals is smaller for a given balanced set than for any balanced subset of this set.
This suggests that only maximal balanced sets should be considered. Computation
may be excessive if very large balanced sets exist; if so, a set of typical values may
be obtained by selecting at random (without replacement) from a given balanced
set, and computing estimates for these randomly selected subsets.

(3) Sets of typical values have a Bayes interpretation; suppose that 6 is uniformly
distributed a priori and the usual normal assumptions hold with ¢ fixed. A sufficient
statistic for 6 is 8, the least squares estimate of 0. If /,, [, - - -, I, are typical values for
1(6), given 0 fixed, then conditionally on 8 it may be shown that they form typical
values for the random variable /(). The quantities /,, /,, - *, ], behave like a random
sample from the posterior distribution of /(f) given 8, in the sense that /() is less
than exactly r of them with the same probability, all r.

(4) Confidence intervals are based on the fact that the error distribution is
invariant under sign changes; other invariance relations on the error will produce
different sets of typical values. For example, the permutation group, the full ortho-
gonal group. The role of fractions is to specify certain transformations in the groups
as relevant to the parameter of interest. The full orthogonal group should recover
the usual ¢-type confidence intervals.

(5) Here is another method, not efficient, but simple to use and valid under the
same assumptions about error as the fraction method. Divide the data into k
disjoint sets, let L,, L,,--, L, be the corresponding least squares estimates of /(9).
For efficiency, each L; should have approximately the same variance. Let
L1y, Ly, -5 Ly be the ordered estimates. Then (L), L;4 1)) contains /(f) with
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f)robability (H)27". Since the L, are independent with median /(6), this is nothing
but the nonparametric method for generating confidence intervals for the median
due to Thompson [7].
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