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THE OPTIMUM DESIGN OF A TWO-FACTOR
EXPERIMENT USING PRIOR INFORMATION!
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University College of Wales

0. Summary. This paper is concerned with a two-factor analysis of variance
situation, the factors being conveniently referred to as blocks and treatments. One
of the treatments has the role of a control. Attention is focused on inference about
the treatment parameters, the block parameters being regarded as nuisance para-
meters. With a general multivariate normal form for the distribution of errors and
for the prior distribution on the block and treatment parameters, the posterior
distribution of the treatment parameters is derived. With a quadratic loss function
an ‘algorithm is derived for the optimum allocation of treatments over a given
sample with known blocking. In special cases the optimum allocation can be written
down immediately and the algorithm need not be resorted to.

1. Introduction. In the classical mold a study has been made of the analysis of
variance situation in which the experimental units are stratified according to two
factors, blocks and treatments say. Let one of the treatments be called the control
treatment, let 7 (1) denote the number of the remaining treatments and Q (=1)
the number of blocks. It is easy to see that for given block sizes, with a “minimum
variance” criterion for optimality and uncorrelated error assumptions, the optimum
design for comparing each treatment individually with the control is (ignoring
integer difficulties) to allocate in each block I* times as many units to the control
treatment as to each of the other treatments. That this allocation has optimal
properties in the case of independent observations has been known for some time,
see for example Fieller (1947) and Dunnett (1955). Work related to the present
paper includes that of Ericson (1965) where, in the one-factor case, using a Bayesian
decision theoretic approach (quadratic loss and a linear cost function), an optimal
design is derived for estimation of a linear combination of population means.
Bechhofer, in a recent unpublished report, also considered the one-factor case and
was concerned with estimating the contrasted effects of the treatments with the
control. With a confidence interval criterion for optimality, the optimum design
was derived and shown to reduce to the above allocation in special cases.

The present paper is also concerned with inference about the contrasted effects
of the individual treatments with the control treatment, the block effects being of
no interest but here prior information about the parameters is assumed and the
errors are not necessarily uncorrelated. Wald’s decision theory and the Bayesian
framework is adopted with a linear, no interaction model and multivariate normal
prior and error distributions. This model is formalized more explicitly in the next
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section. In Section 3, the posterior distribution of the treatment parameters is
derived. In Section 4, interest is focused on estimation and with a quadratic loss
function a generalization of the above classical result is derived in the form of a
computational algorithm which yields the optimum allocation of treatments in at
most Q steps. In Section 5, special cases are found in which the computational
algorithm simplifies to give an algebraic expression for the answer. A corollary to
one of the special case results is that in the classical mold the ‘““square root rule”
mentioned above is still optimum (in a sense) when correlated errors are allowed.
Section 6 contains an illustrative example.

NOTATION. (A);; denotes the element in the ith row and jth column of A and
|la;;|| denotes the matrix with (i, j)th element a;;. I, denotes the n x nidentity matrix
and 1, denotes the n x 1 column of 1’s. dg(A,, - - -, A;) of course denotes the parti-
tion matrix which has the matrices A,, - - -, A, down the diagonal of partitions and
zeros elsewhere and for the vector a, dga denotes the diagonal matrix with
(a),, (a),, - -, (a), down the diagonal.

For an expression R;, {R,} is shorthand for (R;,i=1,"",1, ¢g=1,"-,0).
Either one of i or ¢ may be absent.

x|0 ~ N(m, V) means given 0, x has a multivariate normal distribution with
mean m and dispersion matrix V.

Prior densities are denoted by n(-), thus n(@) is the prior density on 6.

2. Specification of the model. Let P denote the population of experimental units
which are classified in two mutually exclusive and exhaustive ways, say according
to treatments and blocks. Let I, -+,J ; denote the control treatment and [
treatments respectively and %,,* -, %, denote the blocks. For each treated unit
there is an observable scalar response, y say.

Let 79,7y, *»T;, PB1,°°"»PBo be parameters referring to J 6,7, ", o,
By, ", By respectively. It is assumed that for a unit in %, which received J;

0)) y=1+B,+¢ (i=0,1,--,I,g=1,"+,0Q).

In an experiment on a given blocked and treated sample, the parameters
{r;—A, B,+A} clearly fit any possible response vector y equally well for all 4. The
condition that 1, is fixed and without loss of generality

V) 7o=0

expresses the “origin of reference” role J , plays in the experiment making the
parameters identifiable

Let the units of the sample be arranged in some order and let N denote the sample
size. For the nth unit let y, denote the observed scalar and ¢, the error term. Write
Y= ,yy) and e = (g1, ", ¢y)". Denote by F the N x I matrix with the nth
(n=1,---,N) row having a 1 in the ith position and zeros elsewhere if the nth
experimental unit receives J; and consisting entirely of zeros if the nth experi-
mental unit receives J . Similarly define G to be the N x Q matrix with the nth
(n=1,---,N) row having a 1 in the gth position and zeros elsewhere if the nth
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unitis in 4,. The design of an experiment is the choice of the numbers of units from
the blocks and subsequent allocation of treatments, i.e., the design is the choice of
(F, G). Denoting (t4,***,7)’, (By," ", Bg)’ by = and B respectively and referring to
(2) the equation corresponding to (1) for the sample is

3) y=Ft+Gp+e.

In the above setup let H denote the experimenter’s knowledge or belief about ,
B and & prior to the observation of y. A normal distributional assumption is taken,
namely
)] elr, B.H ~ N(0,E),

the dispersion matrix E being known, positive definite and not dependent on z or

B

The prior information on z and B (i.e., given only H) is taken to be of multivariate

normal form,
T t T O
® Ele~{6)-Go o)}

where t(I x 1) and b are known and T (I x I) and B are known and positive definite.
For the remainder of this paper H will be omitted but is always to be taken as
given.

3. Basic results for inference about the treatment parameters.

3.1. The posterior distribution of t. It is required to eliminate the nuisance para-
meter f. By Bayes’ theorem, since the prior attitude to z is not affected by choice of
(F, G) and since p(y | F, G) does not depend on 7, ~

©) p(z|y,F, G) « p(y| 7, F, G)n(%).

The equation for the sample, (3), may be written

y =Ft+(G, IN)(€> .
Referring to (4) and (5)

() ro-{(o) (o )

and since (G, Iy) has full rank
©)] y | t,F,G ~ N(Ft+Gb,V)
where V = GBG’ +E has full rank.

From the standard multivariate normal theory, it is easy to verify that the
posterior distribution of =, given (y,F,G) is a multivariate normal distribution
with mean vector m and dispersion matrix D where
®) D !'=FV 'F4+T! and
©) m = D[F'V~!(y—Gb)+T 't]
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where recall V. = GBG’ +E. Notice that none of y, t and b appear in the expression
for D given in (8). This completes the derivation of

THEOREM 1. The distribution of t posterior to the experiment has a multivariate
normal distribution with mean m and dispersion matrix D expressions for which are
given in (8) and (9).

An important corollary to this theorem will now be derived, part of which is a
self-contained classical result.

Referring to (7) and Al(viii) (i.e. the part of appendix A1l specified in the paren-
theses),

(10) V!'=E'-E'G(GE"'G+B ) 'GE™".

Define V,~! to be the value of V™! when B~ is the zero matrix. It follows that
@11 Vo~ ! issingularand V, !G=0.

It is seen, referring to (8) and (9), that

(12) D! and m arecontinuousin T~' and B~™' evenat B7'=0.

By virtue of the form of the likelihood [(3),(4)] it follows that when T~! and
B! are the zero matrices (vague prior information on the parameters) the posterior
distribution of < is just N(#, Var %) where £ is the maximum likelihood or weighted
least squares estimator of 7. Theorem 1, (10), (11), (12) and this result establish

COROLLARY 1. Let £ denote the maximum likelihood (or equivalently, the weighted
least squares) estimator of t© and let (F, G) be of full rank, then in the notation of
Theorem 1:

£= lim m=FV, 'F)"'FV, ly
T !'50&B 150
and
Vart = lim D=V, 'F)™!
T !50&B '>0
where

Vo '=E'-E"'G(G'E"'G)"'GE™".

Of course # has a multivariate normal distribution with mean z (because £ is linear
in y). Note also that “(F, G) is of full rank” is a necessary, as well as a sufficient
condition for the inverses in the above expressions to exist. This follows from
A1(v) and the equation |(F, GYE™!(F, G)| = |G'E™'G| |[F'V,~'F| which holds if
G’E™'G is nonsingular.

The following definition is required for the next subsection.

(13) Let a,, (i=0,1,"--,I,g=1,--+, Q) denote the number of units of the
sample which received J; and are from 2%, The (I+1) x Q array {do,a;,} is
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called the allocation for the sample and the I x Q matrix ||a,-q i=1,--,1,
g=1,-, Q|| is denoted by A. A describes the allocation {a,,a;,} if the block
sizes 51, ***, S are known.

3.2. An expression for D! in terms of the allocation. Without loss of generality
and for convenience, let the arrangement of the units in the sample be such that all
those of %, occupy the first places, then all those of #, and so on. Denoting the
number of elements of the sample in 2, by s,, with this ordering of the sample

(14) G =dg(1,,,1,,, ", 1,,).

Specialization. Here and for the remainder of this paper the block sizes {s,} are
taken to be positive and the distribution of errors is specialized to within block
homoscedasticity and constant correlation between different errors in a given pair
of (coincident or different) blocks. In the notation of 2 and 3.2 the specialization
may be expressed (introducing notation) by the equation

@15) E=GEG +A

where A denotes dg(e, L, - --, e L,,) where ey, ‘-, g are positive. Of course £
has to be symmetric and £ and e, -, e, have to be such that E is positive
definite. Denote E by |le,|| so GRG' =||e,J, q,r=1,-:-, Q|| where J,, =
ls.,l;r(q’r= Loy 0).

With this specialization (7) becomes V = GB+E)G'+A and so V' !=
—AT'G[G'AT'G+(B+E)"']"'G'A" 1+ A~ [Al(viii)]. Noting that G'A™'G =
dg(sye; ™, -+, spep ") and that in the first term the block partitioned matrix
between the outside A~ '’s is still a block partitioned matrix when pre- and post-
multiplied by A™! it follows that

(16) V'!1=—_GCG' +A™! where
(17) C—l = dg(sl €1, SQ eQ)+dg(e1’ ) eQ)(B+E)—ldg(e1’ Y eQ)'

It is easy to see that F'G = A and F'A™'F = dg Ap where p = (e, ™", -+, e, ")’
so from (16) and Theorem 1 there follows the required expression for D! in
terms of the allocation for given block sizes s,, « -, sg. For the second part note
that B+£)™! -0 as B! - 0 and that “full rank for (F,G)” is a necessary and
sufficient condition for existence of the limit of D [Corollary 1]. Now (F, G) has
the same rank as (F, G)'(F, G) which is expressed in terms of A and {s,} on noting
that F'F = dg(Aly) and G'G =dg(s,, ‘-, sp). The final sufficient condition is
established from the observation that the sum along the ith row of limD™! is
Yo, a;,a0,/(s, €,) and the Lévy-Desplanques theorem [see Marcus-Minc (1964)].

THEOREM 2. In the notation and specialization of (15) the expression for the
posterior dispersion matrix of the treatment parameters, D, in terms of the allocation
isD™! = —ACA’+dg(Ap)+T " where p denotes (e, *,e,™%, -+, e,™) and C~*
is given above in (17).
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If T-' and B™! tend to zero matrices (vague prior information) then
D™ '> —Adg(s, e, 7", v, 507 eg A’ +dg(Ap) and equality obtains in the
limit if (B+E)~! is defined to be 0 when B~ = 0. Lim D exists iff

dgAl, A ] .
is of full rank.
[ A" dg(sq,r,80) »

A sufficient condition for lim D to exist is simply that “each treatment is taken in
some block, together with the control.”

4. With given block sizes, the optimum allocation of treatments for estimation of
the treatment parameters.

4.1. In the Bayesian decision theoretic framework the optimum criterion for
inference about 7 is expressed in a loss function. Here it is required that the loss
function be appropriate for estimation and it is taken to be the quadratic form

(18) L(d,7) = (d—7)W(d—7)

where d is an element of the decision (or estimation) space (the set of I x 1 vectors)
and W is an I x I positive definite and without loss of generality symmetric matrix.
It is known that for an experiment with given design (i.e., given F,G) and the
above loss function, Bayes’ estimator of 7 is m, the posterior expectation of 7 [see
Theorem 1] and the expected loss with Bayes’ estimator is tr WD [see Theorem 1
and Theorem 2].

4.2. The expected posterior loss with Bayes’ estimator, tr WD [4.1] doesn’t
depend on y [(8)] and hence the criterion for optimal design is to minimize tr WD.
For given G it is therefore required to choose F to minimize tr WD. Referring to
Theorem 2 all designs (F, G) with the same allocation {aq,, a;,} will have the same
associated D and so it is only required to consider the different allocations. The
minimization problem is split into two stages according to

(19) mln{aoq_aiq) | {sq} tr WD = mln{aoq) | {sq} mln(a‘q) | {sg-a04} tr WD.

NoTATION. (i) An (I+1) x Q array of nonnegative integers {ao,, a;,} has been
called an allocation. For mathematical convenience it is necessary to consider
such an array with the entries not restricted to integer values. This array with
nonnegative reals for entries will be called a “‘continuous allocation.” The former,
more restricted array will be referred to as an “integer allocation’ or simply as an
““allocation.”

(ii) D(«/) shall denote the dispersion matrix D under allocation 2.

(iii) For square matrices X, Y of the same order, X = Y means that X—Y is non-
negative definite and X > Y means that X—Y is positive definite.

(20) In this paper the minimization (19) is taken over continuous allocations
(except in Theorem 6) though of course only experiments with integer allocations
exist. However when the block sizes {s,} are large in comparison with I any integer
allocation near the optimum continuous allocation will, because of continuity
and stationarity of the loss function at the optimum continuous allocation, have a
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hafdly larger expected loss. The solution of the above modified problem is usually
considered the first priority [see, for example, Kiefer (1959), page 281].

21 Subsequent results in this paper take C [(17), (15)] to be positive definite.
Refering to (17) and Al(vii) and (iv) it follows by continuity that C is positive
definite if B+E is nonnegative definite. Since B is positive definite, this always
occurs if E is nonnegative definite. Whatever the value of E, B+E is nonnegative
definite if, roughly speaking, B has sufficiently large characteristic roots, i.e., if the
prior information about B is sufficiently vague. Notice that & is nonnegative definite
in the case of uncorrelated errors (when E = 0) and so C is always positive definite
in this case. More generally C is positive definite if e, = e for g # r, e;,, = ¢’ and
¢’ 2 e 2 0. E is not, however, always nonnegative definite, for example, if there are
one or more blocks such that their block error covariances (e , for %,) are negative.

4.3.

LeEMMA 1. If C is positive definite [see (21)], and W is diagonal the optimum con-
tinuous allocation for given block sizes {s,} and given amount of control per block
{ao,}, is unique.

Proor. For given block sizes {s,} suppose the inner minimum of (19) occurs at
the different continuous allocations represented (in the notation of (13)) by the
Ix Q matrices Aj, A,. Write A; =1A,+(1—-2)A, where 0 <A< 1. Let D,
denote D(A)) (i = 1,2, 3). It may be verified using Theorem 2 that

(22) D, '=iD, "'+ (1-A)D, '+ A(1—-2)(A, —A,)C(A; —A,)".
Referring to A1(v):

=
(23) M1=2A)A;—A,)C(A; —A,) - 0.

Referring to (22) and (23)
>
D, ! : D, '+(1-AD,!

and therefore

(24) D, i [/D, ' +(1- 4D, ]! [AL(ii)].
However

(25) [D, ' +(1=A)D, ']"! < iD, +(1-A)D, [ALGii)]
and so '

(26) D, i iD,+(1—A)D, [(24), (25)]

which implies that

<
WD, - AWD, +(1 - )WD, [A1(vii)].
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Hence trWD; < Atr WD, +(1—A)tr WD, contradicting the above supposition
and proving the lemma.

THEOREM 3. If C is positive definite [see (21)], W =1, and (in the notation of
A1(i)) T = t2Z(1, p) where (—1/(I—1) < p < 1), the (unique) optimum continuous
allocation for given block sizes {s,} and control allocation {a,} is {a;, = (s,—ao,)/I},
i.e., that part of each block not allocated to control is equally divided among the I
treatments.

ProoF. Let {a;;} be the optimum continuous allocation and suppose that
{a,, = a341 =" =ay,} is not true. Take a permutation a(-) on I elements
such that {a,;, = @, } is different from {a;,;}. By symmetry of the treatments
over all the blocks w.r.t. tr D [(15)], continuous allocation {a,,,} is also optimum
and Lemma 1 is contradicted. The above supposition must therefore be rejected
proving the lemma.

4.4. In this subsection the minimization (19) is completed, i.e., the outer mini-
mization of (19) is effected.
For the remainder of this paper the following conditions are taken:

27 E is of the form (15), B+E is positive definite, T is of the form specified
in Theorem 3 and W is I;.

Theorem 3 shows that for given block sizes {s,} and allocation of control,
{ao,}, the optimum continuous allocation of the other treatments is

(28) {ay,=ay,="""=ay, = (s,—ao)/l = x,, say}.

Let D(x) denote D({a;, =x,}), 4,(x)=p'x+6 and 1,(x)=p'x—Ix'Cx+y
where x = (xy, '+, xp), p= (e, 74 o, eQ—l)’> y=[1+I—-1)p]"'t"% and o =
(1—p)~*¢t~2. By Theorem 2 and A1(i).

(29) [D(x)]"! is positive definite for {0 < x, < s,/I} (even if B™' and T~ are
zero matrices) has (I—1) fold root 1,(x) and simple root A,(x). Hence

(30) trD(x) = (I — 1)/A,(x) +1/45(x).

To find the complete solution of the optimum continuous allocation of treatments
for given block sizes it is required to find the optimum continuous allocation of
control treatment when (28) holds and this is equivalent to finding x over the
region {0 < x, < s5,/I}, R say, which minimizes tr D(x).

Let U, denote the hyperplane p'x = n and s denote (s,/I, - -+, so/I)’, the mini-
mization of tr D(x) is split according to

31 min trD(x) = min min trD(x).
xeR 0<n=<p's RNU,

(32) Notice that, because of (29), the inner minimum of (31) occurs where
x'Cx is least over RNU,.
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(33) It is necessary to introduce some further notation. Let Q denote the set of
integers 1,2, -+, Q, A a subset of Q and A the complement of A. For a Q x 1
vector a, let a, denote the column vector consisting of elements (a), for geA in
the same order they occur in a. Similarly, for subsets A;, A, of Qand a @ x Q
matrix A, let A, 5, denote the matrix which remains if the rows of A corresponding
to A, and the columns corresponding to A, are deleted. By R, and U,, are meant
the subsets of R and U, respectively where x5 is fixed at sz but the rest of x is left
free to vary. A may be used just as a suffix for a scalar quantity.

Before returning to the main argument it is most economical to derive here two
subsidiary results for a general subset A of Q.

By the method of Lagrange Multipliers there is only one local minimum point of
x'Cx over U,, and it is the global minimum point because x'Cx is a convex
function [A2]. This global minimum occurs at

(34) Xa = ¢(A)m+yY(A)
where ¢(A) = C; A pa/Pa’Ca A P4 and

Pa'Sx—PA'Ci A CaaSa
PA'CAAPA

(35) Define x(m, A) by x(m, A), = ¢(A)n+y¥(A) and x(n, A)z = sz so x(x, A) is
the above global minimum point in Q space of x'Cx over U,,.

Let ¢(A), and Y(A), for ge A be the components of ¢(A) and Y(A) respectively
corresponding to x(n, A), so x(x, A), =¢(A), n+Y(A), for geA.

Consider now trD(x(w, A)) regarded as a function of n. Clearly A,(x(n,A)) =
n+9. Let :

YA =— CX,}\[ Pa+Caz Sx] .

up = Pa'Cx APA/, v = Isg'[(C™Dx,a] " sz,
(36) WA =PaSa—PA'CAACAASR,  aa = Ljuy,
by=14+2wp/uy, and cp =7p—vs—wa2[u, - then
(X(m,A)) = —apn®+bsm+cy,.

Only subregions R, of R, such that x(n, A) € R, for some value of z are of interest.
For such a subregion R, and suitable value of n, A,(x(%, A)) > 0 and so

(37 A (x(m,A)) = 0
must have two real roots, 7, , < 7, ,, say.

(38) For such a subregion R, and for me(max(—34,7, 4), 7, 4) tr D(X(7, A))
is a positive convex function of = [A2] which tends to co as m approaches either
end of this interval from inside.

(39)  Define fy(n) = (2a, n—b,)(n+6)? and go(n) = (I—1)(—a, 2 +b, n+c,).
o/ontr D(x(m, A)) = O iff f(n) = ga(n) and & # — 8, m; 4 OF 7, 4. fA(7)is continuous
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everywhere in 7, vanishes at —§ and b,/2a, and has a turning point at —4 and
Ybpjay—0). Now f,"(—68) =f1"(3(balay—0)) = 2(2a,6+b,), so the stationary
point at the higher value of 7 is a minimum and the one at the lower value of 7 is a
maximum. The two possibilities for the graph are:

(i) -8<bs2q,
b
g
(]
i
i
H
-8 2 TBA
b/2a,
(-8 may be less than =, ,)
G)  -3>h/2q,
galm)
/k[ 3
[ B e
FIG. 1

In either case there is one root of fy(n) = gA(n) between max (—d, b,/2a,) and
T, A, fia say. Notice that bo(=1) > 0 and so for A = Q graph (i) must obtain and

(40) g > 0.

41) It is concluded therefore that trD(x(m,A)) is positive and convex over
ne(max(—0,m, 4), T5,4), tends to infinity as 7 tends to either end point from
within and is minimum at #, which is the unique root of f,(m) = g(m) between
max (—90,b,/2a,) and 7, 4.

42) The condition C~'p > 0 is required; this is a weak condition which holds
if, for example, C is diagonal and by continuity if C is near enough to being
diagonal. The condition therefore holds if {s,/e, is large enough} or if (B + &) is near
enough to being diagonal.

Returning to the main theme of the argument at (32), let x(r) denote the point
where trD(x) is least over RnU, (n€[0,p’s]). By (32) and (35)

43) x(1) = x(r, Q) provided x(n,Q)eR which is so, referring to (42), iff
n€ [0, my] where mq = min, . o(s,/D/($a),-
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(44) Denote the set of integers in Q where this minimum occurs by A,.
In the notation of (37)

(45) A,(x(n, Q)) is only positive when ne(n; g, 7, o). For each ne [0, p’s] there
is a point in RNU,, for which x’'Cx is not smaller than it is at x(r, Q) and since by
(29) A,(x) is positive for each point of R it follows that

(46) A, (X(m,Q)) is positive when ne[0,p's].
From (45) and (46),
(C))] Ta<0<ps<m,q.

(48) If &g < wg, [c.f. graph (i), (43) and (40)] then x(Rq, Q) is in R and it must be
the required optimum point because if one takes any other point x € R and denotes
the value of p'x by = then by (35) and (41) tr D(x) = tr D(x(n, Q)) = tr D(x(Rq, Q)).

If #; > g a generalization of the condition (42) is required, namely that for all
subsets A of Q

(49) CAiipa>0.

Because trD is a continuous and strongly convex function over R which is a
convex region, x(x) is a continuous curve. It is known [see (43), (35) and (42)]
that for n€[0, n,] the components of x(r) are strictly increasing functions of =
and it is required to show that each component of x(r) continues to increase as =
increases to p’s until it reaches its maximum value (s,/I for the gth component).
Suppose that as 7 increases through =,, say, a component of x(r) stops increasing’
but is not at its maximum value. Since for some subset A of Q, x(r,) is an internal
point of R,NU,, (none of its components being zero), x(7,) must be given by (35),
viz. x(m;, A) and the contradiction is established referring to (34) by condition (49).
A component which has reached its maximum value is clearly precluded from
decreasing by the above argument. It is therefore established that

(50) the components of x(n) are nondecreasing in # and those components
which have not attained their maximum value (s /I for the gth component) are
strictly increasing in =.

Because of the above property of x(m) and since x(mg)€ R,, [(43),(44)] then
x(m)e Ry, for m = mg. Since fg > ng and tr D(x(w, Q)) is a convex function of =,
X(mq, Q) is the best point of RN(U, |0 < n < ng) hence

(51) If g > mg the required optimum point must be in R,,N(U, | n € [ng, p's)).

Let m,, denote min, A, [s,/I—¥(A,))/#(A,), Referring to (35), x(m,A;)€R,,
for me[ng, ma,] (and possibly for smaller values of 7 too) so

(52) x(%) = x(w, A,) for ne[ng,ma,] Where m,, is defined above.
In the same way that (47) was derived it follows that

(53) Tia <M SP'S<T,4,.
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It cannot be that #,, < mq for if it were so, X(f,,,A,) would be better than
X(tg, A )(=X(mg, Q)) and worse than x(#,,, Q) which in turn is worse than x(g, Q),
a contradiction, so

(59) fip, 2 M.
If #,, < m,, then referring to (51) and by the same argument which derived (48)

(55) x(f4,, A,) is the optimum point of R. If #,, > =, let A, denote the integers
of A, which do not minimize [s,/I—¥(A,))/¢(A,), over geA,. The optimum
point is in RAzn(U,,|ne[1rAl,p’s]) and the procedure continues. The procedure
does of course terminate in at most Q steps.

Because of (29) the preceding argument goes through in the case T~! and B~*
are zero matrices where (B+E)~! is defined to be 0 when B™! = 0.

ALGORITEM 1. Let E, the error dispersion matrix for the sample (be positive
definite) and take the form of (15), and let B+E be positive definite (a weak
condition). Let T (the prior dispersion matrix for the treatment parameters) take
the form #2Z(1, p) (in the notation of A1(i)) where p (the prior correlation between
any two treatment parameters) is between —1/(/—1) and 1. Let W (see 4.1) be the
identity matrix so the loss function is specialized to the sum of squared errors of
estimation.

The optimum continuous allocation [4.3] of treatments over the blocks of given
sizes {s,} is {8, =dy=""" =05, = £, (80, = 5,—I%,)} Where (£, ", %)’ = b4
is found by the procedure described below.

First some definitions. Let p=(e,” %, ", e, "), s=(sy/L," , so/I),
y=[+T-Dpl 7% 6=(1-p)"'t7%*1) and C'=dg(e; s, ", ep5)+
dg(ey, -, eQ)(B+ﬁl)_1 dg(ey, -+, eg). In the partitioning notation of (33) let Q
denote the set of integers (1, -, ), A denote a subset of Q and A denote the
complement of Aw.rt.Q. Let wu,=p) CAAPa/Lva =I55[(C™Nz,x]" sz,
Wa =Px'Sx— Pa'CiACaa8z O(A) = CiAPA/Tun, W(A) = — CLAWA/(Tu)Pa+
C,.x5z] and let x(m, A) be defined by x;(m, A) = sz and xx(%, A) = d(A)m+y(A).
Let ¢(A), and Y(A), be the components of ¢(A) and Y(A) respectively correspond-
ing to x(m,A),. Let m, denote min, ., [s,/]— V(A))/d(A),. (*2) Let ap = 1]uy,
by = 142w,/u, and c, = y—vp—wa2[us. Let m, o = (ba+[bA% +4a, ca1)/2a,, if
7, 4 is real let £, denote the unique root between max (—4,b,/2a,) and 7, 4 of the
quartic equation in 7:

Qayn—b)(+8)* = (I—1)(—apn®+bym+cp).

This root is indicated graphically above. Notice that in the case I =1 (one treat-
ment and the control treatment), f, = b,/2a,.

The first step in the procedure is to evaluate #g, the root of the quartic equation
inm

Qug 'n—1)(n+6)* = (I —1)(—ug ™ ‘n* +n+7v)?
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which lies between $ug and 3(1+([1+4ug" 'y]¥)ug and to evaluate (*3)
g = ming . o 5,/I(¢g),. If C™'p> 0 and g < 7y the required optimum point is

£ =(C7'p)/(@'C'p)tq.

If #g > mg the condition Cx}ps > 0 for all subsets A of Q is required for the
following procedure. (This condition holds if, for example, {s,/e, is large enough}
or B+E is near enough to being diagonal.) Denote by A, the set of values geQ
for which s,/¢(Q), is least. Find m,, and #,, (%, 4, is real), if #,, < m,, the optimum
point is x(f,,, A,). If £, > m,,, denote by A, the set of values ge A, for which
[so/1—¥(A1),)/@(A ), is not least. Now evaluate 75, and #,, (4, is real) and the
procedure continues.

(*4) The procedure terminates in at most Q steps.

Having found the optimum continuous allocation, an integer allocation is taken
near to it and if this is not the optimum integer allocation it will usually be nearly
optimum (see (20)). To check how good his integer allocation is, the experimenter
may compare its associated expected loss with the expected loss using the optimum
continuous allocation. If the “nearby” integer allocation is taken to be a ““balanced”
allocation, i.e., of the form {a;, = (s,—a,,)/I}, (30) may be used to calculate both
expected losses.

5. Special cases. In various special cases Algorithm 1 simplifies. In the first case
to be taken a simpler procedure obtains and in the other cases there is an explicit
expression for the optimum continuous allocation.

The first case to be considered is as follows.

(56) E=dg(e L, ", egL,) (so E =0 and the errors are uncorrelated) and
B =dg(b,,, -, bgg) (block parameters are a priori uncorrelated).

In this case and the notation of Algorithm 1, the following simplified formulae
obtain.

(57) C=4dg(c;,"*,cg) where {c,=b,lele,+5,b,)}

Because C is diagonal and {c, > 0} the restriction (49) is trivially satisfied. (56) of
course implies that B+E is positive definite. Then in the notation of Algorithm 1,

ua=1"1Y,cae,7%¢,7 Y,  oa=I1"'Y, x5,
wa=1"1Y cae7 s,  mA=usming sS,e,0,+ Wy,
Xx(ﬂ, A) =83, [XA(TE, A)]q = [(1'[— WA)/IuA] eq— lcq_ !

for ge A. The nested subsets of Q,A; >A,> --- are easily defined in this case:
compute the Q numbers s, e, ¢,, ***, 5g g ¢g, strike out from Q the (one or more)
integers corresponding to the smallest value of these numbers. The set of integers
which remains is denoted by A;. Strike out from A, the (one or more) integers
- corresponding to the next smallest value of these numbers, the set which remains is
denoted by A,, and so on.
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‘There follows the simplified version of Algorithm 1:

ALGORITHM 1A. With the specialization (56) read to (*1) of Algorithm 1 and
then refer to definitions (57). Now read from (*2) to (*3) and then:
T = ming o5, ¢,¢,. If 1g < A, the required optimum point is

{(x)q = (ﬁQ/Iuﬂ)cq— ! eq— 1}'

If fq > m, find m,, and #,, (7,4, is real), if #,, < 7,, the optimum point is
X(Rp,, Ay). If Ry, > 7wy, evaluate m,, and #,, (7,4, is real) and the procedure
continues. The remarks after (*4) should now be read.

In the following theorem a simple analytic expression obtains for the optimum
continuous allocation.

THEOREM 4. In the setting described in the ﬁrst paragraph of Algorithm 1, let

(@) {0<s,+¢, Y%, [B+E)""], all g=1,--,0} (a weak condition). Let u
denote (1/1) Y2, s, /e +(UD Y2 Y2, [(B+E) 1y O denote (1—p)~*t72, y
denote [1+(I—1)p]~ ‘t 2 and ] denote the unique root between } and (1 + (1 +4y/u)?)
of the quartic equation in A: 2A—1)(A+0u~1)? = (I-1) (=22 +A+yu~")2 Let
{x, =1 (s, +e, Y&, [(B+E)"'1,)}, then if

) {x,<s,/lallqg=1,---,Q} the optimum continuous allocation for fixed
blocking {s,} is {4, = x,}.

(Of course (a) and (b) together simply say that {0 < x, < s,/I}.) If {x, < s,/1,
allg =1, -+, Q} is not true, the experimenter must proceed to the second stage of
Algorithm 1.

Define (B+£)~! to be 0 when B™* = 0 then {x,} is continuous w.r.t. B, z and p
even at B"! =0 and t~' =0, i.e,, {x,} is continuous w.r.t the prior information
even at the case of vagueness.

Limiting cases. At T™! =0 (vague prior information on the treatment para-

meters)
1
{xq (1 _l_Ig-)It(s +e Z [(B+E) l]qr>}

If both T~! = 0 and B™! = 0 (vague prior information on all the parameters)

1 do
= ti e _ 14,
{xq DG sq} (no ice o )

In the case T™! = 0, condition (b) may be written:
() (6,32 , [B+E)™ "], <s/I* all g=1,---,0}.

If B™! is near enough to 0 conditions (a) and (b") are both satisfied.

Notice that (a) holds for example if £ = 0 (uncorrelated errors) and B is diagonal
(a priori uncorrelated block parameters). Notice too that for a given error distribu-
tion and prior distribution of the block parameters (a), (b) and (b") hold if the
block sizes ({s,}) are large enough.
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ProoF. For the first part refer to Algorithm 1.

For the limiting case of vague prior information, see the last sentence of the
proof of Algorithm 1.

For the continuity of {x,} w.r.t. B,  and p, notice (B+E)~" is continuous w.r.t.
B even at B~ = 0. The coefficient of 1 in the expression for {x,} therefore has the
property of continuity and, referring to (41), 1 is a simple finite root of the quartic
equation above and is therefore a continuous function of the coefficients of the
quartic which in turn are continuous functions of B, ¢ and p even at B™! = 0 and
t71=0.

Finally note that in the case t ~! = 0, I*/(1+I?) is the unique root between 4 and
1 of the above quartic and 1 — I*/(1+ %) as one or more of the block sizes tends to
infinity.

From Theorem 4 and Corollary 1 there follows:

COROLLARY 4A. In the setting described in the first paragraph of Algorithm 1, as
B! — 0 (through positive definite values) and t ~! — 0 (i.e., as the prior information
tends to vagueness) the optimum continuous allocation for fixed blocking {s,}:

{a,,~>(and=when B™'=0 and T '=0)[(1+IH[*]"'s,}.

This continuous allocation also minimizes tr Var 2 (where £ is the maximum likeli-
hood estimator of £) and is the limiting optimum continuous allocation as {s, —» o}
for fixed prior information.

The following result is established from Theorem 4 and (30).

COROLLARY 4B. In the case of Theorem 4 let conditions (a) and (b) obtain. The
expected posterior loss under optimum continuous allocation is

(A=t 1
l+u16 A-22+u"ly

which reduces to
I(1+1?)?
Zd?=l sq eq_l +Zg=1 g=l [(B+E)_l]qr

in the case t™! = 0. A

Note on convergence of the posterior distribution.

One would certainly expect that the posterior distribution of ¢ under optimum
allocation tends to a point distribution as one or more of the block sizes tend to
infinity and this may be verified by reference to Corollary 4B.

THEOREM 5. In the setting described in the first paragraph of Algorithm 1, take
the case

{(egfs) Xo=; [(B+E)" 1], = h—1}
where h does not depend on q. Let 1 be defined as in Theorem 4 (u = I1"'h Z(zz= )
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" The optimum continuous allocation for fixed blocking {s,} is
{a, = I"'s,min[h1,1]}.

Proor. This result is evident from the proof of Algorithm 1 on noticing that the
above condition ensures that the locus of minima of trD over RNU, as & varies
is the “hyperdiagonal” of R joining {0} to {s,/I}.

The remarks in the last paragraph of Algorithm 1 should be appended to the
preceding three results.

In the case I = 1, B diagonal and E diagonal, tr D takes such a simple form that
Algorithm 1 need not be resorted to. In this case both the integer and continuous
optimum allocations have simple expressions. Here

(58) (trD)" ' = Yo, e, [ay,—ad, byyl(e,+5, by )]+t~

If, forg=1,---, Q, dlé maximizes alq—afqbqq/(eq+sqb"), then each term of the
above sum is maximized and &,, is the optimum allocation. The next theorem
follows from this observation and the symmetry of the parabola.

THEOREM 6. In the case of one treatment and control (ie, I=1),
E=dg(e, L, ", egL,) and B =4dg(b,,, ' -, byg), the optimum integer allocation
is {a,, = min [s,, nearest integer to 4(s,+e,/b,,)1} and the optimum continuous
allocation is a,, = {min [s,, 4(s,+¢,/b,)]}. Notice neither allocation depends on t,
the prior variance for the treatment parameter.

6. Example. Four blocks of sizes 100, 120, 130 and 140 experimental units, nirie
treatments and the control treatment. Normally distributed errors, within block
error homoscedasticity with error variances 10, 20, 30 and 40 respectively and
covariances expressed (in the notation of (15)) by

E=1 -02 02 -o0.1
3 0 0.1

2 0.3

5

where, for example, 1 is the covariance between (different) errors in the first block
and —0.2 the covariance between errors in the first and second blocks. The prior
distribution of the parameters is multivariate normal with a priori zero correlation
between each block parameter and each treatment parameter. The prior variance
of each of the treatment parameters is } and the prior correlation coefficient between
each pair of treatment parameters is 0.11. In the notation of (5) the prior dispersion
matrix on the block parameters is

B=04 -0.2 0.3 0.2
0.6 0.1 0
0.8 -0.1

1.0.
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In the notation of this paper

0 =4, =9, t=14, p =0.11,
s, =100, s, =120, s3=130, s, =140,
e, =10, e, =20, ey = 30, e, = 40.

Computing {x,} from Theorem 4 it is found that u = 2.80660, 2 =0.926851 and
hence x, = 10.98, x, = 13.00, x; = 13.93, x, = 14.91. Notice that {0 < x, < 5./}
and so by Theorem 4 the optimum continuous allocation of treatments is
{a;, = x,}. The expected loss associated with this allocation is the least possible
and by Corollary 4B is 1.5589 and the nearby integer allocation

{ay = 1(agy = 1), a; =13(ag; =3), a;3=14(ao3 =4), ai =15(ao4 = 5)}

is very nearly optimum (this may be checked using (30)).

If the prior information is ignored and the corresponding optimum allocation
(which by Theorem 4 is the familiar {a,,/a;, = 3}) is taken the expected loss (by
Corollary 4B) is 6.042, nearly four times the optimum expected loss.

APPENDIX

The following known results are used in the text.

Al (i) Letn = 2 and Z,(a, b) denote the n x n matrix with a’s down the diagonal
and b’s elsewhere. If a # b or —(n—1)b it may be verified that [Z,(a,b)] ' =
Z.(a',b") where,

a+(n—2)b b b
and b= (a—b)a+(n—1b]"

!

@ = @a=b)a+(n—1b]

The characteristic roots of Z,(a,b) are: n—1 fold root a—b and simple root
a+(n—1)b. Notice that if n = 1 the result still holds if b is interpreted to be zero.
(i) IfX, and X, are positive definiteand 0 < 4 < 1then X, "' +(1-)X, ™' 2
[AX,; +(1—-1)X,]"! with equality iff X, = X, (Kiefer, 1959).
@Gii) If X, =X, >0then X,"' 2 X,7! > 0.
(iv) If X, =X, and Y, 2 Y, then X, +X, 2 Y, + Y, and equality only obtains
for the sums if it obtains for both pairs of matrices.
(v) Let A, B be matrices of orders m x n and n x n respectively, then ABA' is
nonnegative definite and if B is positive definite ABA’ has the same rank as A.
(vi) If X is a square, symmetric, positive definite matrix, there exists nonsingular
Y such that X = YY".
(vii) The product of a positive (nonnegative) definite matrix with a diagonal
matrix of positive numbers is positive (nonnegative) definite respectively.
(viii) Let S, B™" be nonsingular matrices and U, V n x r matrices then pro-
vided the inverses exist: (B—USV’)"! =B~ !14+B~ U™ !-V'B"'U)"'V'B™ .
A2 (i) A local minimum of a convex differentiable function over a closed convex
set is a global minimum.
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(ii) Hyperplanes and hyperrectangles are closed convex sets and intersection
preserves closedness and convexity.

(iii) If A is positive definite, X’AXx is a convex function over x space.

(iv) If f(x) is a concave (convex) function over a convex set then —f(X) is
convex (concave) respectively over the set.

(v) If f(x) is a concave and positive function over a convex set then 1/f(x) is
convex over the set.

(vi) If f1(x), f2(x) are concave (convex) functions over a convex set then so

(respectively) is f;(X) +/2(x).
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