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1. Basic properties of infinitely divisible distributions. Let Fy(x) = P[Y < x] be
an infinitely divisible probability distribution function. Its characteristic function
fy(u) = Ee™Y has a representation of the form

) aur [* (. iux
fr(w) = exp{tyyu — Y2 +J (e"‘"— 1 —i:—) dMy(x)},
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where yy,0y%, and M, are the Lévy parameters uniquely associated with the
given distribution. The Lévy spectral function My is nondecreasing on (— 00,0)
and (0, ), is asymptotically zero (M(—o0)=0= M(0)), and satisfies the
integrability condition
(294 [10x2dMy(x) < oo.

In [2], P. Hartman and A. Wintner proved that a necessary and sufficient condition
that Fy be continuous is that j‘fm dMy(x) = o0 or ay% > 0. Howard G. Tucker in
[4] and M. Fisz and V. S. Varadarajan in [1] have shown that a sufficient condition
for Fy to be absolutely continuous is that j"_“w dM,(x) = oo, where M, denotes the
absolutely continuous component of My.

We shall show that the distribution functions associated with certain non-
negative infinitely divisible random variables are continuous if and only if they are
continuous at their first rise.

2. Superposition of Brownian motion onto an infinitely divisible random variable.
Let {W(t)/te[0, 0)} be a standard Brownian motion; i.e. a separable differential
process with sample paths that are almost surely continuous and such that
LW()) =40, t). Let X be a nonnegative infinitely divisible random variable
that is independent of {W(r)}. The Lévy spectral function My associated with X
vanishes on the negative half-axis and we assume that it satisfies the stronger
integrability condition
(1) [16xdMy(x) < .

Consequently, the characteristic function of X can be written in the form
fx(u) = exp {iyx u+[§ (" —1) dMx(x)},
where yy = 0. The superposition ¥ = W(X) also has an infinitely divisible distri-
bution. We have shown in [3] (more general results appear in [3] and [5]) that
Y = W(X) has Lévy parameters yy = 0, 64> = 7y, and
My(x) = [, [ 2nt)" exp {— y?/2t} dMx(1) dy, x<0
= _My(_x), x>0.
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We now note that My is symmetric, absolutely continuous, and My(+0) =
IMy(+0). Thus (2, dMy(x) = oo if and only if [¥dMy(x) =0 and we have
proved

THEOREM 1. Let X be a nonnegative infinitely divisible random variable that is
independent of {W(t)} and has a Lévy spectral function satisfying (1). Then the
following statements are equivalent:

() W(X) has an absolutely continuous distribution.
(ii) W(X) has a continuous distribution.
(ii) X has a continuous distribution or yy > 0.

Note that (iii) would imply that the distribution of X is continuous at the origin.

3. Superposition of Brownian motion onto a nonnegative random variable. Let X
be any nonnegative random variable that is independent of {#(¢)}. The super-
position W(X) has characteristic function

Jwoow) = ,[30 e ¥ dF (1)

The Helly-Bray Theorem implies that if (X, is a sequence of random variables
independent of {W(¢)} and such that X, >4 X, then W(X,) -, W(X). We now
find the distribution function of such a superposition.

THEOREM 2. Let X be a nonnegative random variable that is independent of { W(t)}.
Then

Fy(x) = P[X = 0]+[3 [ ., 2ny) "t e™"*/** dtdF x(y), x>0
= [& 2w Q@ny) te > d1dF x(y), x <0.
Proor. It suffices to outline the proof for x > 0. Set
>k

X" = O'I[x=o]+ Z
k

) on Tyw-1y2n<xsksam -

Then
Fyx(x) = P[W(X,) £ x]
= P[X = 0]+ %, P[W(k/2") £ x]- P[X, = k/2"]
=P[X =0]+)2, [, (2nk/2") 2 e~ 122" gt P[ X, = k[2"]
= P[X = 0]+ [*,, (2ny) *e /> dtdFy (y).

Since X, | X, an application of the Helly-Bray Theorem to the last expression
completes our proof.

Since the Lebesgue Dominated Convergence Theorem allows us to take limits
inside, we immediately have

COROLLARY 1. Let X be a nonnegative random variable independent of {W(t)}.
Then Fy xy(x) is continuous at all x # 0. Fyx)(X) is continuous at x = 0 if and only
if P[X =0] =0, i.e., Fy takes no jump at the origin.
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Now suppose X* is a nonnegative infinitely divisible random variable with
Lévy spectral function satisfying (1). We assume we have a copy that is independent
of {W(1)}. Let y = inf {x: Fy.(x) > 0} be the first rise of the distribution of X*.
Set X = X* —y. We note that yy = 0, that X has continuous distribution if and only
if X* has continuous distribution, and that Fy(x) is continuous at the origin if and
only if Fy«(x) is continuous at x = y. Applying Theorem 1, we see that X is con-
tinuous if and only if W(X) is continuous. Corollary 1 implies that the latter con-
dition is equivalent to Fy(x) being continuous at the origin. This completes the
proof of

COROLLARY 2. Let X be any nonnegative infinitely divisible random variable with
Lévy spectral function satisfying (1). Then the distribution of X is continuous if and
only if it is continuous at its first rise.
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