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ON THE NONEXISTENCE OF A THREE SERIES CONDITION
FOR SERIES OF NONINDEPENDENT RANDOM VARIABLES'!

By DAvID GILAT?

University of California, Berkeley

As is well known (see, for example, page 148 of [1]), if the series of conditional
means u, and the series of conditional variances g, of a series of uniformly
bounded, real-valued random variables X, converge almost surely, then so does
> X,. In a lecture, Aryeh Dvoretzky presented an example of a convergent series
Y X, of uniformly bounded variables for which )" u,and )" ¢, diverge almost surely.

Of course y, and ¢, refer to the conditional expectation and conditional variance
of X, given X,, -, X,_,, except that u, and ¢, are unconditional.

For Dvoretzky’s example, let {S,} be the sequence of independent random
variables with

P{S,=n"*} =1=P{S,= —n"%} for n21,
let S, =0, and let X, = S,—S,-, forn=1.

It is natural to ask: Is there some condition on the p, and a,* of a series of uniformly
bounded random variables Y X,, which is necessary and sufficient for ) X, to converge
almost surely?

The purpose of this note is to answer this query in the negative and in a rather
strong sense.

Let Y, = S,+S,-, where the S, are the same as were used to define X, and
verify these two facts:

(i) )Y, diverges almost surely;

(ii) The vector-valued sequence (u,, 6,%) associated with the Y,-process has the
same finite dimensional distributions as does the (u,, 6,%)-sequence associated with
the X,-process.

Since, in view of (ii), the Y,-process has essentially the same first and second
conditional moments as does the X,-process, and yet Y, diverges whereas y X,
converges, the answer to the query above is clearly “no”.
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