ON THE NONEXISTENCE OF A THREE SERIES CONDITION FOR SERIES OF NONINDEPENDENT RANDOM VARIABLES 1 ## By David Gilat² University of California, Berkeley As is well known (see, for example, page 148 of [1]), if the series of conditional means μ_n and the series of conditional variances σ_n^2 of a series of uniformly bounded, real-valued random variables X_n converge almost surely, then so does $\sum X_n$. In a lecture, Aryeh Dvoretzky presented an example of a convergent series $\sum X_n$ of uniformly bounded variables for which $\sum \mu_n$ and $\sum \sigma_n^2$ diverge almost surely. Of course μ_n and σ_n^2 refer to the conditional expectation and conditional variance of X_n given X_1, \dots, X_{n-1} , except that μ_1 and σ_1^2 are unconditional. For Dvoretzky's example, let $\{S_n\}$ be the sequence of independent random variables with $$P\{S_n = n^{-\frac{1}{2}}\} = \frac{1}{2} = P\{S_n = -n^{-\frac{1}{2}}\}\$$ for $n \ge 1$, let $S_0 \equiv 0$, and let $X_n = S_n - S_{n-1}$ for $n \ge 1$. It is natural to ask: Is there some condition on the μ_n and σ_n^2 of a series of uniformly bounded random variables $\sum X_n$, which is necessary and sufficient for $\sum X_n$ to converge almost surely? The purpose of this note is to answer this query in the negative and in a rather strong sense. Let $Y_n = S_n + S_{n-1}$, where the S_n are the same as were used to define X_n , and verify these two facts: - (i) $\sum Y_n$ diverges almost surely; - (ii) The vector-valued sequence (μ_n, σ_n^2) associated with the Y_n -process has the same finite dimensional distributions as does the (μ_n, σ_n^2) -sequence associated with the X_n -process. Since, in view of (ii), the Y_n -process has essentially the same first and second conditional moments as does the X_n -process, and yet $\sum Y_n$ diverges whereas $\sum X_n$ converges, the answer to the query above is clearly "no". Acknowledgment. I am grateful to my teacher Lester Dubins for a suggestion as to the possibility of constructing such an example as well as for help in its exposition. ## REFERENCE [1] NEVEU, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San Francisco. Received July 2, 1970. ¹ This paper is part of the author's doctoral dissertation at the University of California, Berkeley, written under the guidance of Professor Lester E. Dubins. Prepared with the partial support of Army Research Office Grant DA-ARO-D-31-124-G816. ² Presently at Columbia University.