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A FUNCTIONAL CENTRAL LIMIT THEOREM FOR
k-DIMENSIONAL RENEWAL THEORY'
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1. Introduction. Let {X,, n > 1} be a sequence of random vectors in R* defined
on some probability triple (Q, %, P) and set S, =) 7., X;forn =1, and S, = 0.
Let #:R¥ - [0, o) be a function with continuous first partial derivatives, such that
h(x) > 0 for x # 0, xeR¥; assume furthermore that 4 is homogeneous of degree
one (i.e., for all xeR¥, A = 0, A(Ax) = Ah(x)). We define the associated point process
{M():t 20} by M(t)=min{n2=1:h(S,) > t}, where M(t) = oo if no such n
exists.

The main result of this paper is a functional central limit theorem (invariance
principle) for the process {M(¢):t =2 0}. Section 2 is devoted to two preliminary
lemmas and the theorem is proved in Section 3.

The ordinary central limit theorem for {M(¢):¢# = 0} was given by Farrell [4].
Bickel and Yahav [1] discuss renewal theory for which 4 is any norm giving the
Euclidean topology in R*. Related material on k-dimensional renewal theory may
be found in Farrell [3] and Stam [5].

Our analysis shall be carried out in DI[0, 1], the space of right continuous
functions on [0, 1] having left limits and endowed with the Skorohod metric d.
For an account of the weak convergence of probability measures on D[0, 1] the
reader is referred to the book by Billingsley (1968). We shall use = to denote weak
convergence of probability measures. When stochastic processes or ordinary
random variables appear in such an expression we mean the measures induced by
these functions. Let C[0, 1] =C denote the space of continuous functions on [0, 1]
and p the uniform metric on C and D; C* = C*[0, 1] and D* = D"[0, 1] will denote
the product spaces of k copies of C and D respectively, with the appropriate product
topologies.

2. Preliminaries. Let peR¥, u # 0 and define the random functions Y,, H, in D*
and D induced by the sequence of partial sums {S,, n = 1} as follows

Y,(t) = [S[,,,]—nty]/n*
H,(t) = [1(Spuy) — nth(p)]/n*.
Let - denote the ordinary scalar product in R* and Vh = (0h/dx,, - - -, Oh/dx,).

Note that V4 is a homogeneous function of degree 0, in particular VA(tu) = Vh(y)
for all te]0, 1].

LEMMA 1. If Y,= & in D* then H,=Vh(u)-& in D, where Vh(u)-& is the scalar
product of the process & and the constant vector Vh(u).
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Proor. For each weQ we have
H,(t) = [h(n{Y,(0)/n* + tg}) — nth(u)]n*
= [nh({Y,(t)/n*+tu})—nth(u)]/n* by the homogeneity of h.
Then, by Taylor’s theorem, we obtain
H(t) = n*Th(tm)+ Vh(tu+ 0,0 Y,0/n*) - Y(0)/n* — h(tp)],
where 0 < 0,(7) £ 1. This reduces to
H,(t) = Vh(tp+0,(D)Y,(1)[n?) - Y,(1).

Because Y,= & we get Vh(u)- Y, = Vh(p)- & by the continuous mapping theorem;
so by Theorem 4.1 of [2] to complete the proof of the lemma it is sufficient to show
that p(H,, VhA(u)- Y,)=0 as n— co since this implies that d(H,,Vh(u)-Y,)=>0.
Observe that from the above

p(Hm Vh(”) Yn) = SUPp<r<1 |Hn(t)_'Vh(”) Yn(t)l
= SUPo<r<1 I(f,,(t)—Vh(ﬂ))‘ Yn(t)la

where f,(t) = Vh(tp+0,(t)Y,(t)/n?). Let ||-|| be the usual Euclidean norm on R*
and define Q a compact subset of R* as O = {x:||x—1u|| < K, for some [0, 1]}
where K is some large positive constant. Since V# is uniformly continuous on Q,
given ¢ > 0 there exists § > 0 such that for ||x|| < 6 we have supo<, <, ||VA(tp+x)—
Vh(ty)|| < ¢*. Hence there is a sequence of positive real numbers, {a,:n = 1}, with
a,—»0 as n— oo such that for ||x||<dn™* we have supyc,<;||VA(tp+x)—
Vh(tp)|| < e*a,. Now we define 4,, B,, C,eF as

Ay = {p(H,, Vi) Y,) < ¢}
B, = {supo <<, ””_%Yn(t)” <0}
C, = {supo<,<1 ”an Yn(t)” <&t}

Because Y, = ¢ it follows that n~#Y,=-0 and a@,Y, =0 as n — oo, hence P(B,) — 1
and P(C,) —» 1 asn — oo. Also from the above

Bnc{sup0§t§1 “fn(t)_Vh(”)” é Sian}

and so B,nC,< A,, which implies that P(4,) — 1 and hence p(H,, Vh(u)- Y,)=0,
completing the proof.
Next we define random functions 7, in D by

T,(t) = [H(Spsiay) — M(nt)h(p)]/n*
and choose a constant ¢ > 0 such that ci(u) > 1.

LEMMA 2. If Y, =& and P{Ee C*} = 1 then T,= h(u) ™ *(Vh(n) - &).
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PRrOOF. The proof follows closely that of Theorem 17.3 in Billingsley (1968) and
involves a random change of time in the functions H,. We first show that

2.1 sup0§0§u|1\/l(v)—v/h(;¢)|/u =0
as u — oo.
Since from Lemma 1 H,=>Vh(pu)- & we have

(2.2) SUPo <, <5 |1(Spy) — th(w)|js =0 as §— 0.
But M(v) > t implies A(S,;) < v and hence supg <, <, (M(v)—v/h(p))/u > & implies
(2.3) SUDo <sr<u(e+h(m -1 lh(sm)“ th(l‘)| 2 h(p)ue,

furthermore M(v) < t implies there exists an s, 0 < s < r with A(S;,;) > v and hence
fore < h(p)~!
(2.4) infy <, <, (M(v)—vjh(w))/u < —¢ implies
SUPo <t <u(h(m)~'—¢) ih(S[r]) - th(l‘)| = h(pu)ue.
By (2.2) the probabilities of (2.3) and (2.4) go to 0 as v — oo which proves (2.1).
Now define random functions @, in D[0, 1] by
o (1) = M(nt)/cn if M(flt)/cn <1,
1 otherwise;

and define ® by ®(¢) = t/ch(p), 0 < t £ 1. Then ®e CnD,, where D, consists of
those functions ¢ of D which satisfy 0 < ¢(¢) £ 1 for all z€[0, 1] and are non-
decreasing. We will use the result of Billingsley ((1968) page 145), that if x,, ¢, are
random functions in D and D, respectively, (x,, ¢,)= (x, ¢) in D* and P{xeC} =
P{¢peC} =1 then x,0¢d,= xo¢d, where o denotes the composition of functions.

We have @, = ®from (2.1), H,,= Vh(p) - £ where H_,(t) = [A(S,,)-cnth(p)]/(cn)?.
Also P{®e C} = P{Vh(u)- £ C} = 1s0by Theorem 4.4 of Billingsley (1968) and the
remarks above H,, o ®,=Vh(p) - (£ o ®); however, H.,o®, = T,/c*, if M(nt)/cn £ 1.
Since P{M(n)/cn <1} > 1 we have that T,= c*Vhi(u)-(£o®). Finally, ¥,= ¢
implies Yy, = & and hence Y, = (ch(p) )} ¥ opupn o @ = (ch(p) )*& o ®, which shows
that & has the same distribution as (ch(u))*€ 0 ®, so the result follows.

3. The main result. Define random functions M, in D by
M,(t) = [M(nt)—nt/h(n)]/n*;
we can now prove our main result.
THEOREM. Under the conditions of Le'mma 2
M, = —h(w)"*(Vh(p)- &).
PROOF.
T,(t) = [nt— M(nt)h(p)]/n*
2 [1(Spqmy— 1) — M(nt)h(p)]/n*
= T() = [M(S(m)) = H(Spsmy- 1)]im*.
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By Lemma 2 T, = h(u)~*(Vh(u) - &), so to complete the proof it is sufficient to show
that supo << [A(Smeun) —A(Spmemn-1)|/n* =0 as n —» co. By the homogeneity of A
and Taylor’s theorem,

[h(SM(m)) - h(SM(nt) - 1)]/'1%
= ["h({SM(m) -1+ XM(nt)}/n)_ "h(SM(m) - l/”)]//"%
= n_*XM(nt) “VA{Smemy -1 + Wa(OXpgnry } /1)

where 0 '< ,(¢) < 1. Because of the problem of the measurability of ,(¢) we first
show that supg < <y |n™ Xy  VA(Sp(n/n)| = 0. Using the Schwarz inequality
we obtain

SUPo<r<1 |n_%XM(m) : Vh(SM(nt)/n)i
= SUPg<r<i ||n_%XM(m)|| SUPo<r<1 ”Vh(SM(nt)/n)H~

If ®, and ® are as defined in the proof of Lemma 2 then with the same random
change of time argument we have that Y, o ®,= £ @, where Y, 0 ®,(¢) = [Sp)—
M(nt)p)/(cn)*. Define the functional g: D* — Rby g(x) = supo<, <, ||x(1) —x(1-)||.9
is measurable and continuous at xe C*. Since P{€o®e C*} = 1, applying the con-
tinuous mapping theorem (Billingsley (1968) Theorem 5.1) we get g(Y,,o®,)=
g(éo®) = 0 which implies that supg, <y ||n~*Xpuy||= 0. Let fe D* be given by
f(t) = tufor t€[0, 1], then since Y, = & we have S;,.,/n=fand by a random change
of time Sy(,.,/n=>h(p)™'f.
Now using the continuous mapping theorem once more we have

SUPo<r<i ”Vh(SM(m)/”)” =SUPo<r<i |th(h(I‘)_ lf(t))”,

a constant. Finally, using an argument similar to that in the proof of Lemma 1 it is
easily shown that

SUPo<r<1 |" _*XM(,.:) . (Vh({SM(m)— i+ ‘/’n(t)xM(nt)}/n) - V”(S,mm)/n))l =0,

which completes the proof.

Notice that when the {X,, n > 1} are independent, identically distributed random
vectors with EX; = u and positive definite covariance matrix X, then & is a k-
dimensional Brownian motion (with dependent components); but in this case —¢&
has the same distribution as € so the conclusion of the theorem may be replaced by

M, = h(w) " (Vh(p)- §).
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