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CONVERGENCE OF CONDITIONAL EXPECTATIONS

By P. GANSSLER AND J. PFANZAGL

University of Cologne
0. Introduction. Let (X, #) be a measurable space and P, |37" ,n=0,1,2,---,a
family of probability measures such that (P,), . converges to P, in some appro-
priate sense. Let # =% be an arbitrary sub-o-field. For feN;>,% (X, Z#, P,)
let p,(f; -) denote a conditional expectation of f relative to P,, given &%,. Our
problem is to give sufficient conditions under which (p,(f, *)),n converges to
DPo(f, +) in some sense.

1. The results. Though the convergence of conditional expectations has been
treated by a number of authors (see references) and various sufficient conditions
have been given, the following rather natural condition seems to have been over-
looked.

Let u|# be a o-finite measure dominating P,|# for alln =0, 1,2,---. Let h,
be a density of P, |# with respect to u|.# and h,, a density of P,| %, with respect
to u|F,.

THEOREM 1. Assume that
(1) (h,),cn converges to hy p-a.e.
(1) (hon)s e n cOnverges to hy, p-a.e.

Then

€)) For abitrary versions of the conditional expectations: (p,(f, scn
converges to py(f, *) Py-a.e. for any F-measurable, bounded function f.

2 If a regular conditional probability relative to p, given %, exists, then
there exists a regular conditional probability p,* lﬁ*’ x X relative to P,, given &,
such that (Supy ¢ & | pa*(A, ) —po*(A, *)| )yen converges to 0 Py-a.e.

3) If, in addition, & is countably generated, the uniform convergence asserted
in (2) holds for all regular conditional probabilities p, |5*' x X relative to P,, given & ,.

We remark that the conditions on the densities depend neither on the particular
dominating measure p nor on the particular versions chosen. Hence w.l.g. u(X) = 1.

PrOOF. (i) Let B, = {xeX:hy,(x) >0} and g,(x) = ((h(x)/ho,(x))15,(x)+
1,(x),n=0,1,2, -, (where B, denotes the complementary set of B, in X). Since
P,(B,) =0, we have h,(x) = 0 for y-a.a. xeB, and therefore honq, = h, p-a.e. For
geZ (X, F, 1) let w(g, -)eZL (X, F,, u) denote a conditional expectation of
g relative to p, given Fo. As u(h,, -) is a density of P, |, with respect to u|Z,,
we have ho, = u(h,, ) p-a.e. and therefore u(q,, -) = 1 p-a.e. This implies in parti-
cular that u(g,) = 1 so that all functions g, 1 are p-integrable. (Here and in the

following, u(g) means [ g(&) u(d¢).)
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316 P. GANSSLER AND J. PFANZAGL

We shall show that u(q,f, *) is a conditional expectation of f relative to P,
given Z,. As u(q,f, *) is & ,-measurable by definition, this follows immediately
from

Po(1(qnf, )14) = p(hon i(4nfs )1 4)
= pu(uChon 4nfs I14) = p(u(hnf, - )14)
=pu(h,f1,)=P,(f1,) forevery Ae%,.

(ii) Now we shall show that (g,15),en = 90 15, p-a.e. Let N denote the u-null
set comprising all those xeX for which (4,(x)),cn = #o(x) or (o, (X))pen —
hoo(x) fails to be true. xe NnB, implies hg,(x) >0 and therefore g,(x)=
hy(x)/ho,(x) for all sufficiently large n, whence lim, .y ¢,(x) 15,(x) = ho(x)/hoo(X) =
qo(x) 15,(x). If x€ By, lim, ¢  g,(x) 15,(x) = 0 = go(x) 15,(x).

(iii) Now we shall show that (u(|g,—qo|, *))sen cOnverges to 0 Py-a.e. The proof
is similar to the proof of Scheffé’s Lemma (see Lehmann, page 352).

We have 0 < (g, 15,— 90 15,)” = go 15,- Hence (¢ 15,— G0 15)) Inen =0 p-ace.
implies (cf. Doob, pages 23-24 CE;)

(4) (.u(qn 1Bo—qO ]Bu)'—’ : ))ne N 0 p-a.e.

As (g, lg,— 9o 130)+ = (g, lg,— 4o 1B0)+(qn lg,—qo 1), we have u((q, Ip,—
0150)"s ") = 1((dn 1, =G0 150), )+ (4 15,— 90 1) "), *) p-a.e. Furthermore, for
p-a.a. x€ X: p((gn g, — 90 18,)s X) = 1(qy 1 5o X) — 1(qo 15,5 X) = O (since p(gy, x) =1
for y-a.a. xeX and all n =0, 1, 2, - - ). Hence (4) implies
&) (u((q,15,— g0 1B0)+’ Inen—0 p-ace.

(4) and (5) together imply
(,u(,qn lBo— do 1B0,9 : )ne N 0 u-a.c.
As (|9, 15,— 90 15|, *) = 1(|dn—Go|> *) 1, p-a.e., this implies
(6) (ﬂ(|qn_q0|9.))neN -0 PO'a‘e'
(iv) Let f be an & -measurable, bounded function. Then
|(gnfs )= 1(qofs )| £ 1(|9af —q0f])
é Au(|qn_ qOI, : ) SUDy e x l_/(X)I H-a.c.
implies lim,, . y 4(q,.f; *) = u(qof, *) Po-a.e. This proves (1) for the particular version
P (f, ) = wanf )

(v) To see that (1) holds for arbitrary versions, we proceed as follows: Let
p(fi+), n=0,1,2,---, be arbitrary versions of the conditional expectations of f
relative to P, given #,. Let 4, = {xe X: p,/(f; x) # p,(f,X)}, n=0,1,2,---. We
have 4,e %, and P,(4,)=0,n=0,1,2, -, whence Py(limsup,.n(4,U4,)) =0

by Lemma 1 (see below). Hence for P,-a.a. xe X there exists n(x)eN such
that py(f, x) = po'(f; x) and p,(f, x) = p,’(f, x) for all n = n(x). This implies (1).
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(vi) If |.9*' x X is a regular conditional probability relative to u, given &, and
if u(g, ) = [ 9(&) i(d¢, -), then

I/'t(qn-lA’ : )_/'t(qO 1A’ . )I = Au(lqn 1A_qO 1AI: ) =< ﬂ(lqn_qol’ : )
holds everywhere, whence
SUP4 e & [1(gn L) = 1(do g )| £ 1| gn—3o|>*)-

As for p-a.a. xe X u(q,, x) =1,n=0,1,2, - and as u dominates P,, there is a
Py-null set N such that u(g,, x) =1 for xeN, n=0,1,2,---. Then (6) implies
(2) for

pn*(A’ x) = ,u(qn 1A9 X) if XEN
= P,(4) if xeN.

(vi)) Forn=0,1,2, - let p, |37 x X be an arbitrary regular version of the con-
ditional probability relative to P,, given & . If & is countably generated, there
exists a countable algebra, say #, generating &.

Forn=0,1,2, - let

Mn = UAE.#’{xex:pn(A’ x) 7& pn*(A’ x)}

We have M, €%, and P(M,)=0 for n=0,1,2,---. According to Lemma I
this implies Py(lim sup, .y (M,uM,)) = 0. As

{XEX: SUD4 e |pn(A’ x)_pO(A’x)| # SUP4ew Ipn*(A’ x)—Po*(A’ X)I}
< UAe«#’ {XEXI IPn(A9x)_p0(A’x)l # |pn(A,x)_pO*(A’x)I}CMnUMO9
the relation x ¢lim sup, .y (M, uM,) implies for all n = n(x):
(7) SUP4 e Ipn(Aa x)—po(A,x)| =SUPg e Ipn*(A9 x)_pO*(A’x)I‘

As p, and p,* are regular, the suprema over # equal the suprema over %. (This
follows easily from the approximation theorem. See in particular Halmos, page 58,
Problem 8.) Hence (7) implies

SUPges Ipn(A’ x)— po(4, x)l =SUPyes Ipn*(A’ x)—po*(4, x)|
forall x¢limsup,.n(M,uM,) andall nZ=n(x).
Together with (2) this implies ,
lim,, .  SUP, ¢ & | Pu(A, X)— po(4, x)] = 0 for Py-aa. xeX.

Remark. If p,* |9" xX,n=0,1,2, -, are regular versions of the conditional
probability relative to P,, given &, then p,(f, x) = [ /(&) p,*(d¢, x) is a conditional
expectation of frelative to P,, given &, (see Doob, page 27, Theorem 9.1). If (2) of
Theorem 1 holds for p,*, then

lilnneN supfeif Ipn(.f’ x)_Po(f, X)I = O fOI' Po'a-a- XGX
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for any uniformly bounded set § of % -measurable functions. This follows
immediately from

SUPseg Ipn(f’ x)— po(f, x)| = SUPse 7 IPn*(A, x)—po*(4, x)'.

The same remark holds for Theorem 2 and Theorem 3.

The following Example 1 shows that (cf. (vi) in the proof of Theorem 1) it is not
true in general that for all regular conditional probabilities i |9" x X relative to pu,
given &, and all densities 4 of some probability measure P | & with respect
tou|#

fa) ia(dy,x) =1 forall xeX,
h(x)
where q(x) = Fro(x) Ly e x: howy > 0)(%) + 1y € x: oy < 0)(X)
and ho(x) = [ h(y) fi(dy, x).

ExampLE 1. Let X = [0, 1], & the Borel sets in [0, 1] and u|# the Lebesgue
measure in [0, 1]. Then

(A, x) = 14(x) if xe(0,1],
= LO+HuA)  if x=0

defines a regular conditional probability i |.9‘" x X of u, given F, = Z.
Let P |  be a probability measure such that there exists a density 4 of P | & with
respect to u | F with h(x) > 0 for xe(0, 1] and A(0) = 0. We have u(h) = 1. Hence

ho(x) = [h(y) i(dy,x) = h(x)  if xe(0,1];

=1 if x=0.
Then
q(x) = h(x)[ho(x) = 1 if xe(0,1];
=0 if x=0.
We have
fa(y) i(dy, x) = q(x) = 1 if xe(0,1];

=1q(0)+iu(g) =% if x=0.

THEOREM 2. Assume that
(1) (hy),en converges to hy p-a.e.

(11) ﬂ(supn eN hn) < oo.
Then assertions (1)-(3) of Theorem 1 hold.

We remark that the condition on the densities depend neither on the particular
dominating measure y nor on the particular versions chosen. Hence w.l.g. u(X) = 1.

Proor. For geZ (X, #, ) let u(g, -)eZ (X, F,, u) denote a conditional
expectation of g relative to u, given #,. Condition (i) together with (ii) implies
(cf. Doob, pages 23-24, CE5)

(:u(hn’ : ))ne N ,u(ho’ * ) ,u-a.e.
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As p(h,, -) is a density of P, [5*' o With respect to u |.97 0> Condition (ii) of Theorem 1
is fulfilled. Hence the assertion follows from Theorem 1.

For the case of parametrized families of probability measures we immediately
obtain from Theorem 2 the following

COROLLARY 1. Let P‘glg" ,3€ 0, be a family of probability measures which is
dominated by a o-finite measure p |97 . Assume that © is endowed with a topology and
that for each 3 € © there exists a density hy of Py |9" with respect to u |.9*' such that
Jforeach 3,€0:

(i) 9 - hy(x) is continuous in 9, for p-almost all xe X (with the exceptional null-
set possibly depending on 9).

(ii) There exist a neighborhood U, of 8 and gy, € (X, F, ) such that for all
e Uy, hy(x) £ gy,(x) for p-almost all xe X.

Let F < F be an arbitrary sub-o-field. Then (3,), .y =30 implies that

®) For arbitrary versions of the conditional expectations: (py (f, * ), n COnverges
to py(f, *) Py,-a.e. for any F-measurable, bounded function f.

) If a reqular conditional probability relative to y, given F o, exists, then there
exists a regular conditional probability pg, |9" x X relative to Py, given ¥, such
that (sup 4. | p3, (4, X) —ps,(4, x)| )ne n converges to 0 Py -a.e.

(10)  If, in addition, & is countably generated, the uniform convergence asserted
in (9) holds for all regular conditional probabilities py |F x X relative to Py,
given & .

The following Example 2 shows that the boundedness of f assumed in (1) of
Theorem 1 and Theorem 2 is essential.

(1) can, however, be extended to cover unbounded functions f, if Condition
(ii) in Theorem 2 is strengthened: By the same techniques it can be shown
that sup,.nh,€Z (X, #, ) implies Pj-a.e. convergence of (p,(f; )ien
to po(f, +) for all feZL (X, F, Po)nZL (X, #,u) (1/p+1/g=1), because then
Sup,en (M f)eL (X, #, 1) so that (i) implies (u(h,f, Naen — ulhof, ) p-ae.
Together with (u(h,, *)), ey = (Ao, - ) p-a.e. this implies the assertion by Lemma 2.

ExaMPLE 2. Let X = {0, 1,2, ---}, # = 2(X) the power set, #, = {J, X}. Let
P,|# be defined by P,{0} = 1—2">" and P,{n} =272" for neN and P,|# by
Py{0} = 1. Let u|F be defined by u{0} = and p{n} =2""*" for neN. Then

h(m)=2(1-2"" if m=0,
=2"0=1 if m=n,
=0 otherwise;
ho(m) =2 if m=0,
=0 otherwise;

are the corresponding densities of P, ].97 with respect to p ]5" ,n=0,1,2,---.
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We have (h,),.n = ho u-a.e. Condition (ii) of Theorem 1 holds trivially (with
ho, =1 for all n=0,1,2,---) and even condition (ii) of Theorem 2 is fulfilled:
#(SupneNhn) = z::=02_2m < 0. HOWCVCI' pn(fO* ) = Pn(fo) = ] # O = PO(fO) =
po(fo, ) for all neN, where f, is the function defined by f,(0) = 0, f,(n) = 2*",
neN.

We remark that Theorem 1 (1) generalizes Theorem 4.4 of Trumbo which asserts
a.e. convergence for particular versions of the conditional expectations for the parti-
cular case of X being a Cartesean product and & being the product of &, and
another o-field.

Example 4.1 in Trumbo shows that condition (i) of Theorem 1 does not imply
condition (ii) and that, furthermore, condition (i) alone is not sufficient to ensure
even the existence of a.e. convergent versions.

The other question is whether, retaining condition (ii) of Theorem 2, condition
(i) can be relaxed. According to Scheffé’s Lemma (see Lehmann, page 351, Lemma
4), a.e. convergence of densities implies convergence of the probability measures
with respect to the supremum-metric (and hence also setwise and—if meaningful—
weak and vague convergence). None of these weaker types of convergence is
sufficient to guarantee a.e. convergence of the conditional expectations. For weak
convergence this follows from an Example in Steck, page 238, for setwise con-
vergence from Example 4.2 in Trumbo. Example 3 shows that not even convergence
with respect to the supremum-metric (equivalently: convergence of densities in
u-mean or u-measure) is sufficient.

Though these weaker types of convergence are not strong enough to imply a.e.
convergence of the conditional expectations, they imply weaker types of convergence
(see Theorem 3).

ExAMPLE 3. Let X =[—1, 1], & the Borel setsin[—1, 1]and A |9" the restriction
of the Lebesgue measure. For any neN let k,eN and /,€{0, 1, -, k,—1} be
such that n =k, (k,—1)2+1,. Let A,=[,k,~", (I,+Dk,” '] and let h(x)=
(1+(sign x) 1,4,(]x[))/2 and ho(x) = }. Let P,|F be the probability measure having
density A, with respect to Alﬁ, n=0,1,2,--. As {h,:n=0,1,2,---} is uni-
formly bounded by the function identically 1, Condition (ii) of Theorem 2 is
fulfilled. Furthermore, (P,),.n — Po With respect to the supremum-metric. Let
F , be the sub-o-field consisting of all sets in & which are symmetric about 0. It
is easy to check that foreachn=0,1, 2, ---

Pr(1jo,13 %) = hn(lxl)

is a conditional expectation of 1y ,; relative to P, given %, However
(Po(1;0,17> *))nen converges on a A-null set only.

The following theorem generalizes and extends Satz (2.9) of Rhefus.

THEOREM 3. Assume that
(i) (h,),cn converges to hy in pu-measure. Then
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(1 For arbitrary versions of the conditional expectations: (p,(f, )nen
converges to po(f, +) in Py-measure for any F-measurable, bounded function f.

(12) If F is countably generated and if a regular conditional probability relative
to p, given F, exists, then (Sup, g | (A4, x)—po(A4, x)l),,eN converges to 0 in
Py-measure for all regular conditional probabilities p, | F x X relative to P,, given F ,.

We remark that the condition of the densities depends neither on the particular
dominating measure y nor on the particular versions chosen. Hence w.l.g. u(X) = 1.

We further remark that by Scheffé’s Lemma convergence of the densities in p-
measure is equivalent to convergence of the measures with respect to the supremum-
metric.

As fis bounded, p,(f, -) is bounded P,-a.e. For versions which are bounded
everywhere, convergence in Py-measure implies convergence in P,-mean (see
Halmos, page 110, Theorem D).

PrOOF. By Scheffé’s Lemma, (), — ho in p-measure implies (|, — ho|), e n—
0 in p-mean. Hence (u(|h,—hol|, ))yen—0 in p-mean and therefore
1|y —hol, - Dnen = O in p-measure. As |u(h,, -)—pulho, )| < p|hy—ho|, ) p-a.e.,
this implies that (u(h,, -)),.n converges to u(he, *) in p-measure. Let Noc=N be
an arbitrary infinite subset and let N, =N, be such that (4,),.n, converges to
ho p-a.e. and (u(h,, *)), o, converges to u(ho, *) p-a.e. Since u(h,, ) is a density
of P,| #, with respect to u|%,, the assumptions of Theorem 1 are fulfilled with
N replaced by N,. Theorem 1 (1) therefore implies that (p,(f, :)),cn, converges to
po(f; *) Py-a.e. Hence any subsequence of (p,(f,*)),cn contains a subsequence
converging to po(f, ) Py-a.e. This, however, implies that (p,(f, :)),.n converges
to po(f, +) in Py-measure. This proves (11).

Let p,,*l FxXn=0,1,2,- - be defined as in part (vi) of the proof of Theorem 1.
As the parts (ii) and (iii) of the proof of Theorem 1 run through with N replaced
by N,, one obtains

(13) lim,, ¢, SUP4 ¢ 5 | P *(4, %) — po*(4,%)| = 0 for Py-a.a. xeX.

As part (vii) of the proof of Theorem 1 also holds in the present case, we obtain
together with (13)

lim, ¢y, SUP 4 5 | Pa(4, X) — po(4,%)| = 0 for Pja.a. xeX

for all regular conditional probabilities p, If x X. As & is assumed to be countably
generated, the functions S,(x) = sup,. s |p.(4, X) —po(4, x)|, neN,, are F,-
measurable, since the suprema over & equal the suprema over #, where # is any
countable algebra generating &.

Hence any subsequence of (S,),.n contains a subsequence converging to 0
Py-a.e. This, however, implies that (S,),.n converges to 0 in P,-measure. This
proves (12).

We remark that Example 2 also shows that the boundedness assumed for f in
assertion (11) of Theorem 3 is essential. Example (2.1) of Rhefus shows that setwise
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convergence of the probability measures is not sufficient to guarantee convergence
of conditional expectations in any reasonable sense, in particular: setwise
convergence of the probability measures is not sufficient to guarantee convergence
of conditional expectations in P,-measure.

For the sake of completeness we shall state another theorem which follows easily
from Lemma 2. This theorem generalizes Theorem 5.6 of Trumbo (mainly by
eliminating Trumbo’s assumption that &, is countably generated).

THEOREM 4. Let f: X — [0, 1] be F-measurable. Assume that the following
condition is fulfilled for g = fand g = 1—f:

(14) (Pu(g14)/Po(gl g))nen — 1 uniformly on the class of all AgeF, with
Py(gl,,) > 0.

Then for arbitrary versions of the conditional expectations, (p,(f, *)),<w cOnverges
topo(_f; * ) Po'a.e.

If P,|F < Po|F for all neN, it suffices to require (14) for g = fand g = 1.

PROOF. Let u|# be a probability measure dominating P,|#,n=01,2,-
and let 4, be a density of P, |3°' with respect to u |9" . We shall show that the assump-
tions of Lemma 2 are fulfilled for /. This then immediately implies the assertion.

We remark that (14) for g = fand g = 1 —f implies that (14) is also fulfilled for
g=1. As Pugl,) = u(u(h,g,)1,,), the assumption of Lemma 3 with g, =
wh,g,+), n=0,1,2,---, is fulfilled for g=f, g = 1—f and g = 1. Hence there
exists a u-null set N,eF, such that

(15)  xeN, and u(hog,x) >0 implies (u(h,g,x)),cn — H(hog,x).
Applied for g = f this yields
(u(hof,xX)nen = u(hof,x) forall xeN, with pu(hof,x)> 0.

To obtain convergence also in the case xe N, u(h, f, x) = 0, we have to use that
(o f, x) = 0 and p(ho, x) > 0 together imply u(ho(1—f), x) > 0 for p-a.a. xeX.
Hence (by (15) applied for g = 1—f and g = 1) there exists a p-null set No>N ¢
such that xe Ny, u(hof, x) = 0 and p(hy, x) > 0 implies

(uChys X)n ey = 1ho, x)  and  (u(hy(1=1), X))yen = ulho(1 ).

Both relations together imply (u(h,f, X)),cn = u(hof, x) for all xeN, with
(hof, x) = 0 and p(hy, x) >0, where N, >N, and Py(N,) = 0. Hence we obtain
for all xe N, with u(h,, x) > 0,

(uChys X)wens = pho,x) and  (u(hy f, %)) en = uho f, X)-

As Po{xe Ny: u(hy, x) > 0} = Po{xeX: u(hy, x) > 0} = 1, this implies that the
assumptions of Lemma 2 are fulfilled for f.

If P, |5" <P, |37, we have u(h,f, -) = O p-a.e. on the set {xeX: u(hof, x) = 0}.
Hence in this case (14) for g = 1 —f may be omitted.

The following corollary generalizes Satz (4.12) of Rhefus which refers to
separable metric spaces.
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COROLLARY 2. Assume that condition (14) is fulfilled for all functions g = 1,
Be#. Then for any F-measurable, bounded function f and all versions of the
conditional expectations

(Pn(f’ : ))ne N pO(f’ ) Po'a"e‘

Proor. It suffices to prove the corollary for functions f: X — [0, 1]. It is a matter
of routine to show that (14) for all 15, Be &, implies (14) for all bounded non-
negative #-measurable functions g, hence in particular for g =fand g = 1—f.
Thus the assertion follows from Theorem 4.

We remark that Example 2 also shows that the boundedness assumed for fin
Corollary 2 is essential. (In this case (14) is fulfilled for every g = 1;, Be%; but
the conditional expectations do not converge a.e.)

2. A few lemmas.

LemMA 1. Let u|F, be a o-finite measure dominating P,|F o, n=0,1,2,--.
Let hq, be a density of P,|F , with respect to u| F . Assume that

(16) hoo < liminf, _ y by, Po-a.e.

Then Py(limsup,.n(4,040)) =0 for all sequences (A,),=0.1.2,... With A,€F,
and P,(A,) =0 foralln=0,1,2,---.

Proor. Let H,={xeX:h,(x)=0}. Then xelimsup,.yH, implies
liminf, .y Agu(x) = 0.

As  hoo(x) £ liminf, (Ao, (x) Po-ae., we have hyo(x)=0 for Py-a.a.
xelimsup, .y H, whence Pylimsup,.nH,)=0. Let (4,),=0,1,2,... be a
sequence of sets in &, with P,(4,) =0 for n=0,1,2,++-. Then u(4,—H,) =0
and therefore Py(4,—H,) =0 for all n=0,1,2,---. As Py(limsup, .y H,) =0,
this implies Py(limsup, .y (4,04,)) = 0.

LEMMA 2. Let ju|F be a probability measure dominating P,|F forn =0, 1,2, --.
If for some F-measurable, bounded function f

(#(hnf’ * ))n eN l‘(hof, : ) PO'a~e'

(ﬂ(hm : ))n eN ”(hOa * ) Po‘a'e-

then (p,(f, Nuen—Po(fs*) Po-a.e. for arbitrary versions of the conditional
expectations.

and if, furthermore,

PRrOOF. (i) At first we shall show that

p*(fs x) = p(h f, X)Iu(hy ) if p(h,,x) >0,
=0 otherwise; n=0,1,2,---

is a conditional expectation of f relative to P,, given & ,.
As p,*(f, +) is obviously & ,-measurable, it remains to be shown that

(17) Pn(pn*(f, * ) 1,40) = P,,(fle) for all AOG .?0.
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As u(f; )1, = p(f1,,, *) p-a.e. and as u(h,, -) is a density of P,|#, with respect
to u|F,, (17) follows immediately. This proves that p,*(f,-) is a conditional
expectation.

(ii) Now we shall show that the assertion holds for the particular versions
2.*¥(f,), n=0,1,2,---. Let N denote the Py-null set comprising all those xe X
for which (u(h,, x)),cn = t(ho, x) or (u(h,f; X))sen = #lhof, x) fails to be true.
xe N and u(hg, x) > Otogetherimply p,*(f, x) = p(h, f, x)/u(h,, x) for all sufficiently
large n, whence lim,, .y p,*(f, X) = po*(f; x). As Po(N) = 1, we have

Py{xeN: p(hy, x) > 0} = Po{xe X: u(hy, x) >0} = 1.

(iii) Finally we shall show that the assertion holds for arbitrary versions
pf,*), n=0,1,2,---. This, however, follows immediately from Lemma 1
applied for ko, = pu(h,, -) and 4, = {xeX: p,*(f, x) # p,(f,x)},n=10,1,2,---. We
have A,e#, and P,(A4,)=0,n=0,1,2, -+, whence Py(limsup, .y (4,u4,)) =0.
Hence for Py-a.a. xeX there exists n(x)eN such that py(f, x) = po*(f, x) and
S, x) = p,*(f, x) for all n = n(x). This implies the assertion.

LemMA 3. Let g, be F g-measurable forn =0, 1,2, --- . If

(ﬂ(gn 140)/#(!]0 le))n € N—)l
uniformly on the class of all AgeF, with u(gol,,) >0, then (g,(x)/go(X))sen—
1 p-a.e. uniformly on the sets of all xe X with g,(x) > 0.

PROOF. Let Ay = {x€X: go(x) > 0}, a, =sup {u(g,14,): Ao€F 0, 1(go1la,) >
0} and B, = p-ess.sup {gu(x)/go(x): xedy}. For r<p, let A,,={xedy:
(94(x)/go(x)) > r}. By definition of f,, we have u(4,,) >0. As go(x) >0 for
x€Ad,,, this implies u(go1l,,,) >0. Hence r < (u(g,l4,,)/(go14,,) < &, As
r < B, was arbitrary, this implies §, < «,. By assumption, lim, .y, = 1. Hence
limsup, .y, = 1. For s > B, let B, ; = {xe A4, (9,(x)/go(x)) < s}. By definition
of B, we have u(B, ) = 1. As go(x) > 0 for xeB,, this implies u(go 1y, ) > 0.
Hence (u(g, 15, )/1(go 15,,,)) < s and therefore a, <s. As s> f, was arbitrary,
this implies «, < B, hence liminf, . S, = lim, .y, = 1.
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