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THE WEIGHTED LIKELIHOOD RATIO, LINEAR HYPOTHESES
ON NORMAL LOCATION PARAMETERS'

By JAMES M. DICKEY

State University of New York at Buffalo

Raiffa and Schlaifer’s theory of conjugate prior distributions is here
applied to Jeffrey’s theory of tests for a sharp hypothesis, for simple normal
sampling, for model I analysis of variance, and for univariate and multi-
variate Behrens—-Fisher problems. Leonard J. Savage’s Bayesianization of
Jeffrey’s theory is given with new generalizations. A new conjugate prior
family for normal sampling which allows prior independence of unknown
mean and variance is given.

1. Introduction and summary. The subjective, or Bayesian, approach to an
hypothesis-testing problem focuses on the ratio of posterior odds to prior odds
for the hypothesis if its prior probability is positive. This ratio of odds equals a
ratio of likelihood functions which are averaged according to prior distributions
under the hypothesis and under its alternative. The theory is here stated for a
general loss structure, with the notion of a weighted likelihood ratio replaced by
a “weighted utility-likelihood ratio” (Section 2).

Jeffreys’ (1948) version of a test, against a vague alternative, of a sharp
hypothesis, defined by fixed values of parameters and having positive prior
probability, is now known (Dickey and Lientz (1968)) to lead to a weighted
likelihood ratio equal, without approximation, to Savage’s (1963) ratio of
posterior to prior densities; that is, if the conditional prior distribution of the
nuisance parameters given the sharp hypothesis coincides with the conditional
distribution calculated from the distribution under the vague alternative
(densities are uniquely defined as elementary derivatives). An analogue of this
representation applies to the weighted utility-likelihood ratio (Section 3).

Raiffa and Schlaifer’s (1961) conjugate families of prior distributions apply
readily to the unknown parameters conditional on a vague alternative to a sharp
hypothesis (inducing thereby, we assume, the prior distribution conditional on
the sharp hypothesis). One is now left, in practice, with the unavoidable task of
assessing realistic bounds on the parameters of the conjugate family and then
examining the easily-calculated weighted likelihood ratio for robust inference
throughout the bounded region. Any other decision procedure which delivers
“more” for less, by ignoring prior opinion within the two hypotheses, is an
irresponsible escape. This indictment is directed at the usual tail-area and
likelihood-ratio tests for composite hypotheses.

Received November 10, 1969; revised July 1970.

! The Bayesian replacement for the usual F test was presented in a talk by the author at the
32nd Annual Meeting of the Institute of Mathematical Statistics, August, 1969. This research was
supported by NIGMS-NIH Grant GM-16557.

204

154 ()

J&a

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to éﬁl 4%
The Annals of Mathematical Statistics. IINOIN

www.jstor.org



WEIGHTED LIKELIHOOD RATIO 205

When it applies, Savage’s (1959) notion of ‘‘stable estimation” or “precise
measurement” requires assessment of the prior density at only one point for
calculation of an approximate weighted likelihood ratio. Although a very simple
and interesting statistic, the approximate ratio should not form the basis of a
formal decision procedure without an evaluation of the quality of the approxi-
mation before each “decision”.

The conjugate theory and the stable-estimation theory are here presented for
a point hypothesis on a univariate normal location parameter (Section 4.1). A
new conjugate family is presented which allows prior independence for unknown
mean and variance and which yields a weighted likelihood ratio involving
Behrens-Fisher densities. A solution is given to the Behrens-Fisher problem
(Section 4.2).

I provide a Bayesian replacement for the very popular and elegant, but
misleading (Edwards, Lindman, and Savage (1963)), F test for a linear hypothesis
within a linear normal model, the Model-1 analysis of variance (Section 5.1). A
solution is also given to the multivariate Behrens-Fisher problem (Section 5.2).

2. Odds and decision theory. Assume a statistical model in which the observed
data vector D e R" occurs according to the probability mass or density function
(elementary derivative) (D | 0), depending continuously on an unknown para-
meter vector € R". Assume an individual’s opinion about 0 before and after his
observation of D is described by his personal prior and posterior probability
distributions P(S) and P(S | D). We thus take D and 0 to have a well-behaved
joint personal distribution.

Now, suppose one suspects the unknown parameter 8 of belonging to a given
Borel set H= R"; or in terms of prior probability, 0 < P(H) < 1. We consider
only cases in which, for the posterior probability too, 0 < P(H | D)< 1.

Let H denote the alternative: HnH = (@ and P(H)+P(H) = 1. Let O denote
odds corresponding to probabilities P,

(2.1) O(H) = P(H)/P(H) = P(H)/[1-P(H)],

having the immediate properties, O(H) = 1/O(H), P(H) = O(H)/[1+ O(H)].
The posterior odds

(2.2) O(H|D) = P(H|D)/P(H|D),

are then given, by Bayes’ theorem,

23) O(H |D) = Ly(H)" O(H),

where the “likelihood ratio for H”,

2.4 Lp(H) = ®(D | H)/®D | H), and
(2.5) oD |H) = [o(D|0)dP(0|H),

(2.6) oD |H) = [o(D|0)dP(0| H).
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In case H and H are point hypotheses, L(H) is the usual likelihood-ratio-test
statistic.

Recall briefly the familiar decision-theoretic formulation, e.g., Blackwell and
Girshick (1954), in which a reward or utility U(d, 8) depends on the “true”
parameter value @ and on the data D through the “act” or “decision” d(D). A
“Bayes procedure” d(-) calls for an act d which maximizes the posterior expec-
tation over 0 given D of U(d, 0), hence, yielding the maximum, among procedures
d(+), of the prior expectation over D and 8 of U(d(D), 6).

In practice, we are left with problems of specifying the statistical model ¢, the
utility function U and its domains, and the prior distribution of 0. Several
realistically possible such specifications should enter into an examination of the
robustness of the optimal act d to the specifications. Ideally, data could be
reported by a display of the optimal act (or of the weighted likelihood ratio) as a
function of prior weightings and of model specifications (Hildreth (1963),
Dickey (1970)).

In a two-decision problem with d = dy or dy (maximizing U(d, ) for every
0¢ H or for every 8¢ H, respectively) we can assume, without loss of generality,
that “wrong” decisions pay nothing,

2.7 U(dy,0) =0 all 6eH, and
U(dg,0) =0 all 0eH.

As suggested by Lindley (1961) (for example), this can be achieved mathematically
by subtracting from U(d, 0) the function of 0: U(dy, 0) for 8 H, and U(dy, 0)
for 0e H.

Then, to choose the maximum of the two posterior expected utilities, we have
the posterior-expected-utility-ratio criterion,

28) E[U(dy, )| D]/E[U(dg,6)| D] 2 1,

with either decision permitted for the ratio equal to 1. The denominator in (2.8)
is assumed to be positive. (Otherwise, the inequalities would be reversed.)
Since

(29)  E[U(d,8)|D] = E[U|H,D]- P(H|D)+E[U|H,D]- P(H|D),
then by (2.7), we have

(2.10) E[U(dy, )| D]/E[U(dg, 0)| D] = Ry(H)* Ly(H) O(H) 2 1,
where the posterior weighted utility ratio,

(2.11) Ry(H) = E[U(dy,0)| H,D]/E[U(dg,0)| H,D].

In case U(d, 0) is constant in @ within H and H, then the factor Ry(H) =
R(H) = U(dy, 0 H)|U(dy, 0 H) does not depend on the data, nor on the prior
weightings, and (2.10) is a weighted-likelihood-ratio criterion with threshold
1/[R(H)- O(H)). Then Ly(H) is an adequate summary of the data D.
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On the other hand, (2.10) can always be considered a weighted-likelihood-ratio
criterion by the following device, which justifies the notation,

(2.12) Ly«(H|D) = Ry(H).

Define the perfect decision,

(2.13) a*@) =dy if 0eH
=dg if 0eH.

Then by (2.4), (2.11), R,(H) has the interpretation (2.12) where U* symbolizes
the “data” from a hypothetical independent experiment yielding the likelihood
function, ¢*(U*|6) oc U(d*(6), 0).

The combined “data” U*, D has the product weighted utility-likelihood ratio

(2.14) Ly« p(H) = Ly.(H| D) Ly(H),

(2.4%) Ly. p(H) = @*(D, U* | H)/®*(D, U* | H),
where for some irrelevant k = k&(U*, D),

(2.5 O*(D,U*|H) = k[ U(d*(6),0)p(D | 0) dP(0| H),
(2.6%) O*(D,U*|H) = k[ U(d*(0),0)p(D | 0)dP(0 | H).

We have now the analogue of (2.3),
23%) E[U(dy, 0)| D)/E[U(dg, 0)| D] = Ly. 5(H)- O(H) Z 1.

Hence, Ly. p(H) is an adequate summary of the data, the decision-criterion
threshold being P(H)/P(H).

3. Sharp hypothesis. Consider the case of a sharp hypothesis, namely, H an
analytic surface segment in real Cartesian space R". In the normal-theory cases
considered here, the surface is a linear manifold. Positive probability for this
singular set is proposed as a good approximation to many prior opinions.

Let &0) =(y',¢')Y eR", n(0)e R, and ¢{()e R"™? be smooth functions for
which the inverse 6(&) = 6(n, {) exists and has non-zero Jacobian. We define, for
a fixed value #4,

(3.1 H:n(0)=ng,  H:n(6) # ny.

By an abuse of notation, denote again by P the induced prior measure for &,
and again by H the &-image of H. Assume as the support of the £-measure P an
analytic surface segment =< R" (possibly R" itself) of dimension dim(E), and
assume dim(HNE) < dim(E) £ r. We shall use integration with respect to
Lebesgue measure u on the surface E with differential element denoted
d¢ = d¢ dn; and then on the measure-zero set HNE, integration with respect to
the Lebesgue measure pu, with element d¢. So p is the product measure of x4, and
the Lebesgue measure u, with element dy.
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The prior probability measure P is a mixture over H and H of the following
assumed form. For a set ScR" with Borel-measurable intersection SNE (and
hence SNHNE),

(3.2 P(S) = P(H) | [s~af (1, $) AL dn+ P(H) [smnz 9(5) dC.

The density function f is assumed uniquely defined throughout Z as the
elementary derivative,

(33 f(©) =lim, .o P[S,(&) | H)/u[S,(§)nE],

where §,(£) denotes the ball of radius p centered at & Hence, even though for
&eH, f(&) has an interpretation as a conditional density of & given H, if &€ H,
f(&) is well defined and not necessarily zero.

Similarly, g is assumed given by

(34) 9() = lim, .o P[S,(nu, {) | H]/1t: [S, (115, )nHNE];

and for &€ H, g({) has an interpretation as a conditional density of { given H.

Note that, with respect to a special dominating measure, the product of p,
by u,, but with u, modified to have an additional unit mass at = 5, P has the
density

(3.5 P'(§) = P f(Q[1 - —nw]+P(H)() 6(n—nz),

where, as usual, 6(0) = 1 and § = 0 for other arguments.
For a sharp hypothesis, equation (2.5) and equation (2.6) take the forms

(3.6) (D |H) = [ (D |15, 9(§) d,
(3.7 oD |H) = [[o(D|n,0)f(n,¢)d¢ dn.

Note the abuse of notation: o(D |n, {) for ¢(D |6(n, {)). The integral (3.6) and
integral (3.7), of which L,(H) is the ratio, are in many cases readily calculated,
the integral over 5 in (3.7) needing no restriction to y # ny.

The proportions ®* of the generalized likelihood ratio Ly. ,(H) (2.4*) take
forms identical to (3.6) and (3.7) except for the further factor U(d*(6), 0) in the
integrands.

Define for all n, P'(y | H) = [ f(n, {) d¢, and define for all 0, ¢, P'(y, { | H, D) =
oD |n, ) f(n, {)/®(D | H), motivating the quite natural definition for all g,

P'(y|H, D) = [o(D|n, ) f(n, {) d¢/@D | H).
THEOREM (Savage’s Density Ratio). If

(3.8) 9@ = fu O/ f (. §) dE,
then
(3.9 Ly(H) = P'(ny | H,D)/P'(ny | H).

Proor. (Dickey and Lientz, (1968)). Use (3.8) for g in the numerator ®(D | H)
(3.6) of L (2.4).
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Equation (3.9) was given in special approximate forms by Jeffreys (1948),
Lindley (1961), and Savage (1959), (1961). It was discovered, but not published,
as a general exact formula by Savage (1963) (see also Patil (1964a) and Dickey
(1968)).

Equation (3.9) yields Ly(H) more readily than do (2.5) and (2.6) directly, in
case P'(0 I H) (or f(n, {)) is taken to be one of a “conjugate” family (Raiffa and
Schlaifer (1961)) of prior distributions to ¢. In this case, the parameters of
P’(()Iﬁ) merely change in a simple way to the parameters of P'(()IH , D), and
the numerator of (3.9) is as simple as the denominator.

Savage’s approximate form of (3.9) involves an application of ‘stable
estimation” or ‘“‘precise measurement” to yield an approximate numerator
P’(r],,lﬁ, D) derived from a uniform (possibly nonintegrable) prior density
f(&) = c. Such a prior density can be a useful approximation to a genuine prior
density which is locally constant in a region emphasized by a likelihood function
and is not outlandishly greater elsewhere. For then, the posterior density is
approximately equal to the normalized likelihood function,

P'(§|H,D) = (&) = o(D[&)/f (D |§) dE.

(Note that prior uniformity in ¢ may not mean uniformity in 6, for nonlinear
£(0).) Savage’s density ratio (3.9) then takes the simple limiting form,

Ly(H) = ,‘ Yp(ny, §) dS/P'(ny I H),

so long as we assume that the vicinity of approximate local constancy of f(&)
includes n, for the conditionally likely values of {.

A better approximation by Savage (see also Lindley (1961)), follows
immediately from the definition of the weighted likelihood ratio (2.4) without
the assumption to include #y in the vicinity of prior uniformity,

Lp(H) = [rp(ny, O) de/[P'(§ | H)g/P'(C | HDg,,,

where € is the maximum likelihood value of & and &, is the maximum likelihood

value of { under the constraint # =#ny. Given the assumption (3.8) that
P'(¢ | H)=P'(¢ | Ny, H), and glven that the nuisance parameter { can be defined

such that simultaneously &, = &, the unconstrained maximum likelihood value,

and ¢ and n are approximately prior independent under H, P’'(¢ I H) =
P'(y| H)P'({| H), then we have

Ly(H) = Ilﬁp('lm C) dg/P'(n | H)ﬂ-

In these approximations, the numerator is a function of only the data, and the
denominator is a single subjective number to be assessed. Stable estimation is
unlikely to yield a realistic approximate posterior distribution for a large number
of unknown parameters (Edwards, Lindman, and Savage (1963), page 233).

Dickey and Lientz (1969) show that L,(H) is invariant with respect to choice
of the defining transformations # and ¢ for H, so long as the distribution of the
new parameters is the induced one. Cornfield (1966) applies L,(H) in its original
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form (2.4) to a comparison problem, violatingin his equation (7.8) our assumption
(3.8).

If U(d*(6),0) (D |0), for 0 =0(n,¢), is continuous in y at y, (for the
analogue of (3.3)), then Ly. ,(H) reduces to the form analogous to (3.9)

(3.9% Ly p(H) = P'(ny| H,D,U%)/P'(ny | H),

where the loosely symbolized P’(qH|I7, D, U*) is defined similarly to
P’(r,H|I-_I, D), except for the further factors in the integrands, U(d*(9), 0),

0 = 0(n, £) or 0(ny, §).
By (2.14),

(39*%)  Ry(H) = Ly«(H|D) = P'(n| . DU*)/P'(ns| H, D).

Equation (3.9*) and equation (3.9**) are more valuable as conceptual aids
than in practice, where handy prior distributions ‘“conjugate” to U(d*(6),0)-
o(D | 0) are desired. Yet, a natural, constant, removable, discontinuity of
U = U(d*(0), 0) at ny, say U = U, # 0 at g with limit value U, can be removed,
for use of (3.9*%) and (3.9**), by letting

(3.10) 0(d*(6),8) = (U,/U,)- U(@*(6),0)  if n(8)=nu;
= U(d*(0),0) if n(0) # ny.
Then
(3.11) Ly, p(H) = (Uo/U,) " Lo+, p(H), and
(3.12) Ly«(H|D) = (Up/U,)- Lo«(H| D).

4. Univariate normal theory, linear hypothesis. In this section we apply the theory
of tests just outlined to inference about location parameters of normal popu-
lations. Conjugate families of prior distributions are assigned to the unknown
population parameters under the alternative to a linear hypothesis. In the theory
of conjugate families, devised by Raiffa and Schlaifer (1961), the parameters of
the prior distribution combine in the same way with the sufficient statistics from
the sample, to form the parameters of the posterior distribution, that the
suffiient statistics from two independent samples would combine to form the
sufficient statistics of the pooled sample. Lindley (1965) devised the notation
used here, whereby prior and posterior parameters are symbolized exactly as the
sufficient statistics, but subscripted by 0 (prior) and 1 (posterior). This notation
is a limited alternative to the much discussed notation of Raiffa and Schlaifer
(1961).

4.1. A special value for a normal mean.
Model:

D= (xl" o :xn)”
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independent identically distributed x;’s given u and o2,
(4.1) each x;|p, 0% ~ N(y,a?),

normal with unknown mean u and with known or unknown variance o32.
Hypothesis:

4.2) Hip=pg, H:p#py.

4.1.1. Variance ¢* known.
Prior: 0 < P(H) < 1; and

(4.3) 1| e, H ~ N(%,, 0%/n,), ny > 0.
Sufficient statistics: n; X =n~'Y x,.
Posterior:
4.4) u|o®, H,D ~ N(%y,02/ny), where
4.5) ny=no+n, and X, =n," (nyX,+nx).

Weighted likelihood ratio:
(4.6) Ly(H) = (ny/no)*exp 3072Q), where
4.7 0 = ny(Xo— ,UM)2 —ny(x, —ﬂn)z =nen;" 1'1(5‘_0 - 37)2 —n(x —#H)~2

If Xo = uy, then Q = —n, " 'n3(X — uy)>.

Note that as ny — 0 (prior “ignorance” for the alternative H), Ly(H) — 0, a
point discussed by Cornfield (1966). Edwards, Lindman, and Savage (1963)
applied “stable estimation” in the following way, avoiding this pathology. If the
prior density under H is approximately constant in the region emphasized by the
likelihood function, then the corresponding posterior distribution is approxi-
mately given by (4.4) with n, = 0, equation (4.4) with the subscripts 1 absent,

4.8 nte~'(u—x)| 0% H,D = nte™(u—%) |62 1~ N(O,1),
and thus,
4.9) Lp(H) = [usual (normal) density of x| a2, uy]/P'(u | H),=s

4.1.2. Variance ¢* unknown. The nuisance parameters { in Section 3 appear
here as a2.
Prior: 0 < P(H) < 1; and

(4.10) 4,6~ 2| H ~ Normal-gamma (X, 552, 1o, Vo)

with parameters ny >0, vo > 0, 5,2 > 0 (see also Raiffa and Schlaifer (1961),
Section 3.2.5 and Section 11.5); namely,

4.11) 1| 0% H ~ N(X,,0%[ny), as in (4.3),

(4.12) VoSo?o 2| H ~ y%, chi-squared, v, d.f.,
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then
(4.13) [no(—%o)* +vo50%]0 ™2 | p, H(or H) ~ 2 4 amo)

(where, for later convenience, we define A(0)=0 and A =1 for nonzero
arguments), and

(4.14) (u—ZXo)notsy™|H ~ t,,, Studentt, v, d.f.

In accordance with (3.8), assume that ¢2|H is distributed identically to the

limiting distribution of ¢? | u, H, namely as given by (4.13) with u set equal to .
Sufficient statistics: n; X; v =n—1,and v,2 = SSW = Y (xi—%)? =Y x> —nx2.
Posterior:

(4.15) ;62| H,D ~ Normal-gamma (n,, v, %,,5,2), where
(4.16) ny=no+n, vy =vo+v+A(n)
(4.17) Xy = "1—1("0’70‘*‘”3)(:”1—1Z?:—nonft), and

V1812 = SSW, = (vg 502 + 1 Xo2 + vs* +nx2) —n, X,2
(4.18) = Vo 8o+ Vst +non, ~n(%, —X)*
(=Xt cnot 1 (6= %) =Y or 1 X2 — 0y %, 2).

(The notation x;, with a nonpositive subscript i, refers to a hypothetical prior
sample of size, ny, sample mean, Xo = ny ™'Y {- _, 41 X;, sample sum of squares
about %o, voSo® = SSWy =Y f- _,.+1(x;—%,). This negative-subscript notation
is insightful even if strictly nonsensical for ny not an integer or vy # ny—1.)

Weighted likelihood ratio: From (3.9) and (4.14), prior (k = 0) and posterior
(k =1), Lpy(H) = P,"(uy)/Po'(1y), where with h, being the density of 7,,

4.19) P/(up) = "k*sk_lhvk["k*sk—l(fk—ﬂn)}
= I3+ DI[CEv)7E] ™ [/ (v s3]
1+ m 53) 71 (Fp— pg) 2] EORHD,

Edwards, Lindman, and Savage (1963) obtained essentially the following
stable-estimation approximate form. With the joint prior density of y, loga [ H
approximately constant (P'(u, 0?| H) oc 67 2) in the region emphasized by the
likelihood function, vy = ny = 0 in the Normal-gamma theory,

(4.20) ns”i(u—%)|H,D < n*s~'(u—%)| 0% pu ~t,
(4.21) vs?6 "2 | H,D = vs%0™2| a2, ~ 1,%
and

(4.22) Lp(H) = s [usual (#) density of s™'X | 02, uy]/P'(1| H)yess

in which the numerator is (4.19) with k absent.
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4.1.3. Prior independence of u and ¢*. Because of the usually ridiculous prior
dependence between u and a? exhibited by equation (4.11), we here extend Raiffa
and Schlaifer’s Normal-gamma conjugate family to permit prior independence.
Stone (1964) first used such a family of prior distributions.

Prior: 0 <P(H)<1; and let y,0”?|H have a density given by the
proportionality,

(4.23) P'(n, 0?2 I H) o exp [—%mo(#—yo)z]
(7P Yexp [—4vp50°0 2] (672 exp [ —dng 07 2 (u—%o)?],

where A =1 for nonzero arguments and A(0) =0. This is a product of a

N (§o, 1/my) density in yu and a Normal-gamma (X,, 502, 1o, Vo) density in p, 672,

but no longer restricted by n, > 0. We permit prior independence of u and ¢? by
allowing n, = 0, for which the former (marginal) distribution of 2 (4.12) applies.

The former conditional distribution of a2 (4.13) holds. The requirement (3.8) is
met by accepting again the first sentence following (4.13).

If my, = 0 the joint distribution is the former Normal-gamma one.

The former conditional distribution of u (4.11) has now the analogue,

(4.24)  p|o® H~ N[(ngo~2+mg)"*(ng 0~ 2Xo+mg Jo), (o6~ 2 +my)~ ']

Of course, for n, = 0 (independence), 1 has a marginal distribution given by (4.24)
N(yo, 1/my). But if ny, > 0, p has a marginal density proportional to the product
of a Student-# density and the normal-density factor,

(4.25) P'(p I H) = Co- ("o%so N 1)hvo[”oirso -t (n—%0)]
“(2r/mg)~*exp [ —4mo(u—7o)*],

where the normalizing constant C, is the reciprocal of the integral of the other
factors,

(4.26)  Co™' = (52 /mo+1/mg) " 2hyy o 0ol (s> Mo+ 1/mo) ¥+ (%o — Fo)],

where 4, . ,(d) denotes the density of the Behrens-Fisher random variable
dv,v‘,w’ 0 é @ é 7'5/2,

4.27) dyye0 ~ 1,080 —t,.5iN 0,
t, and t,. independent. For us, v* = o0, ¢, ~ N(0, 1), and
(4.28) tan wy = (1/mg)¥(se?/ny)~*.
C, ™! is the density at (X, — Jo) of (so%/no+1/mg)*-d, , ., Where
(4.29) W2+ u*DRd, e ian-1ummy ~ Ut,— ¥t

The normalizing constant for the joint density (4.23) follows readily from (4.13)
and (4.25). Patil (1964b) (1965) and Dickey (1967a) (1968) discuss the calculation
of Behrens-Fisher densities.
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M. M. Desu has suggested in conversation the choice 7, = %, when ny # 0, for
which the prior density (4.23) has the simple property, E(u | 6%, H) = %, = E(u |H).

Posterior (given the data (4.1) with the sufficient statistics following (4.14)): as
in (4.23), but with parameters X,, s, n,, v, determined according to (4.16)-(4.18),
and y, = yo, m; = m,. Note that prior independence is lost by the transition to the
posterior distribution. Note that the six-parameter family (4.23) is closed under
sampling also from a normal distribution with variance proportional to ¢ and
another (known) mean, as well as from one with another (known) variance and
mean p. Raiffa and Schlaifer’s (1961), Section 11.5, Normal-gamma parametriza-
tion permits a unified statement of prior-to-posterior parameter changes for the
three kinds of sampling.

Weighted likelihood ratio:

(4.30) Ly(H) = Ly*'?X(H)- (C,/C,),

where L,*'?(H) was given by (4.19), and C, by (4.26) but based on the posterior
parameters. In the case of prior independence (n, = 0),

(4.31) Ly(H) = Cy - {n*s, ™ 'h, [n¥s; (X —pp)]}.

4.2. The Behrens—Fisher Problem. In this section, the family of Normal-gamma
prior distributions is independently applied to two (possibly) different normal
populations. It is hoped that future work will exploit the more realistic prior
distributions of Section 4.1.3.

Model:D = (x,," -, x,), D* = (x,*,++,x}),

two independent samples,

(4.32) each x;~ N(u,0%), each x*~N(u* o*?),
unknown g, p*, o2, o*2.

Hypothesis:
4.33) H:in=p—p*=0, H:nz0.

Prior: 0 < P(H) < 1; and independently as in (4.10),
(4.39) #,0~ 2| H ~ Normal-gamma (X, 502, o, Vo),
(4.35) p*,6* 2| H ~ Normal-gamma (X*, 5o*2, no*, vo*).

In particular, independently,

(4.36) notso Mu—%o) | H ~ t,y,  no*¥sg* ~Y(u* —Xo*) | H ~ g
Define for k =0, 1, or absent,

(4.37) 52 = s 2+ 5, %2 .

Then

(438) '7_()?0 _"?0 *) I H ~ §0 ' dvo.vo‘,wo’
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where d, ,.+.0, i the Behrens-Fisher random variable defined by (4.27), and .
(4.39) tan wo = (5o*2/no*)*(so?/no) *.

Again, assume (3.8) holds.

Sufficient statistics: %, s2, n, v; X*, s*¥2, n*, v*.

Posterior: independently, as in (4.15)~(4.18), (u, ¢™%|H,D,D*) and (u*,
o*~2|H,D,D*) are distributed Normal-gamma (%,, 5,2, n,,v,) and Normal-
gamma (X, *, s,*2, n,*, v, *). Hence

(4.40) n—F —%*)|HD,D* ~ 5§ d, 0>
(4.41) tanw, = (s,**/n,*)¥(s,%/n,) " L.

Weighted likelihood ratio: Ly(H) = P,'(n = 0)/Py'(n = 0), where
(4.42) P(n=0)=35" lhvk,vk'.wk[gk_l()_‘k_fk*)]-

Of special interest is ny = np*, vo = vo*, Xo = Xo*, 502 = So*?, for which w, = n/4,

§o2 = 250%/no, and the denominator of Ly(H) becomes
(4.43)  (256%/10) Fhyq y0,2/4(0) = (250°/10) “R2[T (Vo + /T (vo+1)]
AT 3o+ DIT(Gvo) 2 (mve) ™.

Working as a Ph.D. student under Leonard J. Savage, Patil (1964a) obtained
essentially the following stable-estimation approximate form of Ly(H). With the
appropriate joint prior density proportional to ¢~ 2g*~2 for (4, 6%, u*, o**|H) in
the region emphasized by the likelihood function (including p—pu* = 0),

(4.44) n—(X—%*)| H,D,D* = §d, yu 0

(4.45) tanw = (s**/n*)¥(s?/n) "%,

and with n = u—p*,

(4.46) Lp(H) = 5 'Ry ye o[§7(E=X*)]/P'(n| H)y=z-3-

5. Multivariate normal extensions.

5.1. Linear normal model. (See also Raiffa and Schlaifer (1961), Chapters 12
and 13.)
Model: D=y = (y1,"" ", V) >

(5.1) y|B,0* ~ N®(XB,6*W™1'), n-variate normal,

known full-rank “design” matrix (n x r)X, unknown regression coefficient vector
BeR’, known variance structure matrix (r x r)W™! > 0 (positive-definite sym-
metric), and the either known or unknown variance scale parameter o2,

Define the “products matrix” N(r x r) and “generalized least squares” estimate
b of B by

(5.2) N =X'WX, Nb = X'Wy.
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Define the “residual sum of squares” or “Sum of Squares Within” by
(5.3) vs? = SSW = W((y—Xb)) = W((y))—N((b)), v=n-r,

in which double parentheses denote a quadratic form, M((x)) =x'Mx =
Y'Y m;;x; x;. Recall that Xb is the projection of y on the subspace of R" spanned by
the columns of X with respect to the W-inner-product (y, z) = yWz; and SSW is
the squared W-distance between y and Xb, (y—Xb, y—Xb).

Hypothesis:
(5.4 H:n=ny, H:n#ny,
where
(5.5) n=Cyp, (q x r)Cyq full rank.

Denote by By" the N-inner-product projection operator of R" onto the linear
manifold H. Then

(5.6) By"B = BB+ By"0,

where (r x r)Bg" is the matrix operator for N-projection onto the parallel subspace
K = {B: Cy B = 0}, namely,

5.7 B"=L—-N"!1C,/(CuN1Cy) 1Cy = N"1Cy1 (Cxi N~ 'Cy1) ' Cpe
= Ag(Ax'NAg)~ lAK'N s
where, in meaningful notation, Cy1((r—g) x r) is any full-rank solution to
CyiN7IC, =0, namely Cui = AN where Ag(r x (r—q)) is any full-rank
matrix having column vectors spanning K. Also,
(5.8) BHNO = N_ICH,[CHN_ICHI]_I”H,
the unique point in H whose projection on K is 0, and so
(5.82) By =b+N"1C, (CyxN~1Cy") " (5 — Cyb).

Equation (5.8a) and the member of (5.7) in terms of Cy follow from DeGroot
(1970), p. 254, or Rao (1965), p. 49.
The usual “Sum of Squares Between” is then

(5.9) SSB = N((b—By"b)) = W((Xb— XB,"b)) = SST—SSW
= (CxNT1Cy) " ((Cyb—ny))
(= N((b—B4"0)) —N((B*b))), where
(5.10) SST = W((y—XBy"b)).

The “Sum of Squares Total” has the above decomposition by the W-orthogonality
of y—Xb and X(b—B,"b).

The traditional y,” statistic for H is y*(D) = SSB/o?, and the traditional F,,
statistic for H is F(D) = (SSB/q)/(SSW/v).
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5.1.1. Variance scale 6* known.
Prior: 0 < P(H) <1; and

(5.11) B| o2 H ~ N®(by,6>N, 1), (r x Ny >0,

with B|o?, H distributed as the limiting distribution of g|¢?, H, from (5.11) given

CuB =1y
Sufficient statistics: N, b (5.2).

Posterior:
5.12) . B|o* H,D ~N(b;,6’N, 1), where
(5.13) N; =Ny+N, b, = N, "}(No b, + Nb).
Choose some Cy* for which
(5.14) C = (Cy,Cy"Y
is nonsingular. Assign the nuisance parameters ¢ of Section 3,
(5.15) {=Cy*8, &=('.0)=CB,
and for k =0, 1, or absent,
(5.16) N,=(C YN, C™!, b,=Cbh,.

We have the natural definition and straightforward identity, in the usual notation
for partitioned matrices,

(5.17) SSBy, = Ny((by— By™b,)) = (N 1.2(((b) 1 — 1))
= (C4N,~ ! Cy)” l((Cku —1g))-

The prior and posterior distributions,

(5.18) &|o? H(and D iff k 5 0) ~ N(b,, 6>N, 1),

and hence,

(5.19) n|¢?, H(and D iff k # 0) ~ N®((b,);, a*(N, ™ V);).

According to our assumption (3.8)

(5.20) ¢|o% H(and D iff k # 0) ~ NO~9(B, b, 62 (N, ™ 1),,.1), where
(5.21) By by = (B2 + N ). 1 1oL — ().

Weighted likelihood ratio: Ly(H) = P, (ng)/Py’'(ny), where, with the standard
g-variate normal density denoted @@, and with the chi-squared density on v
degrees-of-freedom denoted g, (density of x,> = ||[N‘)(0, D)||?, sum of squared
coordinates),

P/ (ny) = I U_Z(Nk)l 1-2 I% ¢(q){[a_2(Nk)1 1-2]*[(51:)1 —'IH]}
(5.22) = [3qn*T(3q+1)] 7 '672|(N)11.2|*(SSBY' ~*9g (SSB,/c?)
= (2n0%)™¥|(Ny); 1.2 |*exp [ - 307 2SSB,].
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(The unique symmetric square root of a positive definite matrix M is here indicated
by M? although it is not necessary to actually calculate M* in practice.) The
quantity SSB, in (5.22), as given by (5.17) is the usual analysis of variance quantity,
but with the products matrix N and the least-squares estimate b replaced by the
prior or posterior information-structure matrix Ny and the prior or posterior mean
b,. By using the identity

(5.23) |NDy1.2| = (R, Dyy| = 1/|Cy N, 'Cy|,
we have the result,

(5.24) Lp(H) = (|CxNo™Cy'|/|Cy N, ™' Cy/ ¥ exp 30720),
where

(525 Q= SSB,—SSB, = [(No)wz(Nl_1)11(N)11-2](((B)1—(Bo)l))—SSR

When stable estimation applies under H, namely approximate constancy of the
prior density of § |02, H relative to the likelihood function, then the above posterior
distributions (k = 1) apply approximately with k absent, equation (5.12) becoming,
with No =0,

(5.26) o 'N*¥p—b)|¢*, H,D ~ o 'N*¥(p—b)|o?, B ~ N®(0,1).

Hence, assuming for Cy* = Cy1, ¢ and 5 are approximately prior independent
under H,

(5.27) Ly(H) = [usual (multiv. normal) density of Cyb| o?, B, H]/P'(n | H)y=cus
= [usual (,2) density of SSB/o? |02, B, H]/
P ’[N((ﬂ —BnNﬂ))/ o® l H ]ssz;/a2

where the first numerator is equal to (5.22) without &, and the two denominators
are related by

(5.28) P I[N((p —BHNI‘))/U'2 | ﬁ]ssmuz
= 02[4qn*T(3q+1)]|Cy N~ Cy/|* SSB¥ - P'(q | H)y= i »
formula (5.28) to be found, in essence, in Lindley (1965), pages 95-98.
Note that N((B—By"B)) = (CxN~'Cy") ™' (CuB—1n))-

Edwards, Lindman, and Savage’s (1963) equation [22], page 233, is thus corrected
and generalized.

5.1.2. Variance scale 62 unknown. The nuisance parameters { in Section 3 appear
here as ¢, o2.
Prior: 0 < P(H) < 1; and

(5.29) B.o™2| H ~ (r-variate Normal)-gamma (b, 55>, No, vo),
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with parameters Ny >0, vo > 0, 5,2 > 0 (see also Raiffa and Schlaifer (1961),
Section 3.2.5 and Section 12.4); namely,

(5.30) B|o* H ~ N®(b;,0°N,™1), as in (5.11),
(5.31) VoSo2a 2| H ~ 22,

then

(5.32) [No((B—bo)) + V05010 ™2 | B, H(or H) ~ X3, + rankcrvo)

(until later, N, is of full rank, r), and

(5.33) so” 'No¥(B—bo) | H ~ .

For a treatment of the r-variate ¢ distribution, t,{”, see Raiffa and Schlaifer (1961);
t,(” is distributed like N"(0, I,)/(x,?/v)?, with density in R,

(534 B0 =THE+IIIE)R] ™y v [ 2170,

In accordance with (3.8), assume that B, * | H is distributed as the limiting distri-
bution of B, ¢*| H, from (5.29) given Cy B = 1.
Sufficient statistics: b, s2, N, v (5.2)~(5.3).

Posterior:
(5.35) B,o~%| H ~ (r-variate Normal)-gamma (b;,s,%, Ny, vy), where
(5.36) N, =No+N, v = vo+v+rank (No),
(5.37) b, = N, " }(N, by +Nb),

(5.38) vy 812 = SSW; = [vo 50>+ No((bo)) + vs> + N((b))] — Ny ((b,))
=g 8o +vs? +[No N; "' N]((bo —b)).
In the notation of (5.14)-(5.21), for k =0, 1, or absent,

(5.39) s LN 1212 [ —(b),] | H (and D iff k = 0) ~ 2, and
(5.40) ¢,072 | H(and D iff k # 0) ~ ((r—g)-variate Normal)-gamma

(By™bi, SSTi/(i+49), (Nid2zs vita), where
(5.41) SSW, = v, 5,2, SST, = SSB,+ SSW,.

Weighted likelihood ratio: Ly(H) = P,'(ny)/Po’(ny), where,
(542) P/(my) = Isk—z(Nk)l 1-2|* hs‘;{){[sk—Z(Nk)ll-z]&[(sk)l —'IH]}
= [3qn*T(3q+ D]~ (N1 H(SSWi/v) T H(SSBY)' ~H
"4 o [(SSBY@)/(SSWi/vi)]
=T[4+ q)][r(%"k)ﬂﬂ]_ ! ICH N,~ ICy' | —*(SS Wk)_ﬂ
-[14SSB,/SSW,]~*"+9),
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where f, , denotes the F density on g and v degrees of freedom (density of
Fy = |62]/). : _

When stable estimation applies under H, approximate constancy of the prior
density of B, log o | H relative to the likelihood function (P'(B, ¢* | H) &c 6™ 3), then
the above posterior distributions (k = 1) apply approximately with k absent, the
posterior versions of (5.33) and (5.31) becoming, with Ny = 0 and v, = 0 in (5.36),

(5.43) sTIN¥B—b)|H,D « s~ 'N}(B—b)| 6%, f ~ 1,0,
(5.44) vs’6 ™2 |H,D ~ vs’c~2| 6%, B ~ 3,2

Hence, again assuming for Cy* = Cyu, ¢ and y are approximately prior indepen-
dent under H,

(5.45) Lp(H) = s~ '[usual (multiv. f) density of s'Cyb|0?, B, H]/P'(n| H)y=c,»
= [usual (F,,) density of (SSB/q)/(SSW/v)| o>, B, H]/
P'[(N((B—By"B)|2)/(SSW |v) | H ](SSB/q)/(SSW/v)9

where the first numerator is equal to (5.42) without k, and the denominators are
related by (5.28) with 62 replaced by g(SSW/v).

The author has vague memories of verbal statements by Leonard J. Savage, at
least as early as 1965, that ordinates of F densities are more important than tail
areas.

5.1.3. Prior independence of B and o*. A direct multivariate generalization of
equation (4.23) extends Raiffa and Schlaifer’s (1961) (r-variate normal)-gamma
conjugate family (5.29) to yield the following generalizations of equations (4.24)-
(4.31):

(5.46) B I o*, H ~N[(6™*No+M,)~ (672N, bo+M, ¢o), (672No+Mp)™ '],
(5.47) P'(B | H) = Co(so™" |No|%)h5?[so—lNoi(p—bo)]

“(27"n " M)t exp [~ 3Mo((B—co))],
where the normalizing constant here C, satisfies
(5.48) Co™! = h rgor- 172,010 172(b = €0),
where h{)..;; yu(d) is the density of the r-variate Behrens—Fisher random vector,
(5.49) d0pve ~ Ut,O—U*®,  independent t™’s.

(Note that in one dimension, d{}\, . ~ (W?+u**)*d, yu an- 1043y Where d, ., is
the usual Behrens-Fisher random variable.) Dickey (1968) expressed Ay v in
terms of a one-dimensional integral.

Using Lemma 3.1 of Dickey (1967c) on partitioned quadratic forms, integrate
¢ out of the density of B|o?, H, equation (5.46) (k = 0), and its posterior version
(k = 1), to obtain the prior and posterior densities under H, P,(y | o) (k=0,1),
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multivariate normal with mean Cg(c ™ 2N, +M,;)~ l(a'zN,, b,+M, ¢,) and variances
Cy(6 72N, +M,) " 'Cy’. The marginal densities of ¢~ 2 under H satisfy

(5:50)  Py(07%) oc | 072N+ My | ~H(g ™2 rank(Nioy-!

-exp { =307 2[5 + (Ni(o ™ >Ny +Mg) ™' M (b — o))}
Then Ly(H) = P,'(ng)/Po’(ny), where
(5.5D P /() = [§ P/(n|c®)P(c™¥)do™2.

The one-dimensional integral of equation (5.51) is easily calculated numerically
after simultaneously diagonalizing N, and M,, as in Dickey (1968). Counting the
normalizing constants of P,’(¢~2), four numerical integrations are needed for
L,(H). If N, = 0 (prior independence of g and ¢?), the denominator Py(yy) is just
the multivariate normal density with mean Cy ¢, and variance Cy; M, ™ !Cy’.

5.2. The multivariate Behrens—Fisher problem.

Model:
(5.52) D@ = y(a) = (J’1(a), . v”(a ) a=1,+-: ,A’
independently each
(5.53) y(a) l ﬁ(“), e @2 ~ N(n(“’)(x(a) ﬁ(a), 2w~ 1),
as in (5.1). Every 6?2 and e R are unknown.

Hypothesis:
(5.54) H:n=ny, H:n#ny, where
(5.55) n=y11Cs B, eR%

Prior: 0 < P(H) < 1; and independently with (@) given H, as in (5.29), each
(5.56) p@,0@ 7" |H ~ (r-variate Normal)-gamma (by®, 552, No@, v,®).

Assume, again, that (3.8) holds. After obvious modification to the notation (5.14)-
(5.16), by (5.39),

(5:57) 1| H ~ Y50 L®No“)11.2] " #@ar + Y4 (bo@)s,

in which the first sum is a Behrens—Fisher random vector.
Sufficient statistics: b, s@2, N, v@, for each (a), as in (5.2), (5.3).
Posterior: the analogues of (5.56) and (5.57) are, with D = (D, - -+, D™),

(5.58) B, 6@ 7" | H,D® ~ (r-variate Normal)-gamma (b,@, s, @2, N,@,y, @),
(posterior parameters for each (a) satisfying (5.36)—(5.38))
(5.59) n | H,D ~ Y, s; [N, ,.,]" #%0 + Y (b, @),
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Likelihood ratio:
(5.60)  Lp(H) = h®) @) y1y o5 €8 @)11.217 12 o o L2 01 )1 —1]/

h?sz(“)) att a3 ([(Fo(®)11.2171/2) anta [Za (Bo(a))l - 'IH]’

where h{@a)) ..\ . (@) .. (@) denotes the density of the Behrens-Fisher random
vector, as in (5.49) (the signs of the summands are irrelevant to the distribution),

(5'61) df?.)(a)) all aj (U(a)) alla = Za U(a)t‘?(lz)'

Dickey (1968), Theorem 2, has expressed this g-variate Behrens—Fisher density as
an (4 — 1)-dimensional integral. The stable-estimation version of (5.60) is

(5.62) LD(H) = hgz“’) ana; ([(N()11.2171/2) ann o [Za CH(a) b _'IH]/P,("H I ﬁ)ﬂ’
where 3 = Y, Cy@ b,
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