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PROCESSES OBTAINABLE FROM BROWNIAN MOTION
BY MEANS OF A RANDOM TIME CHANGE!-2

By DENNIS M. RODRIGUEZ

University of Houston

1. Introduction. Our terminology throughout this paper will in general be that
of [8]. The triple (Q, &7, P) will denote our fixed fundamental probability space. A
random variable will be an «/-measurable real-valued function. Throughout this
paper we will assume that the Brownian motion we deal with is standard Brownian
motion with all sample paths continuous and unbounded in both directions. If
{X(#): te[a, b]} is a collection of random variables, then o{X(¢): te[a, b]} will
denote the smallest sub-sigma field of «# for which each X(¢), t€[a, b], is measur-
able. Furthermore if X is a random variable and 4 € o then [X < 5] will denote the
event {weQ: X(w) < s} and I, will denote the indicator of the event A.

The problem of finding what processes are random time changes of Brownian
motion has been studied extensively (in the case of martingales) by K. E. Dambis
in [2], by L. E. Dubins and G. Schwarz in [4]. In [4] L. E. Dubins and G. Schwarz
showed that every continuous martingale can be transformed into standard
Brownian motion by means of a random time change. In this paper we prove that
if {X(#):1€[0, +0)} is a Brownian motion process and if {Y(x):ael} is a
stochastic process with sufficiently nice properties then {¥(«): x€l} can be ob-
tained from {X(¢): 1[0, +00)} by means of a random time change (see Definition
2.1 below). Furthermore for certain processes {¥(«): o €[0, +00)}, the collection
of stopping times we construct, “almost” has independent increments. The main
results of this paper are Theorem 2.2, Theorem 2.4, Theorem 2.5, Theorem 2.6 and
Corollary 2.7.

2. Main results.

DEFINITION 2.1. Let I<[0, +0) and let {X(¢):t€[0, +00)} and {Y(x): ael}
be stochastic processes defined on (Q, o/, P). Then we say that {¥(«): «el} can
be obtained from {X(#): z€[0, +00)} by means of a random time change if and
only if there exists a collection of random variables {T,: eI} defined on (Q, &, P)
satisfying the following requirements:

2.1 foreach ael, T,=20,
(2.2) foreach weQ, T(w) . is non-decreasing in a,
(2.3) foreach ael [T, =< slec{X(t):t€[0,s]} forevery se[0, +c0), and

2.4) for each ael, X(T,)=Y() as.
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116 DENNIS M. RODRIGUEZ

In this paper we try to find out what type of processes can be obtained from a
Brownian motion {X(¢): 7€[0, +c0)} by means of a random time change. Let us
first make the following very simple observation. Suppose {X(¢): 1[0, +0)} is
a Brownian motion process and {¥(«): «€[0, +o0)} is a stochastic process such
that for each ae[0, +0), o{Y(x)}co{X(¢): te[0, a]}. For each ae[0, +0),
define T, by T,(w) = inf{t = a: X(t, w) = Y(a, w)}. It is easy to show that each T,
is a stopping time for {X(¢): r€[0, +00)} (that is, (2.3) is satisfied). Furthermore
for each a € [0, + o), X(T,) = Y () since {X(¢): te [0, + c0)} has continuous sample
paths. Hence if the process {Y(x):a€[0, +00)} is such that (2.2) holds for
{T,:2€[0, + 00)} then {¥(x): € [0, + 00)} can be obtained from {X(¢): [0, +00)}
by means of a random time change. For example, define Y(«) by

Y(x) = X(0) if ae[0,1]
= (SUPs e 0, X+ (infy o, X(O4e  if a>1

where Aea{X(¢):t€[0,1]}. Then {Y(x):a€[0, +o0)} can be obtained from
{X(#): 1[0, +00)} by means of a random time change.

Suppose {X(¢):t€[0, +00)} is a Brownian motion process. The construction
of a stopping time T so that X(7) has the same distribution as a given random
variable Y has been the subject of much discussion. In [7], D. H. Root showed that
if 6%(Y) < + o and E(Y) = 0 then there is a stopping time 7 such that #(Y) =
Z(X(T)) and E(T) = 6*(Y). A second method of defining a stopping time 7 with
finite expectation such that X(7) and Y are equal in law has been given by L. Dubins
in [3]. In view of these results the following theorem is of interest. However, the
stopping times which we construct all have infinite expectations.

THEOREM 2.2. Let {X(t):te[0, +00)} be a Brownian motion process and let
{Y(k):k=0,1,2,--} be any stochastic process such that for each integer k =0
there exists a real number ¢, = 0 with 6{Y(k)} =a{X(t): te[0, c]}. Then the process
{Y(k):k=0,1,2,--} can be obtained from {X(t):te[0, + )} by means of a
random time change.

Proor. Define T, by
To(w) = inf {t = ¢o: X(t,w) = Y(0, w)},
and for k = 1,2, -+, define T, by
T(w) = inf {t = max (¢, 7,",‘_ () X(t,0) = Y(k,w)}.

Then for each k, T, 2 0 and X(T;) = Y(k) everywhere since {X(¢):t€[0,+0)}
has continuous sample paths. Furthermore for fixed weQ, Ty(®) £ Ty, (o).
Hence in order to prove the theorem it suffices to prove that for each nonnegative
integer k,

(2.5) [T, £ s]ec{X(1):te[0,s]}  forevery se[0,+o0).
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We prove this by induction on k. Let se[0, +0). If s< ¢, then [T, < s] =
pea{X(t): te[0, s]} since Ty = co. Suppose that ¢, < 5. Now

[To = 5] = {w:inf{t 2 ¢: X(t,0)— Y(0,») = 0} < s}.
Let 4=[T, £5]n[X(co)—Y(0) £0], and let B= [T, < s]n[X(c,)— Y(0) > 0].
Rewriting A and B we see that

A = {@: 5P, ¢ 10,5 (X(t, @) = Y(0, w)) 2 0}n[X(co)— Y(0) < 0],
and
B= {w:infte[c‘o,s] (X(ta (D)— Y(Oa CO)) é O}n[X(CO)_ Y(O) > 0]
Now by hypothesis a{Y(0)} co{X(¢): &[0, c,]}. Hence [T, < s] = AUBea{X(t):
te[0, s]} and therefore T, satisfies (2.5). Let k be a nonnegative integer and assume
that 7, satisfies (2.5). Let s€[0, + o). If s < ¢4, then [T}y, < 5] = pea{X(2):
tel0, s]} since T, = ¢4 ,. Suppose now that ¢, ., < s. Let
A={o:inf{t 2 ¢y : X(t,0)— Y(k+1,0) =0} < s},
and let
B = {w:inf{t 2 T(w): X(t,w)— Y(k+1,0) = 0} < s}.

Then [Ty, < s] = AnB. Moreover
A= (An[X(cp+ )= Y(k+1) £ 0DU(AN[X(cps1)— Y(k+1) 2 0])
= ({0:sup;c oy, 0 (X (1, 0) = Y(k+1,0)) 2 0}[X(cps ) — Y(k+1) < 0])
U({w:inf, ¢, , .0 (X (1, @)= Y(k+1,0)) £ 0}A[X(cs )= Y(k+1) > 0]).

Using the fact that o{Y(k+1)}ca{X(2): 1€[0, ¢, ]}, we see that Adea{X(t):
t€[0, s]}. Letting O denote the rational numbers, B can be written as follows;

B =% {o: forsome te[Ty(w),s]nQ,|X(t,w)— Y(k+1,0)| < 1/n}
=721 {w: for some te[0,5]nQ, |X(t,w)— Y(k+1,0)| < 1/n
and Ty(w) <t}
= Moz 1 [V eo,mno[|X(®) = Y(k+ )| < 1n]A[T, < D).
By our induction assumption, 7 satisfies (2.5). Also by hypothesis o{Y(k+1)}c
o{X(t): t€[0, ¢, 4]} and ¢, < 5. Hence we see that Beo{X(t): te[0, s]}. There-
fore [Ty, < 5] = AnBea{X(): te[0,s]}. [

Before beginning the proof of the major theorem of this paper, we state the
following known result.

LEMMA 2.3. Let {X(1):t€[0, +o0)} be a Brownian Motion process and let
Ry, -, R, be independent random variables such that o{X(t): te[0, + )} and
o{Ry, ", R,} are independent sigma fields. Define &, -+, <, as follows;

&, =inf{t 2 0: X(t) = R,}, and
fork=2 - n,

Fe=inf{t 2 0: X(t+Y(Z] F)- X421 &) =R}
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Then &, -+, &, are independent random variables and fork = 1, - -+, n, the process
{(X+Yh , #)—XG k-1 &) : te[0, + )} is a Brownianmotion process independent
of %y Also for k=1,---,n—1, 6o{X(t+Y 5., F)-XQ -, &):te[0, + )} is
independent of o{R,, }. Furthermore if Ry, -, R, are identically distributed then
&1, P, are identically distributed.

ProoF. The proof follows from the strong Markov property for Brownian
motion. See ([1] Theorem 12.42, page 269) or [6]. If Ry, -, R, are identically
distributed then the fact that &, ---, %, are identically distributed follows from
([5] Theorem 1, page 1605).

THEOREM 2.4. Let {X(t):t€[0, +0)} be a Brownian motion process and let
{Y(): ¢€[0, + 00)} be a stochastic process such that the following requirements are
satisfied:

2.6) {Y(2): «€[0, +00)} has left continuous sample paths and
independent increments with  Y(0) = 0 = lim,, ., Y(1/2") on Q,
2.7 there exists a real number ¢ =0 such that for every
a0, + ), 6{Y(®)} o {X(r): 1€[0, a+c]},
(2.8) T is a positive real number and the sample paths of

{Y(a): 2€[0, +0)} are of bounded variation on [0, T].

Then the process {Y(x): a€[0, T]} can be obtained from {X(¢):te[0, +0)} by
means of a random time change.

PrOOF. Let A= T+c. Define the process {W(r):te[0, +0)} by W(t)=
X(t+2)—X(4) for te[0, +0), and define the process {Z(¢):1€[0, +00)} by
Z(t) = Y(1)— X(A) for te[0, + ). Let ae(0, T] and let n be any positive integer
such that 1 < [2"«] where [2"x] denotes the largest integer < 2"«. For such an o
and n define T(a, n, k, ) for k =1, ---, [2"] as follows:

T(a,n,1,w) = inf{t 2 0: W(t,0) = Z(1/2", 0)},
and fork=2,---, [2"a],
T(o,n,k,w) =inf {t 2 0: W(t+Y*2! T(a, n, i, 0), w) = Z(k/2", w)}.
Define T;ioc, n,-) and T(a, n, ) by

T(o,n,0) = Y27 T, n,k, ),
and
T(a, n,0) = T(a, n, )+ A

Clearly T'(«, n, ) < T(B, n, w) for 0 < o £ B < T since
(2.9) T(a,n,i,0) = T(B,n,i,w) for i=1,"+-,[2"a] and weQ.

CLamM 1. Let a€(0, T] and let n be any positive integer such that 1 < [2"«]. Then
for each weQ, T(a, n, w) < T(a, n+1, w).
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PRrOOF OF CLAIM 1. In order to prove the claim it suffices to show that
T(, n, 0) £ T(a, n+1, w) for each weQ. By definition

T, n,0) = Y29 T(e,n, k, 0) and
T, n+1,0) = Y"1 T(@n+1,k o).

Notice first of all that 2[2"a] < [2"*'«] and so the sum defining T(o, n+1, )
contains at least twice as many terms as the sum defining T(a, 7, ). Now

2
T(e,n+1,2,0) = inf{t >0: Wi+ T, n+1,1,0),0) = Z(?'Ti ,w)}

= inf{t = T,n+1,1,0): W(t,o) = Z(%,w)}

—T(,n+1,1,w).
Hence

N2 T(a,n+1,k,w)=inf{t 2 T(a,n+1,1,w): W(t,0) = Z(1/2", )},

and by comparing this with the definition of T(a, n, 1, w), one can see that
T(a,n,1,0) £ Y2, T(a,n+1,k,w). Let i be an integer such that 1 <7 < [2"] and
assume that Yi_; T(a, n, k,0) £ Y 2L, T(2, n+ 1, k, ). By definition

T(,n,i+1,0)

= inf{t =0: W(H- z': T‘(oc,n,k,w),w) = Z(i—;,.—l,w»
k=1

=inf{tg z“: T(oc,n,k,co):W(t,w)=Z(%;—l,w)}— Zl: T(a, n, k, o).
k=1 k=1

Therefore
i+1 i l+l

(2.10) Y T(a,n k)= inf{t = Y T(onkw):Wto) = 2(7 ,w)}.
k=1 k=1

In the same manner one obtains
2(i+1)

(2.11) Y T(,n+1,k o)
k=1

2it+1
_1nf{t> Z T, n+1,k,0):Wto)= 2(2(21,:11),60>}

By our induction assumption Yi_, T(¢,n,k,w) < Y2 T(a,n+1,k,0) since
T(a, n+1,2i+1,w) =0, so by comparing (2.10) and (2.11) we see that
Yiti T(on k,w) £ Z,f(‘“) T(a, n+1, k, ). This completes the proof of Claim 1.

CramM 2. Let ae(0, T] and let n be any positive integer such that 1 < [2"«].
Then for k=1, -+, [2"¢] and weQ,

k
X(l+ Y T(a,n,i,w),w) = Y(%,w).
i=1
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ProoF OF CLAIM 2. {W(1): te[0, +o0)} has continuous sample paths so by the
definition of T(a, n, k, w),

k k
W(Z T(a,n,i,co),w)=2(?,w>
i=1

fork=1,---,[2"] and weQ. Hence

X<A+ i 'T(oc,n,i,w),co)——X(l,co) = Y(;,w)-—X(zl,w)
i=1

i=

fork=1,---, [2"«] and weQ. This proves Claim 2.

CLamM 3. Let «e(0, 7] and let n be any positive integer such that 1 < [2"«].
Then T(a, n, -) is a stopping time for {X(¢): 1€ [0, +00)}.

PRrOOF OF CLAIM 3. By definition
T(o,n,")=A+T(n, ) =A+Y 2T (o, n,k,-).

We shall prove by induction that A+ 29 T(a,n,k,*) is a stopping time for
{X(t):t€[0, + 00)}. For any real number s >0, set &, =o{X(t):te[0,s]}. If
0<s<Athen [A+ T(ax,n, 1,:) £ 5] = peF,. Assume that 1 <5< + 0. Now

T(a,n, 1,) = inf{t > 0:W(t) = z(zl)}

= inf{t 20:X(t+4) = Y(%)}
A
Therefore

= inf{t =X = Y(—zl—n)}— .
[A+T(a,n,1,-) < 5]

= {w:inf{t =1 X(t,w) = Y(%,co)} < s}

= ({w sup (X(t, w)— Y(%,w)) = 0} n[X(A)— Y(%) = O:D
te[A,s]
U ({co inf (X(t, w)— Y(% ,w)) < O}n[X(Z)— Y(%) > 0])
te[A,s]
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But 1/2"<a<T=<Ai1<s since 1=5[2%], and so o{Y(1/2")}c#, Thus
A+ T(, n,1,-) < s]eZ, and therefore A+ T(a,m, 1,) is a stopping time for
{X(1): te[0, +0)}. Let i be any integer such that 1 <7 < [2"] and assume that
A+Yk_1 T(e,n, k,*) is a stopping time for {X(¢): r€[0, +o0)}. If 0 < s < A then
[A+Y5E T(o,n,k,-) < 5] = ¢peF,. Suppose that A < 5 < +00. Now

T(,n,i+1,w)

=inf{t; 0:W<t+ i T(a,n,k,w),w) =Z<i-;—1,w)}
=inf{ >0 <t+l+ Y T(o,n,k, o), ) (l;l,w)}
k=

1nf{t>l+ Z T(a,n, k,0): X(t,0) = Y( e )}—(l+ i T(a,n,k,co)).
k=1

For convenience set f(w) = A+ Y s T(a, n, k, ) for each weQ, and let Q denote
the rational numbers. Then

[l+h§ T(a,n, k") < s]

k=1

= {w:inf{t 2 f(w): X(t,w) = Y(i—z-*—-”—l,w)} =< s}

= ro.i {w for some te[ f(w),s]NQ, X(t w)— Y( ;l,w)l §1]}

{w for some te[0, s]r\Q,‘X(t w)— Y( ;1,w>l % and f(w) £ t}
j=1

-0l 8. (o (5) 3 fusa)]

By our induction assumption, f is a stopping time for {X(t): t€[0, +0)}. More-
over a{Y((i+1)2")}eF,since « S T< A< s and 1 £i<[2%]. Hence from the
above we see that [A+Y il T (o, n,k, ) £ s]eﬁ' Thus by induction T(a, n, +) is
a stopping time for {X(¢): te[0, +o00)} which proves Claim 3.

From Claim 1, if (0, T]and weQ then lim,_, , ,, T(¢, n, w) exist in the extended
real numbers. In the following claim we prove this limit is finite almost surely.

“.:)8 <.

CLamM 4. Let A = [lim,, , o, T(T, n, *) < +o0]. Then P(4) =1 and lim,_, ;. ,, T(a,
n, w) < +oo for any ae(0, T] and we 4.

Proor oF CLAamM 4. By (2.9), T(a, n, w) < T(T,n, w) for any ae(0,T] and
weQ. Also A = [lim,_,, T(T, n, ) < +o0] and so it suffices to show that

(2.12) Plim, 1. T(T,n,") < + 0] = 1.
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For each integer n such that 1 < [2"T] define B, by

TN -1\ 2T R\ (k-1
= VI L | \_y(F?
B kzl Z( ) Z( 2 )' k; Y<2") Y( 2" )

and let B = lim,_, , ., B,. By condition (2.8), B(w) < + oo for each weQ. Let n be
any positive integer with 2 < [2"T] and define T*(n, k, - ) fork =1, ---, [2"T] by

b

T*(n,1,0) = inf{t 20:W(t,w) = ]Z(%, w)—Z(O, w)l}

andfork =2,---, [2'T),
T*(n, k, )

k-1 k
=inf{t§O:W(t+ Y T*(n,i,w),0 ) Z

i=1

Ae)-o(5he)}

Since {W(t): te[0, +0)} has continuous sample paths,

k k
W(Z T*(naia')>= Z
i=1 i

k k—1
) () "8
. k
W(Z T(T,n,i,-))=Z<?> on Q
i=1

for 1 £ k < [2"T]. Therefore for 1 < k < [2"T],

(2.13) T*(n,k,~)=inf{IgO:W<t+ki1 T*(n, i,~)) (kil T*(n,i, ))
i=1
k k—1
2(z)-2('F)
and
(2.14) 1(T, n,k,-)=inf{t <t+ Y. T(T,n,i,- ) (kzl T(T,n,i,- ))

~#(a)#(%))

By (2.7), 6{Z(k/2")— Z((k—1)/2")} c6{X(1): te [0, A]} for k = 1, -, [2"T]. Hence
since {Y(a): €[0, +00)} and {X(¢):t€[0, +00)} have independent increments
we have that Z(1/2"—Z(0), Z(2/2"—Z(1/2"),--, Z([2"T}/2" - Z(([2"T]- 1)/2")
are independent random variables with ¢{Z(k/2")—Z((k—1)[2"):k=1,""",
[2"T1} independent of a{W(¢): t€[0, + 0)}. Lemma 2.3 and (2.13) now imply,

(2.15) T*(n,1,7), T*(n,2,"),"**, T*(n,[2'T],")

are independent random variables.

and

b
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In the proof of Claim 3 it was shown that A+ T(T, n, 1, -) is a stopping time for
{X(t): te[0, + )} and so by ([1] Theorem 12.42, page 269), {W(t+ T(T,n, 1, -))—
W(T(T, n, 1, )): te [0, c0)} is a Brownian motion independent of ¢ {X(¢): te [0, ]}.
Therefore by (2.14), Lemma 2.3, and [5, Theorem 1, page 1605],

(2.16) (r,n,2,"), -, T(T,n,[2'T],")
are independent random variables such that for
k=2,---,[2"T], L(T(T,n,k,+)) = L(T*(n,k,)).

Let n, bé the smallest integer such that 1 < [2"T]. For any integer n = n,, define
H, by

H,(w) = inf{t 2 0: W(t,w) = B,(w)} for weQ,
and define H by
H(w) = inf {t = 0: W(t, w) = B(w)} for weQ.

2lele)- )= 2 G,

it is clear that for each n = ny,

(2.17) H,=YZ1T*n,k,-) on Q.

Since

Since B,—»B< +00 as n— +o00 and since 6{B,:n=ng, ny+1,ny+2, '}
o{X(t): t€[0, A]} which is independent of a{W(t): 1€[0, +c0)}, it follows from
([5] Corollary 1A, page 1605), that

(2.18) L(H,) - L(H) as n- + .

By Claim 1, T(T,n,-)< T(T,n+1,-) and so for any real number 7,
[lim, 4 (T, n,2) > v] = Ur  [T(T,n,0) > 7]
Thus
P[lim,_, o, T(T,n,*) > 2y]

= lim,_, ., P[T(T,n,") > 2y]
(2.19)  =lim,, ., PDETT(T,n,k,-)> 2y]

< limsup,, o (P[T(T,n,1,*) > y]+ P[Y XD T(T, n, k,*) > v])

< limsup,., ;o P[T(T,n,1,+) > y]

+limsup,., + o P[D 23 T(T,n, k,*) > 7],

for any real number y. Now Z(1/2") = Y(1/2")— X(A) » —X(4) as n— + oo since
Y(1/2") > 0. Furthermore for all n sufficiently large, o{Y(1/2")—X(1)}<a{X(?):
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te[0, A]}. Hence letting 7 be defined by T(w) = inf {t=0: W(1) = — X(4)}, we get
from ([5] Corollary 1A, page 1605) that Z( T(T, n, 1, )= L(T)asn— +00. Also
by (2.15) and (2.16), for any real number y,

PRIETT(T, n,k,+) > y] = P[Y2 T T*(n,k, ) > 7]
S PRAETIT*(n,k, ) > 9]
= P[H, >y].
Statements (2.18) and (2.19) now imply that
P[lim, ., T(T,n,) > 2y] < P[T > y] +P[H > y]

for any real number y belonging to the continuity sets of ZL(T) and L(H). There-
fore since T and H are finite it follows that Pllim,,, , T(T,n,*) = + 0] =0.
This completes the proof of Claim 4.

Define the stochastic process {T,:ae[0, T} as follows; Ty, =0, and for « (0, T,
T, =lim,_, T(x, n, -). By Claim 4, T, < + o0 a.s. Also for any real number s = 0,
[T.=5s]1= N2 [T(x,n,-) < 5] by Claim 1. Claim 3 now implies,

(2.20) each T, isa stopping time for {X(7): e [0,+ c0)}.
CLamM 5. Let a€ [0, T]. Then X(T,) = Y(a) a.s.

PrOOF OF CLAIM 5. If a =0, X(T,)=0= Y(0). Suppose that oe(0, T]. By
Claim 4,

T,=lim,, ., T(e,n,")=1lim,,,, T(e,n,")+i< +0 as.,

and {X(t): te[0, + )} has continuous sample paths. Hence since {¥(a):
a€[0, +00)} has left continuous sample paths,

X(T) =lim,, , , X(T(o, n,*)+ )

=lim,_ , , Y<[22:‘]> by Claim 2

= Y(o) as.

This completes the proof of Claim 5.
We have now shown that
(i) for each €0, T, T, is a stopping time for {X(2): 1€ [0, +0)} (from (2.20)),
(ii) for each [0, T], X(T,) = ¥(a) a.s. (Claim 5),
(iii) for fixed w, T,(w) is non-decreasing in o (from (2.9)), and
(iv) for each «€[0, T], T,=0 everywhere and finite almost surely (from
Claim4). [J
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THEOREM 2.5. Let {X(#):t€[0, +0)} be a Brownian motion process and let
{Y(a): «e [0, +o0)} be a stochastic process such that the following requirements are
satisfied.:

(2.21) {Y(a): [0, + o0)}

has left continuous sample paths and independent increments with

1
Y(0)=0=1im,,_.+wY( ) on Q,

2"
(2.22) there exists a real number ¢ =0 such that for every
ae[0, + ), a{Y(2)} co{X(): te[0,a+c]},
(2.23) for every positive integer n, the sample paths of

{Y(«):2€[0, + 0)} are of bounded variation on [0,n].

Then the process {Y(x): a€[0, +00)} can be obtained from {X(¢): te[0, +c0)} by
the means of a random time change.

Proor. Let  be a fixed positive integer and let «€(0, n]. Set 4, = n+c. For each
integer 7 such that 1 < [2%], define T™(a, i, k, ) fork=1,:--, [2'a] as follows,
T™(a, i, 1,-) = inf {t = 0: X(t+4,) = Y(1/2)} and for k = 2, -+, [2%a],

T™(a,i,k,-) = inf{t = 0: X(t+ 4, + Y521 T™(a, i, j,-)) = Y(k/2)}.

For each positive integer n, define the process {T,™: a€[0, n]} as follows, T™ =0
and for ae(0, n],

T,™ = 3, +lim,, , ., Z;‘z;a;] T, i, k,-).

It was shown in Theorem 2.4 that for each integer n = 1, {T,™: a€[0, n]} satisfies
the following requirements:

(i) for each a€[0, n], T,™ is a stopping time for {X(¢): [0, +0)}.
(ii) for each a€[0, n), X(T,™) = Y(a) a.s.,
(iii) for fixed w, T,(w) is non-decreasing in «, for ae [0, n], and
(iv) for each a€[0, n], T,™ = 0 everywhere and finite almost surely.

Define the process {T,: a€[0, + 0)} by T, = T,\") for a€[0, 1), in general if n is
a positive integer, define 7, = T,™ for ae[n—1, n). Then for each ae[0, + o),
T, is a stopping time for {X(¢): te[0, + )}, X(T,) = Y(«) a.s., and T, = 0 every-
where and finite almost surely. Hence in order to prove the Theorem it suffices to
show

(2.24) for fixed o, T(w) is non-decreasing in a.

Now for each positive integer # and each weQ, T, () is non-decreasing in « for «
ranging in the interval [n—1, n) since T,"(w) is non-decreasing in « for o ranging
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in [0, n]. Moreover for any ae[n—1,n), T,=T,® < T,™. Also T, =T,**"V,
Therefore in order to prove (2.24) we need only prove

(2.25) T,W < T,0+D for n=1,2,3,---.
CrLaM 1. Let n and i be fixed positive integers. Then
)'l+23'=.1 T(")(n’ ik, )= 'ln-l- 1 +Z}:l T(n+l)(”’ ik, *)-

ProoF oF CLAIM 1 by induction.

Now

T™(n,i,1,-) = inf{t 20:X(t+4,) = Y(%)
= inf{t 2 A X(t) = Y(z_l‘)}_;w

A+ Tn,i, 1,7) = inf {‘ 2h X0 = YG‘)} '

Therefore

In a similar manner,

zi

Hence clearly A,+ T®™(n, i, 1, )< Ay + T V(i 1,-) since A, =n+c<
(n+1)+c=24,,,. Now let 1 £j < 2'n and assume that

At Ydo s T, ik, ) S Ay + 34, T®* V(0 ik, ).
By definition
T(")(n’ i’j+ l’ .)

= lnf{t g 0'X(t+l.+ Jz T(n)(n, i; k; .)) = Y(!-‘;Tl)}
k=1

= inf{t 2t 3 TO(n,i,k,+): X () = Y(i—;l)}—(a,+ i T®(n, i, k,-)),
k=1

An+1 +T("+l)(n, i1, ) = inf{t = l,,.,,l:X(t) = Y(_l)} .

k=1
and so
(2.26) A+ YAELT™(n, ik, )
=inf{t = 4, +Y]., T™(n,i,k,-): X(1) = Y(j+1/2")}.
Likewise

(227) Ay + XL T Y, i k,-)
= inf{t 2 ).,,...1"'21:1 T("+l)(”) i,k,*): X(t) = Y(j+ 1/2!)}'
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Using our induction assumption and comparing (2.26) and (2.27) we see that
It DAL T, ik, ) S Ay + X AEL T O, ik, ).

This completes the proof of Claim 1.

From the definitions of 7, and T,”*V and from Claim 1, it follows that
statement (2.25) is true. []

The following two Theorems give another interesting property of the random
variables T, constructed in the proofs of Theorem 2.4 and Theorem 2.5.

THEOREM 2.6. Let {X(t):t€[0, + )} and {Y(x): €0, +0)} be as in
Theorem 2.4. Then the collection of stopping times {T,: a€[0, T} constructed in the
proof of Theorem 2.4 are such that the stochastic process {T,:ae(0, T]} has
independent increments.

Proor. Since {W(t): te[0, + o0)} has continuous sample paths we see that for
2= k=2,

(2.28) T(a,m,k, )-1nf{t>0 W(t+kzl T(,n,i,- ) <Z T(a,n,i,- ))

s

CLAamM 1. Let ae(0, T] and let n be any positive integer such that 2 < [2"«]. Then
the random variables T(a, n,2,-), -, T(«, n, [2"], -) are independent random
variables.

Proor oF CLamM 1. For each te[0, + o),
W(t+T(@n,1,-) - W(T(a,n,1,")) = X(t+ A1+ T(a,n,1,))— XA+ T(a, n, 1,+)).

Also in the proof of Claim 3 of Theorem 2.4 it was shown that A+ T(a, n, 1, ) isa
stopping time for {X(r): 7€[0, +c0)}. Hence by ([1] Theorem 12.42, page 269),
{(W(it+T(,n,1,)-W(T(e, n,1,-)): te[0, +0)} is a Brownian motion in-
dependent of ¢{X(¢): te [0, 1]}, and also by hypothesis Z(2/2") — Z(1/2"), Z(3/2")—
Z(2/2"), - -, Z([2"«]/2")— Z(([2"«] — 1)/2") are independent random variables which
are independent of {W(r+ T(x,n, 1,-))— W(T(a, n, 1,-)): te[0, +c0)}. Therefore
by (2.28) and Lemma 2.3 it follows that T(x,7,2,-), -, T(x, n, [2%], ) are
independent random variables. This proves Claim 1.
LetO <a < B < T Then

T, =lim,, ., [ZI[cz:llﬂ T(ﬁa n,k,- )_Z'[‘Z:alz] T(“’ n,k,- )]
Using (2.9) in Theorem 2.4 repeatedly we obtain
(2.29) TB = llm,,_,+°0 k2”€2na]+l T(ﬁ n k )

2”
=11mn-++oo K41 T(T,n,k,")
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for any 0 <a < B < T. Suppose now that 0 <a; <a, <-* <a; < 7. Then by
(2.29),

(2‘30) Tai+1 - 'IZI,' = limn—* + o0 ;CZ;?E:;,]]‘* 1 T(T’ n, k’ : )

fori=1,---,j—1. The fact that T, - T, , -, T, - T, _,
variables now follows from Claim 1 and (2.30). ]

COROLLARY 2.7. Let {X(t):t€[0, +o0)} and {Y(«): 2€[0, +0)} be as in
Theorem 2.5. Then the random variables {T,: o€ [0, +0)} constructed in the proof of
Theorem 2.5 have the following properties:

are independent random

(2.31) the stochastic process {T,:a€(0,1)} has independent increments, and

(2.32) for each integer n =1, the stochastic process
{T,:ae[n,n+1)} has independent increments.

Proor. The proof follows directly from Theorem 2.6 and by the nature of the
way the process {7T,: «€[0, +00)} was constructed in Theorem 2.5. [

Let {x,}x<% be any strictly increasing sequence of positive real numbers con-
verging to 4 co. Notice that by slightly modifying the construction of the process
{T,: «€[0, + 00)} in Theorem 2.5, (2.31) and (2.32) could be replaced by

(2.31") the stochastic process {T,:a«e(0,x;)} hasindependent increments, and

(2.32") foreachinteger n =1, the stochastic process
{T,:0€[x,,x,+,)} hasindependent increments.

Notice also that by a slight modification in the proof of Theorem 2.4, hypotheses
(2.6) and (2.21) could be replaced by

2.6") {Y(2):«€[0, + 00)} has right continuous sample paths and
independent increments with  Y(0) = 0.

We conclude this work by generating some examples of processes {Y():
a€[0, +o0)} which satisfy the hypothesis of Theorem 2.5.

Let {X(z): 1[0, + o)} be a Brownian motion process, let {f,:k =1,2,3,--}
be a collection of Borel measurable functions, let {#,}i°, be any strictly increasing
sequence of nonnegative real numbers such that for some constant ¢ = 0, t, £ k+c¢
fork=0,1,2,--. Finally for any real number « let (&) denote the largest integer
strictly less than o. Define the stochastic process {Y(x): a€[0, +00)} as follows:
Y() =0 for ael0,1] and Y(x) =) 2 fi(X(t)—X(t,_,)) for a> 1. Since
t<k+cfork=0,1, -, it follows that

o{Y()} ca{X(t): te[0,a+c]}

for each «e[0, +00). Hence (2.22) holds. Clearly (2.23) holds and {Y(x):
a€[0, +00)} has sample paths which are left continuous and right continuous at 0
with Y(0) = 0. Furthermore if 0 < o; £ 1 <, < a3 < ** < a, then

Y(up) = Y(oy) = Y(3) = Y522 fuX(1) — X(ty - 1))
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and fori=2,---,n,
Y(4 )= Y () = Z§°§Z;i>>+ SulX () — X (8- 1)) if o) <<oyep)s
=0 otherwise.

Hence we see that {¥(«): a€[0, +00)} has independent increments since {X(¢):
te[0, +o0)} has independent increments. Therefore {¥(x): ¢ €[0, +00)} satisfies
the hypothesis of Theorem 2.5.
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