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RECTANGLE PROBABILITIES FOR UNIFORM ORDER STATISTICS
AND THE PROBABILITY THAT THE EMPIRICAL DISTRIBUTION
FUNCTION LIES BETWEEN TWO DISTRIBUTION FUNCTIONS!

By G. P. STECK

Sandia Laboratories

1. Introduction. The principal result of this paper is a simple determinant for the
probability that the order statistics from a sample of uniform random variables all
lie in a multi-dimensional rectangle. Immediate applications of this result give:
(i) the probability that the empirical distribution function lies between two other
distribution functions; (ii) very general confidence regions for an unknown con-
tinuous distribution function; (iii) the power of tests based on the empirical
distribution function. These applications, and others, are discussed in Section 4.

Let X,, X5, -+, X,, be independent random variables with a continuous distri-
bution function F and let F,, denote the empirical distribution function. Let
(1.1 P,(gF,hF|F) = P(¢{F(x)} £ F,(x) £ h{F(x)}, for all x|F),
where g and 4 are distribution functions on [0, 1] with g continuous to the left and
h continuous to the right.

Since the random variables F(X) are uniform random variables with empirical
distribution function F,,F ™, it follows that

P,(gF,hF|F) = P,(g,h|F(x) = x) = P,(g, h), say.
Also, since F,F~! passes through the points (0, 0), (U, 1/m), (U®,2/m), -,
(U™=D, (m—1)/m), (1, 1), it follows that

P,(u,v) = P,(g,h) = Pu; S UD <, i=1,2,--,m)
where UM, -+ U™ are the order statistics from a sample of m independent
uniform random variables, u; = h~(i/m) and v; =g~ ((i—1)/m), i=1,2, -+, m.

In this paper we show that P,(u, v) is a determinant whose #jth element is
(j-t+ D@i—u;) 771 or 0 according as j—i+1 is nonnegative or negative and
(%), = max (0, x). Thus the determinant is of Hessenberg form with ones on the
first subdiagonal and zeros below the first subdiagonal.

After this paper had been accepted for publication, I found that this result had
been anticipated by Epanechnikov (1968), who proved an equivalent recurrence as
a tool for studying the power of the Kolmogorov one-sample test.

With few exceptions, most notably Epanechnikov (1968), all the previous results
concerning P,(g, #) have been for the special case where g and / are linear. If
g(x) = max (0, ax—b) and A(x) = min(l, cx+d), with a,b,c,d=0, let P,(g, h)
be denoted by P,(a, b;c,d). In particular, if a=c=1 then P,(1,b;1,d)=
P(D,* £b,D,~ <d), where D,,* and D,,~ are the two one-sided Kolmogorov
statistics.
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2 G. P. STECK

Kolmogorov (1933) derived a system of recurrences for P, (1, b/m; 1, b/m) where
b is an integer. Wald and Wolfowitz (1939) succeeded in expressing P,,(0, 0; 1, d)
and P,(1, b; 0, 1) as determinants (of differing structure), but, unaware of Kolmo-
gorov’s result, they were unable to derive a similar expression for P,(1, b; 1, c).
Birnbaum and Tingey (1951) found a closed form for P,(0, 0; 1, d) as an incom-
plete Abel sum; Dempster (1959) and, independently, Dwass (1959) did the same
for P,(0, 0; ¢, d). (An interesting discussion of Abel’s generalization of the binomial
theorem appears in Riordan (1968).) Kemperman (1957) derived the generating
function for P,(1,b; 1, ¢). Durbin (1968) derived the generating function for
P,(a, b;a,d), gave the associated recurrence, and showed that when a = 1, ma
an integer, the generating function takes a simple form similar to the one obtained
by Kemperman. In Section 3 we will show that Durbin’s generating function is
valid more generally.

Nonlinear problems, chiefly in the one-sided case, have been considered by
several authors. Suzuki (1967), (1968), showed that the Wald and Wolfowitz
recurrence for P, (0, 0; 1, d) is also valid as a recurrence for P,,(0, hF| F). He also
gives P, (-, ) in terms of P, (0, -), but this formula appears at least as complicated
as the trivial one obtained by differencing P,(0, ). Anderson and Darling
(1952) studied the asymptotics of the special cases corresponding to g,(x) =
x—a(my(x))™* and hy(x) = x+a(my(x))~* for general nonnegative y. In par-
ticular, when y(x) = x(1 —x), they express lim,,, , P,(gy, h,) in terms of absorption
probabilities for a Uhlenbeck process. These probabilities are given explicitly by
Malmquist (1954) in the one-sided case. Whittle (1961) treats the evaluation of
P, (0, v) formally by generating functions and obtains exact expressions for certain
special cases. More recently, Noé and Vandewiele (1968) develop interesting
recursions for P,(0, v) and for a special case of P,(u, v). They consider in some
detail the one-sided version of the example we consider in Section 4.3. Lientz
(1968) and Birnbaum and Lientz (1969a), (1969b), found exact expressions for
variants of P, (0, v) corresponding to the distributions of certain Rényi and Kac
type statistics.

2. A determinant for P,(u, v). The following proof replaces my original proof
which was to pass to the limit in a corresponding two-sample result due to Steck
(1969). This proof is more informative and can possibly be used to generalize the
two-sample result to the non-null case. Other simple proofs offered as replacements
for my original proof are due to Mohanty (1970) and Walkup (1970).

Let (x), = max(x, 0).

THEOREM. P, (u, v) = m!det [(v;—u;) ./ 7" (j—i+1)!].

Proor. Let U,, U,, -, U, be independent random variables uniformly
distributed on [0, 1], and let UV £ U® < -+ £ U™ be the order statistics. Let A
and Q denote the corresponding sample spaces; that is, A = {(x,, X, ***, X,,) ! 0=
x; =1, all i} and Q= {(x;, x5, ", %) [0S x; Sx, < -- < x, £ 1}. Let F, =
{Gey x5, x) |4, S xS v i<k and 0Sx, Sx, < Sx, <1} denote the
set of which Q, = P,(u, v)/k! is the probability.



EMPIRICAL DISTRIBUTION FUNCTION 3

Expanding the determinant of the theorem, call it D,, by the last column,
starting from the bottom, gives the recurrence

(vm_l_uM)+2Dm_2i‘"+(—1)m+1(v1—uM)+mDo.

(21) Dm=(vm_um)+Dm—l_ 21 m!

We must now prove Q,, = D,,. The proof uses induction and a form of the principle
of inclusion and exclusion and, given the induction hypothesis, consists of showing
(2.1) holds because although the events, of which the terms of (2.1) are the proba-
bilities, count the elementary events in which we are interested with differing
multiplicities, the form of (2.1) assures each is counted only once.

First, to get the induction going we define Q, = D, = 1 and note that the theorem
is trivially true for m = 1; hence Q, = D,. If m =2,

Py(u,v) = P(u; S UP S v,,u, SUP Z0y)

=Pu, SU,Sv,u, SU, S0, or uy SU, Sop,u, U S0,)

=2Pu; U, Sv,u, SU,S0)—Pu, UL U, Svy)
= 2(v; —u;)(vy—u,)—(vy —u2)+2;

hence Q, = D,.

Now, assume the induction hypothesis that Q, = D, fork =1,2, -+, m—1. Let
I, = [u,, v,,—x+1] denote the intersection of the last k intervals [u;, v;1([a, b] = & if
a>b). Let B, = {(xy, X3, "+, X) | (¥1, X35 ", Xy-p) EF_gand x,€h, m—k+1 =
iSsmand x,_y41 S Xp_xs+2 S S x,,} denote the event where some k& (ordered)
of the {U;} belong to the intersection of the last k intervals and the remaining take
values favorable to F,_,. Then P(B,) = [(Vy-rk+1—tn)+ k10— and, by the
induction hypothesis, (2.1) takes the form

(22) D, = P(B))—P(B)% - + (= 1)""'P(B,).

Now let welJJ-; By; to it corresponds a unique largest integer, k(w), such that
weB, for k <k, Let A, = {w|ko(w)=r}. We will show (2.2) holds for any
I=r==m

Assume we F,nA4,; that is, w is favorable to the event of which Q,, is the
probability. The event B, counts w by definition, but B, also counts r—1 other
points corresponding to which x; of the r possibilities x,,_,4+, " **, X, 1S chosen to
be the value of U™; o is in Q, and the other points are in r—1 of the m!—1
different disjoint replicas of Q determined by appropriate inversions of the basic
ordering. This means that the integral of the indicator function of B; over An4,
is r times the same integral over QN 4,; i.e., P(B;nA,) = rP(F,,nA4,). Similarly, B,
counts w by definition, but B, also counts (;)—1 other points corresponding to
which pair (x;, x;) is chosen to be the value of (U™~ 1, U™). Again, wis in Q, while
the other points are in (3)—1 of the replicas of Q. This means that the integral of
the indicator function of B, over An4, is (;) times the same integral over QN 4,;
i.e., P(B,nA,) =(3)P(F,nA,). And so forth, until we find that B, counts w exactly
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once so that P(B,nA4,) =([)P(F,nA4,). Since ({)—(3)*+---+() =1 for any r we
can see that, for any 1 £ r < m,

P(Fm ﬁA,.) =P(B1 r\A'r)_P(BZ ('\A,.)I : iP(BrmAr)‘

Summing over r shows that the RHS of (2.2) is Q,, and hence D,, = Q,, and the
theorem is proved.

If u; = 0, all j, then the determinant given by the theorem for P,,(0, v) is the same
as the one given by Wald and Wolfowitz ((1939), (29)); however, if v; = 1, all , the
determinant given by the theorem for P,(u, 1) is m x m and is in terms of 1 —u;,
while the one given by Wald and Wolfowitz ((1939), (27)) is (m+1) x (m+1) and
is in terms of u;.

An alternative statement of the theorem also exists which “distributes” the m!
into the elements of the matrix. It follows trivially from (2.1).

COROLLARY. P, (u,v) = det [(;_{s )(w;—u;), ™"+

In the one-sided case when, say u; = 0 all j, it is possible to prove a recurrence
which is computationally superior to (2.1) in that it does not have terms with
alternating signs. It is given in the following corollary.

COROLLARY. If Py = | and P; denotes P(0, v) then
(2.3) P, =~ ’};(2)(’})(Uk— j+1)k_ija k=1,2,--+,m.

PRrROOF. Multiply the jth column of the determinant given by the theorem for Py
by (—v)*7/(k—j)!, sum over columns and put in the kth column. This has the
effect of replacing v* i+ /(k—i+1)! by (v;—v)* """ 1/(k—i+1)! except for v,*/k!
which becomes (v, —v,)*/k!—(—uv,)*/k!. The recurrence follows by expanding the
determinant by the last column.

It has been found that direct evaluation of P,(u, v) in either determinantal form
by elimination or expansion is accurate in single precision on the CDC 6600 (60
bit word length) only up to about n = 25. At n = 50 even double precision is inade-
quate. However, the recurrence (2.3) for one-sided probabilities is accurate in single
precision at least to n = 100 where it was used to check Table 1 of Noé and
Vandewiele (1968).

3. A determinant for P,(a, b;c,d). In this important special case g(x)=
max (0, ax—b) and A(x) = min (1, cx+d) so that u; = 0 or (j—md)/mc according as
j<md or j>md and v;=1 or (i—1+mb)/ma according as i = m(a—b)+1 or
i <m(a—b)+1. Thus

(3.1) P,(a,b;c,d) = m!det(ri7 " /(j—i+1)!)

where r;; = (v;—u;)) ;.

If a £ be+ad and {(m(a—b)) £ [md], where [x] is the integer part of x and (x) =
—[—x] is the smallest integer greater than or equal to x, it is impossible for F,, to
cross both lines (and vice versa); hence, for this case

(32) Pm(as b;c,d) = I_Q(m’(sl’el)_Q(nls 52a &),
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where Q is the function derived by Dempster (1959, eq. (5)) and 6, =d, g, =
(c+d—1)a, 0, =bla, e, =1+b—a.

In the special case of parallel lines, namely a = ¢, considered by Durbin (1968), it
is possible to modify the matrix (r;;), without changing its determinant, so that it
becomes a bordered matrix whose interior matrix has equal entries on each
diagonal. The lemma which follows shows that this kind of bordered matrix has a
generating function which can be identified by inspection. We will see that the
generating function of the {P,} derived by Durbin for the case m(a—1) = non-
negative integer is also valid for other values of a.

If a=c and {m(a—>b)) > [{nd)] then a > b+d (otherwise (3.2) applies) and
I = J, where I = (m(a—b)), J = [md],

Jim—J
P.(a,b;a,d) = m!de t(AB)I ,
0:C/m—1
(/mb\ 1 mb 1 /mb\? 1 [mb\’
ma) 2'\ma 3\ ma J!\ ma
. mb+1 1 (mb+1\? 1 mb+1\/ !
ma 21\ ma =D\ ma
0 | mb+2 1 (mb+2)’~2
ma J=2)!\ ma
A=< ) r
0 0 0 1
0 0 0 0
| 0 0 0 0 IxJ,
B=
1 (mb+md—.l—1)“‘ mb +md—J— 2)“2 mb +md—J— 3)”3
J+1)! ma J+2)! ma J+3)! ma
1 mb +md—J\’ mb +md— J 1\’*+! mb +md—J—2\’*+?
7! ( ma ) (J+1)'< ) (J+2)'( ) e
mb+md—J+1\’""* 1 mb +md—J\’ mb +md—J—1\’*!
= 1)v ma ) J! ( ) (J+1)'( )

J

I x(m—J)
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and C’is a (m—J) x (m—1I) matrix which will be treated the same way as 4. Note
that B has equal entries on each diagonal, since its entries depend only on j—i, and
that (4B) would also if mb were replaced by mb+md—J in the Jth column of A4,
mb were replaced by mb+md—J+1 in the J— Ist column of 4, etc.; i.e., if md—j
were added to mb in the jth column of 4. This can be done (except for the first
element in a column) by replacing each column of 4 by a linear combination of
columns in the way illustrated by Steck ((1969), (4.2)) except that (%) is replaced by
u*/k! and the proof is by the binomial theorem instead of the Vandermonde
convolution formula. In a similar way (except for the last element in a row)
i+mb—ma—1 can be added to md in the ith row of C.
The net result of all this is the following: let p = ma, ¢ = mb, r = md; then

63 " p 0, bia,0)=
@+7r)—@); (@+1),—()2 (@+1)3—()3 =+ 0 0 0
1 (g+1) (g+1), 0 o0
0 1 (g+nr), 0o o 0
0 0 0 o 1 (q+7r) (g+71),—(m—p+q),
0 0 0 1  (g+r),—(m—p+q),

mXxXm

where (x), = max (0, (x—r)"/r!).
A straightforward generalization of a result on the ratio of series (see, for
example, Adams (1957) page 119, (6.360)) is the following.

LEMMA. Let the coefficients {c;} be defined by (1—b;x+b,x*+ ) (1—d,x+
dyx*+ - )(1—ax+ax*+ ) = l+c;x+c,x%+ -+ Then

ay—by ay—b, az—b; -+ a,_,~b,_, a,—b,—d,
1 a; a An—2 Ay1—dy—y
0 1 a n-3 Uy —dy—2
€ = :
0 0 0 a, a,—d,
0 0 0 1 a,—d,
nxn

From this lemma it follows that the generating function of

{(may"|m!}P,(a, b; a, d)
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for the case {(m(a—b)) > [nd] is

(3.4) f@®) =g(t,r) gt,m—p+q)gt,q+r),

where g(f, x) = 1—(x— Dt +(x—2)%t3/21+ - +(x—h)"t*/h!, h = [x]. This is the
same generating function found by Durbin (1968) for the case m(a—1) = non-
negative integer.

Because of the relationship between the results of this section and the results of
Durbin (1968), we present the following dictionary:

Steck Durbin Steck Durbin
m n D =ma n+c
a (n+c)/n q=mb b
b b/n r=md a
d ajn m—p+q b—c
mla—1) ¢ g(t, x) 9(z, x).

4. Applications. Being able to compute P,(g, &) makes it possible to do many
things. Only five possibilities are considered here.

4.1. Power computations. It is possible to compute the power of any test of
H:F = F, against A:F = f(F,), where f is a continuous distribution function on
[0, 1], based on an acceptance region of the form {accept if g{Fy(x)} < F,(x) <
h{F,(x)} for all x}. If g, and h, are chosen so that P,(g,, h,) = «, then the power of
the test is 1—P,(g9,/ "', h,f ~'). From the theorem it follows that

(4.1.1)  1— Power = m!det{[(f(v)—f(u)), " /(j—i+D!},

where v; = g,” "((i—1)/m), u; = h,”*(j/m) and (x), = max (0, x). Most powerful
tests of this form are found by minimizing the right-hand side of (4.1.1) subject to

Pm(gaa ha) = mldet {[(U,-— uj)+]j—i+ 1/(.]_l+ 1)'} =da.
It is probably an understatement to say that, in general, this will be difficult to do.

4.2. General confidence regions for F. Very general confidence regions for
estimating F are possible. From (1.1) we have

P(h™'F,(x) £ F(x) S g7 'F,(x), forall x|F)=P,(g,h) = (say)

and it follows that the functions (A~ 'F,,, ¢~ 'F,) form a 10009, confidence region
for F.

Now that it is possible to construct myriads of confidence regions for F, it is
natural to ask for a “best” one and to compare it with the standard Kolmogorov
region. One possible criterion of “bestness’ is related to minimizing the expected
area of the region. Another possibility is to minimize in some suitable way the
probability of covering a false G which is given by

P(cover false G|F) = P,(gGF~',hGF™").
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The questions concerning optimum confidence regions for F will be discussed
more fully in Steck (1970). Here, we will content ourselves with some numerical
comparisons using the criterion related to expected area.

If X; <X, <+ £ X, are the order statistics from a sample of » independent
observations on a distribution F, then the area of the general confidence region
based on the empirical distribution function is 4, = Y1 (v;—u;_ )(X;— X 1),
where uy =0, v,,, = | and (X, X,,, ) is the domam of F. In order to make sense
for infinite or semi-infinite domains we normalize and consider instead

n+1

=i;(0i U;- I)EX EX, 1/(’”‘1)

Now, E4, = 143 f(v;—u)/(n+1) and is a measure of optimality independent of
F. 1t is certainly possible to minimize EA, subject to p,(u, v) = «, but it is difficult
and I have not tried it yet except in the one-sided case.

However, motivated by the consideration that nF, is a binomial random variable
with mean nF and variance nF(1—F), it is reasonable to consider regions which
are fat for x near F~!(3) where F,(x) is most variable and then near x =0 or 1
where it is least variable. Following Anderson and Darling (1952), Malmquist
(1954) and Noé and Vandeweile (1968), we considered first the elliptical regions,
E,:g, h = x+ p(x(1—x)/n)*. Computation for many values of #n and § showed such
" regions were uniformly worse than the Kolmogorov region with the same coverage
probability. Since regions based on ellipses, E,, which have the diagonal as a major
axis are also candidates for the “best” region, it is natural to consider instead the
family of ellipses rotated about the center (2, 1) lying somewhwere between these
two extremes, E; and E,. Allowing degrees of freedom for major axis, minor axis,
and orientation, we minimized E4, subject to P,(x, v) = a and improved on the
Kolmogorov regions. The results are summarized in the table under “F,: Rotated
Ellipse.”

Since rotation is so important, let us next consider regions formed by parallel
straight lines; that is, regions formed by optimum rotation of the Kolmogorov
regions about the point (4, 1). The results are summarized in the table under
“F,: Rotated Parallel Lines.”

Although the Kolmogorov regions are not optimal in small samples for the
criterion considered (it can also be shown that they are not asymptotically optimum,
either), they are not far from optimum and one would probably prefer them, for
practical reasons, over the more complicated ones.

As a final comment, we note that we do not need to consider only regions based
on F,. Although F, has optimum asymptotic properties as an estimator of F (see,
for example, Aggarwal (1955) or Dvoretzky, Kiefer, and Wolfowitz (1956)), the
modified empirical distribution function has some small sample advantages.

Suppose F is a continuous distribution function on [0, 1]. Let F, be the
function obtained by connecting the points (0, 0), (1/n+1, X)), 2/n+1, X3), -,
(njn+1, X,), (1, 1). For F, we have P((gF < F, < hF)= P(g~'F, < F<h™'F,) =
P,(, 9), where @i, = h™'(i/n+1) and 9; = g~ *(i/n+1), and the expected area of this
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confidence region, assuming F(x) = x, is an integral which can be approximated by
Z(v;—u;)/(n+1). Computations for regions based on F, for g, h = x+c¢ and for
g, h = rotated ellipses are summarized in the table under “F,: Kolmogorov
Region” and “F,: Rotated Ellipse.”

TABLE 1
Values of expected normalized area for various types of confidence regions for an unknown
distribution function

F" Fn
Sample Confidence Kolmogorov Rotated Rotated Kolmogorov  Rotated
Size Coefficient Region  Parallel Lines  Ellipse Region Ellipse
.90 .578 575 .568 513 477
10 .95 .628 .622 .614 .565 .523
.99 715 707 .697 658 .607
.90 450 .448 .438 412 .390
20 .95 492 .489 477 454 429
.99 .570 .565 .549 .535 .501
.90 .382 .381 .370 .355 .338
30 .95 419 417 .403 .393 371
.99 .489 .486 468 464 435

4.3. Small sample distribution of K,-statistics. Let
Ko = sup,m* | Fy(3) = F(x) | (W {F()))*.
Then P(K,, £ z) = P,(g,, h,). where g,(x) = x—z(my(x))~* and
hy(x) = x+z(my(x)) 2.

Following the procedure outlined in Section 4.1, one can easily investigate the
power of tests based on K, statistics.

4.4. Small sample distribution of C,-statistics. Pyke (1959) introduced a modified

D," statistic defined by
i .
Co* = —y®
m = (m+1 >

which has the property that the probability that the maximum occurs at i = i, is
independent of i,. There is also the obvious analogue of D,,

i .
C,, = max -Uu®
i n

m

The small sample distribution of C,,*, given by Pyke (1959), as well as the
small sample distribution of C, are given by the theorem (or corollary)
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with u; = max [if(m+1)—c, 0] and v; =1 for the distribution of C,*and v, =
min [i/m+1)+c¢, 1] for the distribution of C,. The power of these tests can be
studied also.

4.5. Small sample distributions of Rényi-type statistics. Birnbaum and Lientz
(1969a), (1969b) and Lientz (1968) derive the exact and limiting distributions of the
Rényi-type statistics

Ri=  swp  {F(9)=F()

{x:aSFn(x)=b

Rz - sup {Fn(x)_F(x)}

{x: a< Fn(x)<b} F,(x)

Ry=  sup (F,(9)=F().

{x:a<F(x)<b

These exact distributions also follow from the theorem with appropriate, easily
determined, choices for 4. The distributions of two-sided versions of these three
statistics are also easily computed. Using the ideas of Section 4.1, it is easy to see
that the power of tests based on these statistics is just as easily computed.
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