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1. Introduction and summary. Let x:p x 1 be distributed N(p, X) where p and X
are both unknown. Let S be the sum of product matrix of a sample of size N.
To test the hypothesis of sphericity, namely, Hy:X = ¢%I,, where o > 0 is un-
known, against H;:Z # o’I,, Mauchly [10] obtained the likelihood ratio test
criterion for Hy in the form W = |S|/[(tr S)/p]”. Thus the criterion W is a power
of the ratio of the geometric mean and the arithmetic mean of the roots 8, 60,, ---,0,
of |[S—61| = 0 (see Anderson [1]). In the null case, Machly [10] gave the density of
W for p = 2 and Consul [3], [4] for any p in terms of Meijer’s G-function defined
in the next section.

In this paper we have obtained the general moments of W both in real and
complex cases for arbitrary covariance matrices, and also the corresponding
distributions of W in terms of the G-function.

2. Some definitions and results. In this section we give a few definitions and some
lemmas which are needed in the sequel. First we define Meijer’s G-function by
(2 1) G"""(x al.-~,a,,) — (27”')—1.[ HT=1 r(bj—s)r[;=l r(l_aj+s)

. PR b b cIl=mer TA=b;+5)[ =i 1 T(a;—s)
where an empty product is interpreted as unity and C is a curve separating the
singularities of [, I'(b;—s) from those of [[}-, T(1—a;+s),g=1,0=n <
pP=q0=<m=<g;x+#0and|x| <1lifg=p;x+#0ifg>p.

The G-function of (2.1) can be expressed in terms of a finite number of generalised
hypergeometric functions (see Pillai, Al-Ani and Jouris [11] and Luke [9]).
Further, the hypergeometric function of matrix variates is defined by

PN . e . (al)K e (ap)KCK(S)CK(T)
qu(al, - ap’ bl, ’ bq’ S, T) :kZO EK (bl)!c e (bq)KCh(Im)k'

where the zonal polynomials, C,(-), and (+), are defined in [6].

x*ds,

5

LEMMA 2.1. Let T:m x m be an arbitrary complex symmetric matrix. Then
(22)  fssoexp(—%trS)[S[TH ™+ (tr S)?C(TS)dS
=T (t, K)2™** T (mt + k + q)C(T)/T(mt + k),
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where T,(t, k) is defined in Constantine [2), and R(t) > 1(m—1). (See Khatri [8]).

Similarly, in the complex case, we have the following lemma.

LeMMA 2.2, Let T be as in Lemma 2.1 and S:m x m be an Hermitian matrix. Then
(23)  [s=s>oexp(—trS)|S|* "(tr SY C(TS)dS
= [(a, ©)T(am + k+j) C(T)/T(am + k).

3. Distribution of W in the real case. Let S:pxp be distributed as Wishart
(n, p, £). Then the distribution of the latent roots 91,925 ", g, of S has been
given in the form suggested by Pillai (see Pillai, Al-Ani and Jouris [11]),

(B.1) k(p, n, B)|G|¥* P Vexp(—4tr G, _;(9:—9))0Fos(M, G)
0 >gy 29, 2g,>0
where M = $(I-X7 1), G = diag (g,, g5, “+, gp) and
k(p,n, L) = |E|_%"71“2/Q“"H(%”)Fp(ﬂ’)}-

Now the sphericity criterion, W = |G|/{(tr G)/p}? and the Ath moment of W
can be easily shown to be

2B & ¢ GO0, Tl h TG s
(3.2) E(W") = T,(3n) . Z ; I(3pn+ ph+k)

Further we prove the following theorem.

THEOREM 3.1. For any finite p, the pdfof Wis

( )

(33)  f(w)=C(p,n,E) Z Z PP (S pn+ k)

. W%(n—p— l)Gp O(W |ax f’ﬂ"),
where
C(p, n, E) — n%p(p— l)lz'—in(zn)%(p—1)/I“p(_21n)’

a; =(k+j=1)/p+4(p—1); b; = k;+4(p—J).
Special case. For p = 2, (3.3) reduces to

4n k
(3.4), (W) 2I|(L 1) win=3 Z Z Lo + )

'2F1(a2_b2, al—'bz; a1+a2_b1_b2, 1—W).

CM)wir 2

Proor. Applying Gauss and Legendre’s multiplication formula on

lpGn+h+ k|p)]
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we have from (3.2)
E(W") = C(p, n, £) Yo X [{2CM)p* ~37" " T(bpn + k)} k']
[12- 1 [0+t k;—3(j— D}T{bn+((k+j—1)ip) +h}].
Using inverse Mellin transform, the density of W has the form

(3:5)  JS(w)=C(p,n, E)ZZ ()

*k *”"_'T(%pn _|_k)w%<n—p-1)

C+iw 1:1_ r(r+b)
. N—1 —rlli=1 i
(2mi) Jc— i " =1 T(r+ay) dar,

where r = tn+h—4(p—1), b, = k;+¥(p—j). a; = (k+j—D[p+4(p—1). Noting
that the integral in (3.5) is in the form of Meijer’s G-function, we can write the
density of Wasin (3.3).

REMARK. Putting £ = ¢* I in (3.3) and (3.4) we can easily deduce the result of
Consul [3], [4], and Mauchly [10].

4. Distribution of I in the complex case. Let S: :p X p be distributed as a complex
Wishart (n, p, £) (see [5], [7]) Then, as in the real case, the distribution of the
latent roots g,, g,, ***, g, of S can be given in the form

(41) k(p’ n, E)OFO(MI’ G)exp( tr G) |G|n pnl<j(gl g])z dgn
where M; =1,—£7" and k(p, n, £) = |£| "~ V/T (n)T(p).
Now the Aith moment of Wis

pP M

(4’2) r( )| lﬂn Z Z kl

Further we have the following theorem.

M,)

———=T'(np+ k)T ,(n+h, )/T(np+k+ ph).

THEOREM 4.1. The density of W is
n%p(p—1)|2|—n(2n)&(p—l) © )
= = I'(pn+k
1) e S s Sk
p% pn—kyn- "G" O(W )
where a; = (k|p)+(j—D/p+(p—1), and b; = k;—j+p.

Proor. The proof is similar to that of Theorem 3.1 and hence is omitted.

REFERENCES

[1] ANDERSON, T. W. (1958). Introduction to Multivariate Analysis. Wiley, New York.
[2] CONSTANTINE, A. G. (1963). Some non-central distribution problems in multivariate analysis.
Ann. Math. Statist. 34 1270-1285.



SPHERICITY TEST 767

[3] ConsuL, P. C. (1967). On the exact distributions of the criterion W for testing sphericity in a
p-variate normal distribution. Ann. Math. Statist. 38 1170-1174.
[4] ConsuL, P. C. (1969). The exact distributions of likelihood criteria for different hypotheses.
Multivariate Analysis 2. Academic Press, New York.
[5] GoopmaN, N. R. (1963). Statistical analysis based on a certain multivariate complex Gaussian
distribution. Ann. Math. Statist. 35 152-176.
[6] James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal
samples. Ann. Math. Statist. 35 475-501.
[7]1 Knatri, C. G. (1965). Classical statistical analysis based on certain multivariate complex
Gaussian distributions. Ann. Math. Statist. 36 98-114.
[8] KHATRI, C. G. (1966). On certain distribution problems based on positive definite quadratic
functions in normal vectors. Ann. Math. Statist. 37 468-479.
[9] Lukg, Y. L. (1969). The Special Functions and Their Approximations. Academic Press, New
York.
[10] MAucHLY, J. W. (1940). Significance test for sphericity of n-variate normal population.
Ann. Math. Statist. 11 204-209.
[11] PiLLag, K. C. S., AL-ANI, S. and Jouris, G. M. (1969). On the distributions of the ratios of
the roots of a covariance matrix and Wilks’ criterion for tests of three hypotheses.
Ann. Math. Statist. 40 2033-2040.



