The Annals of Mathematical Statistics
1971, Vol. 42, No. 2, 722-734

ON THE CHARACTERISTIC ROOTS OF THE INFORMATION MATRIX
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0. Summary. The characteristic roots of the information matrix (M) of a balanced
2™ fractional factorial design T are obtained, when the parameters to be estimated
include the general mean p, the main effect 4;, and the two-factor interaction
A;A; (briefly, 4;)), the remaining effects being assumed negligible. (If (M)r is
nonsingular, T is a design of resolution V.) It is well known that T depends on
five nonnegative integers (g, i1s 42, 13, Ua), called its “index set.”” In Srivastava
(1970), the special case when py = p, and uy; = p3 was considered; in this paper,
the theory is presented for the general case. As a by-product of this work, we
obtain a class of useful necessary conditions on the set (1o, iy, #2, 3, Ug) SUCh
that a design 7 with this index set may (combinatorially) exist. If (M) is non-
singular, and (V) = [(M);]~*, an explicit expression (as a function of the y;) has
been obtained for tr (V),; similar expressions for |(V)T| and ch,, (V) can be
easily written down using our results. One reason why tr(¥) (rather than the other
two criteria) should be used for comparing balanced resolution V fractions is given.
Finally, it is shown (through an example of a previously unknown design with
resolution ¥ m = 7) that for a given N (the number of runs), an (existing) optimal
balanced design (optimal with respect to, say, the trace criterion) does not
necessarily satisfy the restriction (y, = p, and p; = puj3), and may be distinct
from the design which is optimal in the restricted class. (Scores of other such
examples may be found in Srivastava and Chopra (1970a), where the results of this
paper are used in a basic manner.) Thus the need for considering designs with
general index sets (which is accomplished in the present paper) becomes obvious.

1. Introduction. The theory of fractional factorial designs has found increasing
use in agriculture, biological and industrial experimentation. However, the basic
problems in this area are still far from solved. For example, consider 2™ factorial
designs of resolution V (a term introduced by Box and Hunter [1961]), i.e. in
which p, the 4; and the A4;; are all estimable, given that the rest of the effects are
negligible. It is well known that a necessary and sufficient condition that the esti-
mates of all of the above effects be mutually uncorrelated is that the design be an
orthogonal array of strength 4. Orthogonai arrays were indeed introduced in this
connection by C. R. Rao (1947), and later their combinatorial properties were
studied by, among others, Bose and Bush (1952), and Seiden and Zemach (1966).
It was found, however, that orthogonal arrays in general require too many
observations to be widely useful as factorial designs. Thus, for example, when
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m = 7, an orthogonal array of strength 4 requires 64 observations, whereas a
minimal design (see, for example, Srivastava and Bose (1965)) involves only 29 runs.
Indeed, given m and N, one has almost always to look for a design which is not
an orthogonal array. The class of ““balanced designs’’ (defined in the next section)
is the next wider class to be looked into. “Balanced” factorial designs, roughly
speaking, possess the same advantages over ‘‘unbalanced” or ‘“less balanced”
ones, as a balanced incomplete block (BIB) design does over ‘“‘unbalanced’ or
““partially balanced”’ designs. In particular, like BIB designs, they would provide
great ease in the analysis and interpretation of results. “Balanced” designs were
introduced first by Chakravarti (1956), who gave them the name “‘partially bal-
anced array.”” However, we shall here call them ‘“‘balanced arrays’ (B-arrays),
since they are a generalization of BIB rather than of PBIB designs. As we shall see,
unlike orthogonal arrays, B-arrays (which reduce to orthogonal arrays for values
of N for which the latter exist) permit economy in the number of observations,
since they are available for every value of N(= v), where v(= 1 +m+ (%)) denotes
the total number of factorial effects to be estimated. However, given a pair (m, N),
there are, in general, a large number of possible balanced 2™ resolution V designs
with N runs. Out of these, one must choose a design which allows estimation of all
the v effects (i.e., for which M is nonsingular), and furthermore which maximizes
information in some sense. For the latter purpose, the popular optimality criteria
(to be minimized) are IV[, tr¥V, and chy,,V, where V' = M ™', All these criteria are
functions of the characteristic roots of M. Thus in order to obtain a design which is
optimal in the class of balanced designs (with given (m, N), of course), the com-
putation of the roots of M (as functions of the y;) is a basic first step. In Srivastava
(1970), this was done for the sy ‘al case when puy = p, and u; = p;. But as
pointed out in the summary, desi: 1s optimal in this subclass are generally not
optimal in the entire class of balanced designs. The computation of the roots of M
in the general case, though somewhat involved, has been carried out using the
machinery of linear associative algebras corresponding to multidimensional
partially balanced association schemes developed in Bose and Srivastava (1964a, b).

The results of this paper solve a major part of the analytical problem of the
theory of optimal balanced resolution ¥ designs. It also gives as a by-product
some combinatorial existence conditions for B-arrays. However, to meet the
further needs of this theory, some further combinatorial work has been started
(Srivastava (1970b), Srivastava and Chopra (1970b, ¢)). Finally, using both the
analytical and combinatorial results of these various papers, we have succeeded in
finding optimal (w.r.t. the trace criterion) balanced 2™ resolution V designs, for
m = 4, 5, 6 in Srivastava and Chopra (1970a). Work for larger values of m is in
progress.

2. Preliminaries. The runs or assemblies of a 2™ factorial will be written
(1s =*»Jm)'s Where j,, the level of the rth factor, equals 0 or 1. Let T be a fraction
with N runs; then T can be expressed as a (0, 1) matrix of size (mx N) whose
columns denote runs. We shall consider the situation where three factor and higher
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order effects are assumed negllglble the vector of unknown parameters is then
L(vx 1), where

(21) = (ﬂ, AI’ BT} Am; AIZ’ A13’ ) Alm’ A23’ A24’ Tt Am—l,m)
= ({u}; {4:}; {4;;}), say.

Consider a resolution V design T. Let (L) denote the best linear unbiased estimate
(BLUE) of L based on T, and let (V) be the variance-covariance matrix of (L).
In this paper, we study the case where T has the property of being “balanced,”
ie. (VT) must be such that Var (A,) Var (AU) Cov (p, A;), Cov (ﬁ A”)

Cov (4;, A,) Cov (4;, A;;), Cov (4;, Ay), Cov (A, Ay), and Cov (A,j, A, are
independent of 4, j, k, I(assumed to be all distinct; i, j, k,/ = 1, ---, m). Now suppose
the normal equations are of the form (see, for example, Bose and Srivastava
(1964a)) ML = z. Then the “normal equations’ matrix (also called ““information”’
matrix) M = (M) is vx v, and its rows and columns correspond respectively to
the elements of L. It is well known that a necessary and sufficient condition for T'

to be balanced is that M have only five distinct elements y,(i = 1, ---, 5) as
indicated below:

(22) 7, =N =¢e(u,p) = e(4;, 4) = E(Aij, Aij)’ v, = &(u, A;) = E(Aj, Aij)
Y3 = &(u, Aij) = G(AhAj) = (Ay, Ajk)s ya = &(4;, Ajk)s
Vs = &4y, Au),

where i, j, k, [ (=1, ---, m) are all distinct, and for x, y € L, &(x, y) denotes the
element of M in the cell corresponding to (x, y). It is further known (see, for
example, Srivastava (1970a)) that the above condition for T to be balanced is
equivalent to requiring that 7" be a ““Balanced array (B-array) of strength 4.”” For
the reader’s convenience, we define this concept here.

DEerFINITION 1. T(m x N) is said to be a balanced array (B-array) of strength 4,
and index set u' = (1g, U1, Uzs U3, Ug), if every subarray T, of T is such that
every (0, 1) vector (of size 4 x 1) with weight i(i = 0, 1, 2, 3, 4) occurs exactly p;
as a column of Ty. (Here, “‘the weight of a (0, 1) vector’” means the number of
ones in the vector.)

For a balanced array T, it is shown in Srivastava (1970a) that

Vi =N=po+aus+6u,+dus+py,  ys = po—4p +0p, —4us+py,
(2.3) V2 = (Ua—po) +2(3— 1), Va = (Ua— o) —2(u3—y),
V3 = Mg~ 205+ o

Finally, in what follows, we would consider M in the partitioned form (recall
Bose and Srivastava (1964a), Srivastava (1970a)):

Moo Mo, Mo,

24 M = My, M,
Sym.

M,,
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where the partition corresponds to {u}, {4}, {4;;}. Thus M, is (1x 1), M, is
mx(3), My, is (3)x(3), etc. and M,, = M, , etc.

It can be easily checked that if an array T is of strength 4, then it is also of
strength 7, < 4. For purposes of illustration, we now present a B-array of strength
4.

EXAMPLE 1. Below, we present a B-array withm = 7, N = 44, t = 4, and index
set 1’ = (3, 2, 3, 3, 3). Notice that the array can also be considered as a fractional
factorial design of the 27 type with 44 assemblies (treatment combinations).
Here the rows correspond to factors and the columns to assemblies. Thus the
seventh assembly below is a factor-level combination in which the fourth factor
is at level 1, and all the others are at level 0.

TABLE 1

Balanced array with 7 rows, 44 columns, strength 4, and index set (3, 2, 3, 3, 3)

0 0O 1 0 00 1 0 00 111 000 1 11000
0 0 O 01 00 01 00 1 00110 1 00110
0 0 0 001 0 0010 01 01 01 01 01 01
0 0O 0 0 01 00 0 1 001 01 1 001 01 1
1 00 00 0O 1 1 11 00 00 0O 1 1 1 1 11
010 00 0O 1 1 1 1 1 1 1 1 11 00 00 00O
0 0 1 0 0 0O 1 1 11 1 1 1 1 11 1 11 1 11
1 1.1 0 00 11 . 0 1 110 1 1 10 1 1 1
1 0 0110 1 1 0 1t 1 1 0 1 1 1 01 1 1 1
01 01 01 1 0 1 1 1 01 1 1 0 1 1 1 1 1
001 01 1 01 1 1 01 1 1 0111 1 11
1 1 1 1 11 1 1 1 1 00 0O 0 0 0O 0 1 1
1 11 1 11 00 0O 1 1 1 1 00 0O 0 1 1
00 0 00O 00 0O 0 0 0O 1 1 1 1 0 1 1
3. Derivation of the characteristic polynomial. We have
M* —-o61 M,
3.1 M—6I| = where
(3. | | My M, =8I’
(3.1a) M. = [Mm] M* = [Moo MOZ] .
. o — ) - ’
MZ 1 ‘ MZO M22

and where I is the identity matrix of appropriate size. Hence
(3.2 |M=5I| = |M*—=8I| (M, —8)—[M, oM ]IM* 811" [Ms, M},]]
= |M*=6I||(My,—3D)—(M14Q0oMoy+M;,0,0M,
+ M Qo2 My + M, ,0,,M,,)|



726 J. N. SRIVASTAVA AND D. V. CHOPRA

where
- Qoo Qo2
(3.3) [M* =511 =[ ] say.
] 0y 0n] Y
Since [M* —68I[M* —611"' = I, we get
(3.4 (Moo—06DQo0+Mo,050 =1, (Moo—01)Q0r+Mo,0,, =0,

M,y6Q00+(My;—061)Q,50 = 0, MyqQ o+ (M, —061)Q,, = 1.

From the above we get

(3.52) - Qo = —(Moo—M)—lMonzr
(3~5b) sz = [(Mzz"51)—Mzo(Moo_él)_lMoz]_l-
(3.5¢) Qoo = (Moo—=0)" " +(Moo—0I)""Mo20,,M,6(Moo—6I)"".

Throughout this paper, I will denote a matrix (of appropriate size) each of whose
elements is one. Now, since (M, —d1) is scalar, the matrix M,o(Mqo—3I)" "My,
is a multiple of J. Thus, from Bose and Srivastava (1964b), it follows that Q,,
belongs to the linear associative algebra L 5 (corresponding to the general triangular
association scheme). Using the tables of characteristic roots of the association
matrix corresponding to the algebra L, it can be checked that (cf. Srivastava
(1970a)) the (possibly) distinct roots of Q,, are (1, —38)"", (1,—3)" !, (13 =) !
with respective multiplicities 1, m—1, and m’, where

my =y +2m—2)y3+m"ys, n, =y +(m—4)y;—(m—3)ys,
(3.5d) w3 =7y1—2y3+7s,

m' = m(m—3)/2, m" = (m—2)(m—3)/2.
Also, as in Bose and Srivastava (1964b), let B5,(¢ = 0, 1, 2) denote the association

matrix for L,. Then, from the theory in that paper, it follows that there exists a
vector of constants q5, = (¢4, 41, 9,) such that

(3.6) 0, = Z§=o qM3;.
Now the vector of roots of Q,, is q,, where
(3.7 Aqy; = [(m *=0)7", (”2*—5)"1-]1,,"—1, (n3*_5)_1']1,m']/ = q*, say,

and where A’ is given by equation (ii), page 162 (Bose and Srivastava (1964b)).
Thus we obtain

3.8) q, = (A'A) 1A' q*, ‘ where A’A = diag ((%), 6(3), 6(%))
Go = (D (¥ =8) " +(m—1)(m* =) +m'(m3*—8) 7]
(3.9) gy = 13 Rm—2)(,* =)~ +(m—1)(m—4)(n,*~6) !
—2m'(n3*—38)""]
4y = T m" (¥ =8) " —(m—1)(m=3)(m,*~ )" +m'(ny*~0)"'].
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Furthermore, from (3.5a, b, ¢), we get

(3.10) 002 = —(71=8) 73[90 +2(m—2)q, +m"q,]1¥ = qo,d’, say, where
Go2 = — (11=0)""y3[q0 +2(m—2)q, +m"q;]

(3.11) Qo0 = (11=0) "' =(y1=0)"'qo273m2 = qoo, say.

Therefore we have

(3.12) : Mi6QooMor = q0072° T mm>

(3.13) (M,000:M51) = M{;0,0Mo; = M (302372 = 72002 M 13 um

=202(m = D2 +3m =274V s

M ,0,,M, = ET+E,(J—1) where

-1 -2
& = (m—1y +£‘n‘1‘_)2(m—) v4l2,
—N(m—
(3.14) & = 1l H =2y + o= 2ty + D g
—2)Y(m-3
{1 = qoy2+(m—2)q,7, +(m—2)‘11)’4+£’f)2(—m) 9274,

{2 = qoyat2q,1y,+2(m—3)q,74+(m—3)q,7,

—3)m—4
+ (ﬂ____)z__.__(’n)qzy4.

Substituting from (3.12)-(3.14), and M,; = y,J+(J—1I)y; in (3.1), we obtain
|M—61| = |M*—6I||ooI+0J|, where

(3.15) 0o =(71—73—90)—(,,—¢&>),

m—2
(3.16) oy = )’3_‘100)’22—2(’"—1)‘]02)’2()’2+ 5 '}’4)—52-

Now |0'01+ 0'1J| = (6o+ma,)o,™ 1. Thus it can be easily checked that
(3.17) |M_5II = [oo(n,* _5)]"‘_1(”3* —0)"(ao+ma)[(y, =), *—9)
—myy3%].

Now we shall express o, and hence (£, —&,) as a linear combination of (n, *—8) ™!,
(n,*—=08)"1, (m3*—35)"'. From (3.14), we have
(B.18) &1 =& = (m=2)(y,— 7y )1 —03) = (m—=2)(7,—74)*[90+(m—4)q,
) —(m—3)q,].
Let
(3.19) go+(m—4)g —(m=3)q, = x; (¥ —8) " +x,(n*—0) "+ x5(m3* —0) 7"
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Substituting the values of ¢, 4, , and ¢, from (3.9), and comparing both sides, we
will have after some simplification, x; = 0, x, = 1, and x5 = 0. Thus

(3.20) £1=& = (m=2)(y,—ya)*(m* =)~

Similarly it can be checked that

m—1 m—2 .
(3.21) b = 5 — 212+ (m =27, ——— (72=75)(m*=9) 7",
(3.22) Go+2m—2)q, +m’q, = (n;*—5)" L
Thus, from (3.10), (3.11), and (3.15), we have
(3.23) qo2 = 73()’1_5)"1(”1*—5)—1,
(3.24) doo = (7, —06)7" +('5'))’32()’1 “5)_2(”1* —-0)71,
(3.25) oy = 73— 122 (11— ) =929 BD (=) T A(m * =) 7!
—_— _ . o m—1
+(m—1)p,(2y, +m—274)73(y1 —9) 1(7[1*_5) 1_—2—m—

R . o om=2 _
(2y,+m—2y,)*(n,* =) 1+_nT— (72— 72 (¥ =) 71,

(3.26) T = (1= 73— 9)—(y2—74)*(m=2)(n,* =)~ ".
Using (3.25) and (3.26), and simplifying, we get
(60 +ma)(y; =) *—08)—(3)75%]
= 2 * =920 —29,0m, % +2y,8% + 62, * =83 — (B)y1y32
(3.27) + ()38 +y1y3(m—Dmy * +(m—1)y ;62
—p3(m=D(yy + 1% = (D) m—1)ys* —my,*ny * +my,*6

—_— m—1
+m(m—1)y,73(2y, +m—2y,) 5 27, +(m—2)y,)%y,

m—1 2
+ 5 [2y, +(m—2)y,]%.

Now, from (3.5d), we have finally
(3.28)  (oo+ma)(yy—0)(n*=8)—(3)y3*] = =8> +¢,6°—c,6+¢3, where
(3.293) Cl = 3'))1 +(3n1_'l‘5)'))3 +m”'))5.

(m—-1)(3m—-38)
—

S +m'(m—1)ysys
2

(3.29b) ¢, = 3y, +2y,73;3m—=5)+2m"y;y5+

m—1 —_—
—my,? -5 @7 +m—2y,)?
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,  (m=1)3m—8)
—

(3:29¢) ¢3 = 9> —(B)m—1)y3>+ 5 1732 +(Bm—"5)7,%y5

+m"y 25 +m (m—1)y1737s—my;9,> —mm"y, %y s +2my,2y,
m—1

5 712y, +m—2y,)%

+m(m—1)(m—2)y,73y4—

Therefore the characteristic polynomial of M is given by

(3.30)  [M—81| = (=8 +¢;02 =0 +¢3)- (7, — 273 + 75— )™
[62—8(2yy +m—5y3=m—3y5) + (3 —13)(y1 —m—375
+m—4y3) = (=7 (m=2)]""".

In order to get the characteristic polynomial of M ™!, change & to 1/d in (3.30).
Thus we have

(3.31) |M71=51| = (c30° —c,0% +¢,0— 1)y, =25 +75— D™
(cs0%—cy5+1)m !
where
(3.32) ¢y =2y +(m—=5)y;—(m—3)ys,
es = (11 =731 —m=3ys+m—4y3)— (32— 74)*(m—2).
Now, we need the following theorem, which can be easily established.

THEOREM 3.1. Consider the polynomial x*+a,x*+a,x+a,. A necessary
and sufficient condition that this polynomial has three nonnegative real zeros, is that
one of the following conditions must hold: (i) a, = a; = a, = 0, (ii) aq = a; = 0,
a, <0, (i) ay =0, a; >0, a, <0, and (iv) aqg < 0, a; > 0, a, < 0. (Notice
that these conditions imply: aq, £ 0,a, = 0, a, < 0).

The above result is made use of in

THEOREM 3.2. Let T be a BA with m constraints, two symbols and of strength 4.
Let (1o, Uy, Uz, U3, 1s) be the index set of parameters for this array. Then a set of
necessary conditions that T exists are

(3.33) P1—2p3+7s = 0 ' which implies that y, = 0;
(3.34a) 2y, +(m—=5)y;—(m—3)ys = 0, or equivalently
(3.34b) (m—=Dpy+(m—1Duz 2 2(m—"5S)u,;

(3.35a) (11 =11 = (m=3)ys+(m—4)y;]—(m~2)(y2—74)* 2 0,

or equivalently

(3.35b) (m—=Muy® < pp(uy +p3) +(m—=2)p 35
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(m—2)(m—3)
7

(3.36) 391+@m=5)y5+ > s = 0;
- — _ Y
(3.37) 3y12_(3m_2)y22+('nD;__My32_(m 1)§m 2,

+23m—15)y,y3+(m—=2)(m—3)y;ys—2(m—1)(m—2)7,7,

+(m—1)(m2—2)(m—3)y3 >0

3_m(nz—1)2 (m—-2)(m-3) ,

2 b Y17 7s

~1)(Bm—28 —D(m—-2)(m-3
+(—_——m )(2m )V1Y32+(m )(m2 ) )Vﬁs?s

(3.38) 7y, 73> +Bm—5)y,%y;+

m—1)(m—2)?
—(3m—2)y1y22—(————)(5——)— P17a> —2(m—1)(m—2)y,7274

m(m—2)(m—13)
+ v22ys+m(m—1)(m—2)y,y374 2 0.

+2my, %y, —

Proor. The above conditions are easily established by applying Theorem 3.1 to
the various factors of the characteristic polynomial in (3.31).

We now obtain an expression for tr¥y, which equals trM ~'. The trace of a
matrix equals the sum of its characteristic roots. From (3.31) it can easily be seen
that M ' will not have more than six distinct characteristic roots. Let these be
01505, 03,04, 05, and ds. Then, again from (3.21) we see that three of the six roots
are with multiplicity 1 each, two are with multiplicity m—1 each, and one is with
multiplicity m’. Therefore

trM ™1 = (5,43, +03) +(m—1)(04+35)+m's.
But, from (3.31), we have
(3.39) I S N S R S —
c3 Cs P1—2Y3+7s
where the ¢;’s have been defined in (3.29) and (3.32). Hence we get
THEOREM 3.3.

—1 !
(3.40) Mt =y, = 2D
€3 Cs 164,

It can be shown that for any array T (considered as a fractional design), a necessary
condition for nonsingularity of (M) is that T contains at least v,, distinct columns.
Also in that case (M) is positive definite. This gives
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THEOREM 3.4. Consider the array T of Theorem 3.2. A necessary and sufficient
condition that L is estimable from T (taken as a fraction), is that (3.33)—(3.38) be
satisfied with strict inequality in each case. Also then the number of distinct columns
in T is at least v,,.

We finally establish

THEOREM 3.5. There exists a B-array T of strength 4 for any m ( = 4) and
any N = v,,, where v, is the number of effects to be estimated (i.e. v, =
1+m+m@m—1)/2).

Proor. In [Srivastava and Bose (1965)], a fraction for 2™ factorial is presented,
in which v, effects of interest are estimable, under the assumption that third and
higher order interactions are negligible. This fraction is a B-array with v,
assemblies. Enlarging this array by the addition of (N—v,,) runs, each run being
(0,0, ---,0) (say), obviously gives a balanced fraction of resolution V with N
runs.

Before closing this section we may remark that from (3.31), we find that V
may have six (possibly) distinct roots with multiplicities 1, 1, 1, m—1, m—1, and
m(m—3)/2 which are widely different. This implies that Ch,,,}/ may not give as
good an ‘“overall’’ view of a fraction as trV. Since the argument of Srivastava
(1970a)) against |V|still stands, tr¥ may usually be preferred over | V| and Clipg, V
for comparison of balanced resolution V designs.

4. Optimal arrays. We now consider the array (7%, say) for the case m = 7,
N = 44 already given in Example 1. Here v,, = 29, so that the design allows
fifteen degrees of freedom for error, which is neither too large nor too small.
Thus, from this point of view, this design should be of practical use. The smallest
orthogonal array available for this problem involves sixty-four assemblies, so
that the present one cuts this number down to about two-thirds. This exemplifies
the economy that one might achieve by using B-arrays.

It is easily checked that, we shall have in this case y; = N = 44,9, = —y, = 2,
y3 = 0,95 = 4. From Theorem 3.3, after some calculations, we then obtain
trace (V) = 0.73. Now, of course, form = 7,¢t = 4, N = 44, an orthogonal array
does not exist. On the other hand, if an orthogonal array T* with N assemblies
and strength 4 does exist for a 2™ factorial, then clearly, trace (¥V7+) = v,,N ..
Thus the ratio

(@.1) (V) (trVy) = v, [Nu(V)] ™" = R, say,

measures, in a sense, the relative efficiency (w.r.t. the ‘trace criterion’) of a 2™
fractional factorial design 7 (with N assemblies, and of resolution V). Now
suppose, among all designs within a certain class C, a design 7" minimizes (say)
the trace of the covariance matrix. Then the “absolute efficiency’ (w.r.t. trace
criterion) of 7 within the class C is indeed one. Thus, for the array of Example 1,
R ~ 29/(44 x0.73) =~ 0.91, while its absolute efficiency within the class of balanced
designs with N = 44, m = 7 and resolution V, is one. Now if for some m and N
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(say m = my, N = N,), an orthogonal array does exist, then it coincides with the
optimal B-array, and we get R = R(m,, N,) = 1. Hence, for a given m, and N,,
what R measures is in a sense “‘the non-orthogonality inherent in the pair (my, No)”.
We may remark here, that in Srivastava and Chopra (1968e), optimal balanced
designs of resolution ¥ for m < 6, and various practical values of N have been
tabulated, and the value of R is high (> 0.85) in the majority of cases.

In Srivastava (1970), a B-array with m = 7, N = 44, t = 4 and index set
(4, 3,2, 3, 4) was presented, and was shown to be optimal w.r.t. the trace criterion
within the subclass of B-arrays for which uo = pu, and g, = u;. Now, for a
B-array to be orthogonal, we must have p, = p, = u; = uy = p,. Also, ortho-
gonal arrays (when they exist) have R = 1. From this, one might conjecture,
that in the general class of B-arrays (for fixed m and N), arrays having u, = uy
and p; = py (when they exist) will be better (say, w.r.t. the trace criterion) than
arrays not having this property. Although some very special modified versions
of this conjecture are proved in Chopra (1967), this conjecture itself is false. The
counter example is provided by the array 7* in Example 1, since for the array
T** in Srivastava (1970), we have trV . = 0.75, while trV . = 0.73.

Finally, we may remark that it can be shown that 7* is the unigue optimal
B-array in the sense that the only other array T, with the same (m, N, ¢) and trace
Vr, = trVp is such that T, is obtainable from 7* by merely interchanging the
symbols zero and one. In practical situations, the choice between T* and T, may be
dictated by physical considerations. Otherwise, one may choose between T* and
T, by randomization, assigning probability (1/2) to each.

S. Proof of the optimality of the design of Example 1. In the following discussion,
we shall consider B-arrays T(7 x N) of strength 4, and index set (uq, ft;, Uy, H3,
Ua). Also we write p' = uy+pz, and u” = po+py.

THEOREM 5.1. For u, = 4, we must have N = 45.

PROOF. (i) p, = 6. Here, (3.34b) implies ' = 4. Hence, by (2.3), N = 52. (ii)
H2 = 5.(3.34b) gives ' = 3. But u’ = 3 (with, of course, y; = 0, u; = 0) is ruled
out by (3.35b). Thus u’ = 4, and hence N = 46. (iii) u, = 4. As in (ii), (3.34b),
(3.35b) imply g’ = 5. Now, when p’ = 5 and u” = 0, (3.37) is not satisfied. Thus
either u* > 5, or p’ = 5and p” > 0. In both cases, we have N > 45. (iv) u, = 7.
Here (3.34b), (2.3) give N = 62. This completes the proof.

Now, from (3.40), for the design T* of Example 1, we have tr¥ . = 0.73.
In order to prove that for any B-array 7 with N = 44, we must have tr¥; > trVp.,

we can (in view of Theorem 5.1 and Theorem 3.4) restrict attention to arrays
Twithl < u, < 3.

THEOREM 5.2. If the index set u' of T is such that (i) u, = 1, or (ii) ,uz =2,
f # 6, o0r (iii) u, = 3, 4’ # 5 holds, then trV, = trV..

PROOF. (i) 4, = 1. Using (3.40), we find that trV' = (6C,/Cs)+(7/8u,) = 7/8 =
trV e (i) u, = 2. Here, (3.34b), (3.35b), (3.36) give 7 = i’ = 3. Also, since
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U, =2, N =44, we have (for fixed u') u" = 32—-4y', C, = 8(3u’'—4), and
Cs = 16{(5u'>+8u'—48)—5(u; —u,)*}. For given p', the ratio C,/Cs is least
when (u;—p,) equals O (¢’ even) or + 1(u’ odd). Using this fact, it can be easily
checked, that when ¢’ = 3, 4, or 5, the bound 6C,/Cs+14/16u, = trV 1. Finally,
when u' = 7, we show that there does not exist any m-rowed B-array with m = 5,
U, = 2. It is enough to prove this for m = 5, since the result for general m is
clearly implied by this. Now, suppose a 5-row array T~ exists with u, = 2, ¢’ = 7.
Let d be the number of times the vector (1, 1, 1, 1, 1)’ occurs as a column of 7.
Then it can be checked that if v(5 x 1) has k zeros and (5—k) ones (k = 0, 1, ---, 5)
in it, then v must occur as a column of T~ exactly

Ha—gs1—Ha—prz+ -+ (=D uy + (=1

times. This gives
min (Ug, Ha— U3+ Has Ha—H3+Ua— it o) 2 d 2

max (0, py— s, fga— 3+ Uy —iy),

which in turn implies, for example, p”+u, = p'. Thisis not satisfied by ' = 7,
u, = 2, N = 44, (since then, u” = 4). (iii) u, = 3. By (3.34b), (3.35b), (3.36),
we have 4 < ¢’ < 6. However, u’ = 6 implies u"+u, < y¢'. Hence, we have to
consider only u' = 4. However, in this case, it is easily seen that 6C,/Cs+
14/16p, > trV r..

THEOREM 5.3. For m =7, N = 44, the array T* and the array obtained from

T* by interchanging one and zero provide the optimal balanced designs of resolution
V.

PrOOF. In view of the preceding results of this section, we need to consider
only the competing arrays 7 with (i) g, = 2, ' = 6, or (ii) pt, = 3, ' = 5. As in
the last theorem, we can check that 6C,/Cs+14/16u, > tr¥V ., for case (i) if
|us—py| = 4, and for case (i) if |u3—p,| = 2. Thus we are left with arrays 7 with
@) p, =2,4 =6, uy3—pu; =0o0r +2,and (B) pu, =3, W' =5, us3—py = + L.
There are 21 sets of values of ' (apart from an interchange of 0 and 1 in an array)
whose parameters satisfy one of the two conditions («) or (f). Of these, three
values of u' (namely, (8, 3,2,3,0), (0,4,2,2,8) and (1,4, 2,2, 7)) are rejected
because of the combinatorial inequalities involving 4 in the proof of the last
theorem. The remaining 18 values of u’ can be directly substituted in (3.40), and
the fact that p’ = (3, 3, 3, 2, 3) (which corresponds to 7%, or p' = (3,2, 3,3, 3)
which corresponds to the array obtained by interchanging O and 1 in T%) gives
rise to the minimum value for tr¥ may be verified. This completes the proof.

We would like to stress that there is an alternative combinatorial proof using
which, the direct verification of only two (instead of the present 18) arrays need be
done. However, such a proof, because of its different nature, is out of place here.
On the other hand, the reader will observe that there are hundreds of values of
u' satisfying the necessary condition N = 44 = po+4u, +6u, +4u3+u,. If only
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the value of trV (at (3.40)) were used and the development of this section ignored,
one would have to substitute each such value of u’ in (3.40), and compare the
resulting values of tr¥. The amount of resulting computations would be tens of
times more compared to that needed for the above 18 arrays. This shows the
usefulness of Theorem 3.2 other than that for obtaining(3.40). Finally, if the develop-
ment in the whole paper is completely ignored, one would have to calculate trV;
starting from scratch (say from Bose and Srivastava (1964a)) for each p’ (with
N = 44). Even on very fast computers (like CDC 6400), this would take dozens
of hours (compared to about an hour needed on a desk calculator for comparing
the above 18 arrays using (3.40))!
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