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DISTRIBUTION OF THE CANONICAL CORRELATIONS
AND ASYMPTOTIC EXPANSIONS FOR DISTRIBUTIONS
OF CERTAIN INDEPENDENCE TEST STATISTICS'

BY YOONG-SIN LEE2
University of Toronto

0. Summary. The sample canonical correlations between two sets of variates are
given a representation as the roots of a determinantal equation involving in-
dependent matrix variates having simple standardized distributions. This result is
applied to obtain asymptotic formulas for the non-null distributions of three
criteria for testing the hypothesis of independence of two sets of variates.

1. Introduction. Consider an s-variate random variable x distributed N(0, X).
As is well known the distribution problem of the non-zero mean case can be
reduced to that of the zero mean case. Let X(sx N) be the matrix of a sample of

size N from this distribution. Further let x be partitioned into [ 1], where x; is
X2

. . . . X
a g-vector and X, is a p-vector, with s = g+p, and let X be partitioned into [ 1]
2

2212y,
be the corresponding partition of the covariance matrix, i.e. £, is g X g square.
The canonical correlations of x; and x, are defined as the maximum correlations
between a linear function of the component variates of x, and that of the com-
ponent variates of x,. Let the canonical correlations be denoted by (p,, -+, p,).
Then the p;? are given by the roots of the determinantal equation

I/IEZZ _ZZIEl_llzlzl =0.

. . PP
accordingly. We assume without loss of generality p < g. Also let £ = [ 1 12]

Analogously, the sample canonical correlations (r,?, ---, r,,z) are the roots of the
determinantal equation

(1) |'1522_Sz151_11512| =0
where
XX =S = [511 512:‘
S S22

‘

with partition corresponding to that of Z.
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The matrix variates involved in (1) are correlated. We shall now show that the
set of suitably transformed sample canonical correlations has the same distribution
as that of the roots of a determinantal equation involving independent matrix
variates. More precisely, we have

THEOREM. The set of transformed canonical correlations (F,?, -+, F,?) is distributed
like the roots of the determinantal equation

2 [AW—[(PT+Z ) PT+2Z,) +Z,Z,']| = 0,

where
FE=rll—-r?), pit = pl1—p?),
P = dlag {ﬁ19 Tty ﬁp}’

W~ WJI, N-q), T(pxp) is such that TT' ~ W,I,N), and Z(pxp) and
Z,(px(q—p)) are matrices with independent standard normal variates as their
elements. All matrix variates figuring in (2) are independently distributed.

When p = 1, this reduces to the particularly simple case of the multiple cor-
relation:

©) R = {(Pan+2)* +2%-1 b g

where R* = R?/(1— R?), R being the sample multiple correlation, j is the analogous
transform of the population multiple correlation, y, and y,2 are chi- and chi-
square variates on k degrees of freedom, and z is a standard normal variate.
Again, the variates figuring in (3) are independently distributed. This result for
the multiple correlation was also given by Hodgson [5]. The relation (2) can be
regarded as a generalization of a result for the simple correlation coefficient
apparently due to Elfving [2] and rediscovered by Fraser and Sprott (Fraser [3]),
and by Ruben [14].

Proor. The proof of the theorem follows essentially from the argument of
Constantine ([1], pages 1282-1283) in his derivation of the joint distribution of the
sample canonical correlations. (The author wishes to thank the referee for pointing
out this fact.) An alternative proof is outlined as follows. We may regard X as
generated from E(p x N), a matrix of independent standard normal variates, by
the transformation X = 6F, with £ = 06’ the (unique) lower triangular factoriza-
tion of Z. Partitioning and factorization leads to

X | _|m Of] 7 Of[H, O |[E

X, | |0 n|lY I||] 0 H,||E,
where in each partitioned square matrix the leading submatrix is of order g x g,
H, and H, are orthogonal and are related to Y = (P:0) by 05,'0,, = H,YH,’

(see James [8] for existence and uniqueness of such a factorization with 5, =
2 p,20), n,=0,H,, n, =0,,H,, and [E," E,’] is the corresponding
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partition of E’. Clearly we may equivalently consider the canonical correlations
between thesets Y, =, " 'X,;and Y, = 1, ' X,:

Y, {1 01D, I 0
Y = = = D
Y, LY 11| D, Y I
with D, = H,’E,, D, = H,’E,. The factorizations Y = T(Y)O(Y), D =
T(D)O(D), where T is lower traingular and O semi-orthogonal lead to

@ [T“(Y) 0 J [1 0][T11(D) 0 ]

- TZI(Y) TZZ(Y) Y 1 TZI(D) T22(D) .
Note that the elements of D are independent standard normal variates and 7(D)
is a Bartlett’s decomposition of DD’. The theorem with T lower triangular then
follows by equating elements of (4) and noting that (7,2, ---, ¥,%) are given by the
roots of the determinantal equation [AT,,(Y)T;,(Y)—T,,(Y)T3,(Y)| = 0. Since
the conditional distribution of the 7> given T depends on T only through the
latent roots of P2TT’ (see e.g. James [9], noncentral mean case), and the density of T
can be put in the form f(TT") dTT' (see e.g. Fraser [4], pages 154-156), only
TT' = W,(, N) is involved in the distribution and so T may be any factorization
of W,(, N).

2. Asymptotic expansions for distributions of certain independence test criteria.

2.1. Introduction. Consider the test of the hypothesis H that the variates x, and
X, are independent. This is equivalent to testing H: p; = --- = p, = 0 against the
alternative K: not all the p,’s are zero. We consider three criteria for this test

(a) Wilks’ likelihood ratio statistic (Wilks, [18])
W=T(-r? = I1/(1+72)
(b) Hotelling’s T,* (Pillai [11])

() Pillai’s ¥ (Pillai [11])
V=nYr?=n)r1+F?3),

with n = N—gq, N being the number of observations. These are analogues to
criteria proposed for testing the general linear hypothesis. For these latter cases
the distribution problem reduces to that of the roots of the determinantal equation
(seee.g. Roy [13])

(%) |eW—[(K+Z)(K+Z,)' +Z,Z,']| = 0,
where W, Z, and Z, have the same meaning as in Section 1, and

K = dlag {lli’ ) }'p%}a
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the 1,’s being the characteristic roots of the noncentrality matrix. For our purpose
we may assume that the number of the hypothesis degrees of freedom ¢ is equal
to or greater than p. Further let A = diag{4,, -+, 4,}. Then by comparing (2)
and (5) we have the following

LEMMA. Let s = s(cy, -+, ¢,) be a scalar function of the c;’s whose density function

isf (s, A), and let s* = s(F\?, -+, F,%). Then the density function of s* is given by

(6) g(s*, P) = jsgof(s*, PSp)h(S) ds,
where
HS) = 2" O2L (n+)/D)] " [S| 4P~ 2 etr (— 4S)

with
Iy@ = 770~ /* [T, Da— 4G~ 1)

is the density function of W (I, n+q), n+q being the number of observations from
N(0, %).

The proof is immediate. Conditional on PT being fixed, the density function of
s* is f(s*, PSP), with S = TT’, as is obvious from (2) and (5). Multiplying this by
the density element of S and integrating we obtain (6).

Note that the method in the Lemma can equally well be applied when f and g
are respectively the characteristic functions of s and s*. In fact, in our applications
we shall work on the characteristic functions.

As the sample size tends to infinity, the alternatives of interest, as far as power
consideration is concerned, are the ones near the hypothesis. We shall assume that
the ng? are finite, and put « = nP? a; = np;?, so that the a;’s are finite.

The asymptotic expansions for the non-null distributions of W, U, V in the
linear hypothesis case are available in the literature (Sugiura and Fujikoshi [17],
Itd [7], Lee [10]). It&’s expansion for U was given to the order n~! only while the
other expansions were worked out to the order n~2. We shall later supply the
term of order n~2 for the expansion for U. It is then straightforward to apply (6)
to the characteristic functions of these statistics in the asymptotic form to derive
the corresponding characteristic functions of the statistics for testing independence.
Inversion will then give the distribution functions.

When (6) is applied to the asymptotic expansions of the characteristic functions
of the three criteria for testing the linear hypothesis, we find that we need the
following integration results. It is straightforward to obtain

[ etr {itaS/n(1—2it) }i(S) dS = |I—2itafn(1—2if)| =+ /2
= etr {ita/(1—2it)} {1+ (4n) ™ [tr (2ita/(1 —2it))* +2q tr (2ita/(1—2it))]
@) +(96n2) ™ 1[24q tr (2iter/(1 —2it))? + 12¢% tr* (2ita/(1 — 2it))
+16 tr (2itar/(1 —2it))3 + 12q tr 2itar/(1 —2it)) tr (2itar/(1 —2it))?
+3 tr2 Qita)(1=2i0)2]+ 0(n™ %)},
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and
[ tr (P2S) etr {itaS[n(1 —2it) }h(S) dS
(8) = |[I—2itafn(1=2it)| " V121 4 g/n) tr a{I—2ita/n(1 —2ir)} ~*
= etr {ito/(1 —2ir) } {tr a + (4n) " [4q tr o« +4- 2it tr a®/(1 —2it)
+2q-2ir tr? of(1—2it) + (2it)* tr o tr a?/(1 —2it)*]+ O(n~2)}.

Now consider a matrix 4 = (a;;) distributed W ,(Q, n), withQ = diag {w,, ---, w,}.
It is easy to verify that E{a}}} = n(n+2)w;? and E{a};} = nw,;w;. From this it is
then easy to obtain, by expanding the first trace in the integrand, the result

[ tr (P2SP2S)etr {itaS/n(1 —2it)}h(S) dS
[1—2ita/n(1—2it)|" "D/ {tr o® + (1/n)[(2g + 1) tr &® +tr? «
9) +2-2ittr o® /(1 —2it)] + O(n~2)}

etr {itor/(1—2ir) }{tr o® + (4n) "' [4(2q +1) tr & +dtrPa + 8- 2irtr o3 /(1 — 2it)
+2g-2it tratr o®/(1 = 2it) +(2it)* tr? a2 /(1 —2it)*]+ O(n~2)}.

Il

Il

Similarly we have
Jtr (P2S)? etr {itaS[n(1—2it)}h(S) dS = etr {ita)(1 —2it)} tra®+O(n™?),
(10} [tr(P2S)tr (P2S)? etr {itaS[n(1 —2it)}h(S) dS = etr {ita/(1 —2it)} tro tr o2
+0(n™Y),
J (tr (P2S))? etr {itaS/n(1—2it)}h(S) dS = etr {ita/(1 —2it) }(tr a?)?
+0(n™ ).

2.2. Expansion for the distribution of W. Applying (6) to (1.32) in Sugiura and
Fujikoshi [17] with the correspondence of parameters: p - p, b - g, N—s—1 —
N—g = n,Q — 1PSP and using (7) to (10), we obtain the characteristic function of
L = mlog W, with m = n+(g—p—1)/2. (Sugiura [16] gave a similar expansion
for the distribution of W. The author wishes to thank the referee for this reference.)
The distribution function of L is then obtained by inversion and the result is

Pr{L < x} = G(x | £, D+(1/m) Y3 - ay;G(x | f+2], )
+(1/m?) Z‘j‘:o a,;G(x |f+2j, A)+0(m™?)

where G(x | v, 4) denotes the distribution function of a noncentral chi-square
variate on v degrees of freedom with noncentrality parameter A = 4 tra, f = gp,
and

a0 = —qS1+S;, ayy = (k+9)S;—25,, a;; = —kS;+28;,

—0—qlIS, +(q+DS,+34%S,* —%S5—4¢S,5, +15,%,

Q
N
=]

I
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a1 = q*S;—498,—q(q+k)S, > +4S3+(3q+k)S, S, —25,%,
—(49+3k)S,S, +45,%,

023 = k2S1 _(3p+5q+5)S2'—(k2+qk+2)S12+%2'S3

+(3g+4k)S,S, —5S,2,

ay, = Bk+1)S,+(Fk*+1)S,2—8S53—(q+3k)S, S, +4S,2,

ays = §S3+kS,S, 28,7, a6 = 4S,%,
with S; = tr o), k = (g+p+1)/2, ] = (g—p—1)[2, 6 = qp(q* +p* - 5)/48.

2.3. Expansion for the distribution of U: linear hypothesis case. As has been
remarked, the asymptotic expansion of the distribution of U was given by Itd
to the order n~! only. We now use Itd’s method to add the term of order n~?
to his expansion. (Siotani [15] derived this term by a different method. The author

wishes to thank the referee for this reference.) Now the characteristic function of U
was given by Hsu [6]

(11)  ¢(t) = (3n)"¥P[T,(4(n+49))/T,(3n)] | (2r) 2% [I+(1/n)C| 72+
-etr {itC+(Qit)*KX'} dX,

where n and g are respectively the error and hypothesis degrees of freedom,
C = XX', K(pxq) has (4,%, ---, 1,*) along the diagonal and zeros elsewhere, and
the domain of integration is the p xg real matrices (see also Itd [7]). For our
purpose we take g = p. The constant on the right of (11) can be expanded using
Stirling’s formula:

(12)  (3n)"¥PT(3(n+9))/T,(3n)
= 1+(@n) " 'qp(g—p—1)

+(96n) " 'qpl3gp® —2(3q* — 3 +4)p* +3(¢° — 24 + 5 — 4)p— 8q* + 129 +4]

+0(n™3).
The determinant part in the integrand can be expanded asymptotically:

|1+ (1/n)C| ¥+ = etr (—3C){1+ (4n)~(tr C*—2qtr C)+(96n?)~*
(13) [12¢%tr2 C+24g tr C2—16tr C*—12g tr C tr C*
+3tr?2 C*+0(n3)}.

Substitute (13) in (11) and integrate. With the help of the following integration
results

Itr C) = gp+r14,
I(tr C?) = gp(g+p+1)+2g+p+ 1)1, +1,,
I(tr? C) = gp(gp+2)+2(qp+2)t, + 7,2,
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I(tr C3) = qp(q® +p*+3pq+3q+3p+4)+3(g* +p*+3qp+39+3p+4)1,
+3(g+p+2)1,+ 37,2 + 14,
L(tr Ctr C?) = qp(gp+4)g+p+1)+3(gp+4(g+p+ 1)1, +(gp+8)7,
+2q+p+ D1 +11,,

I(tr? C*) = qplgp® +2(q* +q+4)p* +(q> + 29> + 219+ 20)p + 4(2¢* + 59 + 5)]
+4[gp> +2(q* +q+Dp* +(q° +29% + 21 +20)p +4(2¢% + 59+ 5)]1,
+2[gp? +(q*+q+20)p +20q + 3217, +4[p* +2(q+ 1)p
(@2 +2q+ D]t 2 +4g+p+ DT 1+ 1675+ 7,7,
where
1(9(C)) = [ g(C)2n) ™7 etr {—H(X —(2it/(1=2ir))*K)(X —(2it/(1-2i1))*K)'} dX,
T, = 2it/(1=2it))* Y 1,

and also using (12), we have after inversion and much simplification

(14) Pr{U=x} =G(x

S A+Em) T YA by Gx | f42), 4)
+(96n*) 71 Y B by G(x | f+2), )+ 0(n™?)

with A = ) A;,and, writingo, fory 4" = tr A”,
byo =gqplg—p—1), by = 2q(c,—4qp),
b, =qplg+p+1)-2Q2q+p+1)o,+0,,
b3 =2¢q+p+1)o,—20,, b4 = 05
byo = qp[3qp® —2(3¢> = 3g+4p* +3(4° —29° + 5S¢ —4)p —8¢> + 129 +4],
by, = 12¢°p(g—p—1)(c,—qp),

by, = —6q¢%p[p> +2p* —3(q* + 1)p—4Q2q+ 1)+ 12¢[p> + (¢ +2)p*
— (44> —q+3)p—4(2q+ 1)]o, +69[2q0 > — (p* —qp+p—4)5,],

bys = —4qpl(3¢° +4)p* +3(¢° +4° +8q+4)p+8(2¢* +3q +2)]
+12[—gp3 + (3% —2q +4)p* 4+ 3(2¢> +q*> +9q+Hp +4(6¢* + Tg +4)]o,
—24(qgp+2q* +q+2)0,> +12[qp* —(2q* —q+4)p—16q— 8]0,
+1605+12g0,0,, '

bys = 3qplgp® +2(g* +q+Hp* +(q° +29* + 219+ 20)p +4(29* + 59 + 5)]
—12[gp® +(5¢* + 29+ 12)p*> +(4¢° + 54 + 45¢ + 32)p
+4(6q* +11q+9)]o, + 12[p* +2(3q+ 1)p + 64> + 6q + 15]5, >
+12[3(q% +6)p + 36+ 32]0, — 12(4g + p + 1)o,0, — 960 3 + 30,2,
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bys = 12[qp® +2(¢> +q+Hp* +(q> +29* + 219+ 20)p +4(2¢* + 59 + 5],
—24[p? +(3g+2)p+ (29> + 3¢ +9)]o,
—12[gp* + (2¢* +q+24)p + 329 +40]o,
+12[3(2q+p+1)5,0, +1603]— 120,32,

bye = 12[p*+2(g+ Dp+(q* +29+ 7))o > +6[qp* +(¢* +9 +20)p +20q + 32]0,
—12(49+3p+3)a,0,— 16005+ 185,72,

byy = 12(g+p+1)0,0,+4805— 120,72,

2

b28 = 30’2 .

2.4. Expansion for the distribution of U: independence case. Straightforward
application of (6) to (14) with the help of (7) to (10) yields the distribution of U
for the independence case. Thus we have

Pr{U < x} = G(x | £, V) +(4n) ' Y4 _o b1,G(x | f+2), X)

+(96n%)~! 3‘=0 b;;G(x |f+2j, A)+0(n™3),
where A’ = ) o; = tr a, and

byo = qplq—p—1)—2q0,+0,,  bi; = —2¢*p+4q0,—20,,

gp(g+p+1)—2Q2q+p+1)0,+20,,  bi; =24g+p+1)o,—20,,

12
14 = 033
byo = qpl3qp® —2(3¢* —3q+4)p* +3(¢° — 24 + 59— 4)p—8¢* + 129 +4]

—12¢*p(g—p—1)o, —69(p* —qp+p—4)0, +129%0,* — 1604
—12g0,0,+30,%,

Il

by, = —12¢°p*(q—p—1)—24¢*(p* —2qp+p—2)0, +129(p* —2qp+p—8)0,
—484%0,2 +480 ; +48q0,0,— 120,72,

Il

by, = —6g°p*—12¢%p* +18¢%(qg* + 1)p* +24¢*(2q + 1)p
+12g[p*+2p*—7(¢q* + 1)p— 16— 816, —6[gp* — (1g* —q + 8)p
—40g—12]6, +24(gp+4q* +q+1)o > —12(p+8q +1)o,0, — 960 3 + 240, 2,

byy = —(12¢° +16q)p® — (129* +12¢° + 964> +48q)p? — (64q° +964* + 649)p
+12[—gp® + (4g* — 29+ Hp* + (1¢° +4¢* + 31+ 12)p +4(79* + 8¢ +4)]o,
—48[(g*+3)p+9q+ 510, —24(3qp +5¢* +3q +4)a,* + 17604
+12(3p +11g+3)a,0, — 3602,



534 YOONG-SIN LEE

by = 3q°p* + (69> + 69> +24q)p* + (3¢* + 64° + 634> + 60g)p*
+(244° +60g* +609)p — 12[gp* + (5% + 29 + 12)p*
+(4¢> +5¢% + 459 +32)p +4(6¢> + 11g+9)]o,
+6[gp*+ (79 +q+44)p +88q + 760,
+12[p? +2(4g+ 1)p +8¢* + 89 +17]o,>
—12(4p+11g+4)o,0, —2400 ; + 420,72,

bys = [12qp> +24(¢* +q+4p* + 12(¢° +2¢* + 219 +20)p +48(2¢° + 59 + 5)]o,
—12[gp* +(29* +q+24)p+32g+40]c, — 24[ p* + (3¢ +2)p
+2¢% +3g+9]0,> +2400 5 +48(p + 29+ 1)6,0, — 360,32,
%6 = [6qp2+6(q2+q+20)p+120q+192]02+[12p2+24(q+1)p
+12(g% +29+ 7)o, 2 — 12(3p+49+3)0,6, — 1600 5 + 240,72,
%7 = 4803+ 12(g+p+1)o,0,—120,2,
b/28 = 30_22’
N

withe” = Y o = tra.

2.5. Expansion for the distribution of V. An asymptotic expansion for the
distribution of ¥ in the linear hypothesis case has been derived by the author [10].
The result is stated as follows, with the same notation as in Subsection 2.3.

(15)  Pr{V £ x} =Gx|f, )+@n)~1 Y4, cy;Glx | f+2), 4)
+(96n*) "1 38 3;G(x | f+2), )+ O3,
where
¢0 =qp(q—p-1), ¢y = 2qp(p+1)+2q0,,

€1y = —qp(p+q+1)+2(p+1)0‘1+0'2, Ci3 = —2(p+q+1)01,

.

—03,

¢20 = qp[3gp® —2(3¢> = 3q+4)p* +3(g° — 24 + 5g— 4)p— 84> + 12q + 4],
21 = 12¢°p(g—p—Dp(p+1)+0,],

€22 = 6gp[3gp® +(69+8)p* +(—q*+ 79+ 16)p +4q+8]

+12¢[—p*+(Bg—2)p* +3(g+ 1)p + 4o,
+6g[—5p* +(g—1)p+4lo, +12¢%0, 2,

€23 = —4qp[3qp* +(3¢* +6q +16)p* + (3% + 279+ 36)p + 4(g* + 6g+ 7))
+12[3gp® +(—q* +6q+8)p* +(—2q°> —q* +3q+ 16)p — 4¢* + 8]0,
+12[49p* +(g+4p +4]o, +24q9(p + )0, + 1603 + 129505,
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€24 = 3qplgp” +2(¢* +q+Hp* +(q> + 29> + 21+ 20)p + 429> + 59 + 5)]
—12[39p> + (39* + 6+ 16)p* + (3g* +27q + 36)p + 4(q* + 69 + 7)o,

—12[gp* +(q* +2)p +8g+4lo, + 12[p* = 2q— 1)p—2¢* —2g— 1]
+12(p+1)o,o0, +302?,

;5 = 12[gp> +2(g> +q+4p* +(q° +2¢* + 21+ 20)p + 4(29* + 59 + 5)]o,
—12[gp* +(q+12)p+4(g+ D))o, —24[p*> + (g +2)p+q+ 3]0,
—480;3—12(p+29+1)0,0,,

26 = 6lgp® +(q* +q+20)p+20g+32]0, + 12[p* +2(q + Dp + (g + 29+ 7))o,
—12(p+1)6,0,— 160, —60,2,

¢y7 = 12(p+q+1)0,0,+480;,

028 = 3022.

Direct application of (6) to (15), with the help of (7) to (10), yields the distribution
of V for the independence case. This is, with the same notation as in Subsection 2.4.
S B+ Do €,GOx | £+2), )

+(96n%) "1 Y8 ¢;G(x | f+2), A)+0(n3),

Pr{V £ x} = G(x

where
Clo =gqplq—p—1)—290,+0,,  ciy = 2qp(p+1)+4q0,—20,,
¢is = —qp(@+p+1)+2(p+1)o, +20,, ¢i3 = —2(q+p+ 1oy,
Cla = —03;

a0 = qp[3qp® —2(3¢* —3g+4)p*> +3(q> — 2% + 59— 4)p —8¢* + 129 +4]
—12¢°p(qg—p—1)o, —6q(p* —qgp+p—4)o,+129%¢,*— 160,
—12¢06,0,+ 30,2,

¢y = 12¢°p*(p+1)(g—p—1)—24¢*(2p* —gp+2p—2)o,
+129(2p* —gp+2p—8)o, —48q¢%a,% +48¢0,0, + 480, — 120,72,

¢y2 = 6gp[3qp>+(69+8)p* +(—q° + 79+ 16)p+4q+8]
+12g[—p* + (69 —2)p* + (¢ +6q + T)p + 8]0,
—6[11gp> —(¢* =79 —8)p—24q+4]o, —24(gp—2¢* +q— 1)o >
—960;+12(p—6q+1)6,0, +240,2,

¢y = —4qp[3qp” +(3q* + 69+ 16)p* +(3¢% + 279+ 36)p +4q> +24q + 28]
+12[3gp> +(—2¢* + 6+ 8)p* +(—3¢> —29* —q + 16)p — 8¢* — 4q + 8o,
+12[6gp* +(¢*+ 39+ 12)p+4q+12]o,+249(3p+q+3)0,2 +800 5
+36(q—p—1)o,0,—240,2,
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chs = 3qplap® +2(q* +q+DHp* +(g° + 297 +21g+20)p +4(29* + 5 + 5)]
—12[3gp> + (3¢> +6q + 16)p> +(3¢* +27g + 36)p +4q* + 249 + 28]0,
—6[3gp*+(3¢* +q+12)p+32q+20]a,
+12[p*—2(2g—1)p—4q*—4q—3]0,>+ 480, + 12(4p + 3¢+ 40,0, + 60,2,

chs = 12[gp> +2(¢* +q+4)p* +(¢> +2¢* + 219+ 20)p + 4(29* + 59+ 5)]o,
—12[gp* +(q+12)p +4q+16]a, —24[p* +(q+2)p+q +3]o,> — 960 ;
—24(p+2g+1)0,0,+ 120,72,

che = 12[p? +2(g+ 1)p+q*+2q+7]0,* +6[qp* +(q* +q+20)p +20g + 32]0,
—12(p+1)o,0,—160;—120,2,

c37 = 12(p+q+1)0,0,+480;,

c,28 = 3622.

2.6. Numerical comparison. Pillai and Jayachandran [12] have computed powers
of the independence test criteria considered here for the special case of p = 2.

Their results are based on exact expressions in infinite series. The table below will
give an idea of the accuracies of the asymptotic approximations presented here.

TABLE 1
Accuracies of asymptotic approximations to powers of W, U and V for p = 2

w U 14
q n p1? P2 exact approx. exact approx. exact approx.
3 63 1 0 447 449 452 452 445 447
3 63 .05 .05 434 436 432 432 440 440
5 63 15 0 574572 .580 .578 562 .569
7 63 .05 .05 305 .306 303 .304 .308 .308
13 63 1 0 239 .240 254 249 228 .209
3 83 .05 .001 292 .292 293 293 292 .291
7 83 .05 .001  .201 .201 203 204 200 .199

The significance level is 5 per cent. The significant points are taken from [12]
and so are the figures in the columns under “exact”. The asymptotic approximations
are thus seen to work quite well over the range of the parameters tabulated, with
the exception of the approximation for ¥ when # = 63 and ¢ = 13. Apparently
the approximation for ¥ becomes more inaccurate with increasing ¢ than those
for Wand U.
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