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1. Introduction and summary. The importance of the theory of Latin squares
and mutually orthogonal Latin squares is due to the fact that many well-known
experimental designs and/or combinatorial systems are either equivalent or can
be derived from Latin squares or sets of mutually orthogonal Latin squares; viz.,
balanced incomplete block designs, partially balanced incomplete block designs,
group divisible designs, F-square designs, lattice designs, balanced weighing
designs, orthogonal arrays, Hadamard matrices, affine planes, projective planes,
partial geometries, nets, error correcting codes, strongly regular graphs and many
more designs and combinatorial systems (see [7] for more details).

The problem of determining whether or not a set of r mutually orthogonal
Latin squares of order n, say an O(n, r) set, can be embedded in a larger set of ¢
mutually orthogonal Latin squares of order n, is one of the many important
problems in the theory of mutually orthogonal Latin squares. An obvious and
interesting problem in the area of embedding is to find a necessary and sufficient
condition under which an O(n, r) set can be embedded in an O(n, t) set for
1 £r<t<n—1, where by an O(n, 1) set we mean a set consisting of a single
Latin square of order n.

Some of the principal published results on embedding are discussed below.
Mann [9] proved that if a Latin square L is of order n = 4¢+2 (or alternatively
4t+ 1) with a subsquare of order 27+ 1 (or 2¢) in which all entries are from a set of
2¢+1 (or 2t) numbers except for possibly ¢ (or [—3]) or less of the cells, then L
cannot be embedded in an O(n, 2) set. Thus, Mann’s embedding conditions
depend upon the value of n and the combinatorial structure of L. Parker [11]
proved that if the O(n, ) set S contains a sub O(r + 1, r) set, then .S can be embedded
in an O(n, r+1) set only if n = (r+1)®> or n = (r+1)(r+2). These embedding
conditions depend upon r, n, and the combinatorial structure of the set S.
Shrikhande [15] proved that any O(n, n—3) set S can be embedded in an O(n, n—1)
set for alln > 4. His result does not require any knowledge about the combinatorial
structure of the set S. Bruck [2], who generalized Shrikhande’s [15] results to some
extent, utilized net theory to show that any O(n, n—1—d) set S can be embedded
in an O(n, n—1) set regardless of the combinatorial structure of S provided that
n> (d—1)d>—d*+d+2))2. ’

Utilizing the above results and some group theory, some new results have been
found for embedding O(n, r) sets in O(n, t) sets, r < t. The results are presented in
the form of several theorems, propositions and corollaries. The first propostion is
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concerned with a necessary and sufficient condition for embedding O(n, 2) sets in
O(n, 3) sets. Theorem 3.1 gives a sufficient condition for embedding an O(n, 1)
set in an O(n, A) set, 2 < A < smallest prime in the prime power decomposition of
n, less one. Theorem 3.2 states the conditions under which the method of Theorem
3.1 fails for embedding certain O(n, 1) sets in a larger set. The next theorem states
the conditions under which certain O(n, 1) sets cannot be embedded in a larger
set. Some results on properties of inverses of Latin squares and on products have
also been presented.

Additional results in this paper are embodied in Theorem 3.4 and relate to the
enumeration of Latin squares of order n for those Latin squares which have
orthogonal mates and for those which do not have an orthogonal mate. Theorem 3.4
gives a lower bound for n even (odd) on the number of Latin squares of degree
one (at least degree two). All Latin squares of order 2, 3, 4, 5, 6 and 7 are classified
with respect to degree of orthogonality.

2. Preparatory concepts. The notations and the definitions used in this paper

are given below. The basic terminology of the theory of Latin squares and ortho-
gonal Latin squares is utilized.

DEFINITION 2.1. A Latin square of order » on a set ¥ with » distinct elements
is an n X n matrix whose rows and columns are each a permutation of the set X.
Any Latin square of order n may therefore be identified with a particular set
of n different permutations (p,, p,, ***, p,) Where p; is the permutation associated
with the ith row; we denote this identification by L = (p,, p,, -+, p,) Where
“="" means “is identified by’’. For a specified ordering of the elements in X, a
Latin square L on X is said to be in standard or reduced form if the permutations
associated with the first row and the first colurnn of L are the identity permutation
on X. Given that L = (p,, p,, -, p,) is a Latin square, we define L' to be
(pl_lapz_la ""pn—l)'

DeFINITION 2.2. If L = (p,, p,, -, p,) is a Latin square and if G = {p,, p,,
.-+, p,} forms a group, then we say that L is based on the group G.

DEFINITION 2.3. Two Latin squares L; and L, of order n on the set ¥ are said
to be equivalent or isomorphic if one can be derived from the other by some per-
mutation of rows and/or columns, and/or elements. The set of all equivalent
Latin squares of order » on the set X is called a transformation set. A transformation
set is said to be a cyclic transformation set if any member of the set is based on a
cyclic permutation group. Thus by definition, all the members of a cyclic trans-
formation set are based on cyclic permutation groups. For a specified value of n,
there is only one cyclic transformation set associated with all Latin squares of
order n.

Let L(n), I(n) and T(n) denote the number of Latin squares of order n, standard
Latin squares of order n and transformation sets associated with Latin squares
of order n respectively. It is not difficult to show that L(n) and I(»n) are related by
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the equation L(n) = n!(n—1)!1(n). The following table summarizes published
results for values of I(n) and T(n) [1, 3, 10, 13, 18]:

n 1 2 3 4 5 6 7 8
1(n) 1 1 1 4 56 9408 16,942,080  535,281,401,856
T(n) 1 1 1 2 2 22 563 1,676,257

Very little is known about I(n) or T(n) for n > 8.

DEFINITION 2.4, If L; = (P11, P125 "> P1n) @nd Ly, = (Pay, P2y, *+*5 P2n) are two
Latin squares of order n on an n-set X, then we may define L,L, to be L; =
(P11 P21 ' P12 P2z2s **» PinP2w)- The generalization to the product of ¢t > 2 Latin
squares follows immediately. (Apparently only Mann [8] and Hedayat and
Federer [6] have utilized this definition in published literature.)

Properties of the inverse, power, and product of Latin squares.

(i) If Lisa Latinsquare then L™ ' is a Latin square and is unique.
(ii) If Lisa Latinsquare then L', t > 1, is not necessarily a Latin square.

(iii) If L; is a Latin square, i = 1,2, ---, ¢, then L,L, --- L, is not necessarily a
Latin square.

(iV) (L1L2 Lr—1Lz)_l = (Lt—lLt_—ll L2_1L1—1)-

DEFINITION 2.5. Let L, and L, be two Latin squares of order n on two n-sets
T and Q, respectively. Then, L, and L, are said to be orthogonal if the n* cells of
the superimposed form of L; on L, is a permutation of the Cartesian product set of
Y and Q, viz., Z x Q. The notation L, L L, means that L, is orthogonal to L,, and
L, is called an orthogonal mate for L, , and vice versa. L, is said to be orthogonally
mateless if there is no L, such that L, L L,. A set S = {L,,L,, -, L,} is said
to be a mutually orthogonal set of t Latin squares of order n if L; is a Latin square
of order nand L; L L;, i # j, i, j = 1,2, ---, t. Since the maximum value that ¢
in an O(n, t) set can take is n—1, an O(n, n—1) set is designated as a complete set.

DEFINITION 2.6. A Latin square L of order # is said to be of degree r if L can be
embedded in an O(n, r) set, and r is the largest such integer.

3. The results. It is easy to verify that the orthogonality relation L does not
have the transitivity property, viz., if L,, L, and L, are three Latin squares such
that L, L L, and L, 1 L,, this does not imply that L; L L,; in the following
proposition we give a necessary and sufficient condition guaranteeing the ortho-
gonality of L, and L,.

ProrosITION 3.1. Given S = {L,,L,} is an O(n, 2) set and L, is a Latin square
such that L, 1. Ly. Under these conditions S = {L;,L,, Ly} is an O(n,3) set if
and only if L, ~ 'L, is a Latin square.
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The proof follows directly from Theorem 1 in [8]. It should be noted from the
above that if {L,, L,, L} is an O(n, 3) set, this implies that L,”* L, L L, 'L,
andL,” 'L, 1 L,"'L,.

The following proposition establishes the relationship between the orthogonal
mates of Land L™ 1.

ProposITION 3.2. If L, L L, and if X and Y are the two Latin squares such that
L\ X =L,andL,Y =L, thenL,”" | XandL, ' 1 Y.

Two nontrivial O(n, 3) sets can be immediately constructed from a given O(n, 3)
set by noting the following. If {L,, L,, L,} is an O(n, 3) set and if 4, B, C and D
are the Latin squares such that LiA=L,,LiB=L;,L,C=L,and L,D = L,,
then {L, ™', 4, B}and {L, !, C, D} are also O(n, 3) sets.

ProrosiTION 3.3. If L, and L, are two arbitrary Latin squares of order n and if
L\L, is a Latin square then L, 1 L\L, andL,™! 1 L,.

The following two lemmas were obtained from Mann [8]. The two corollaries
following Lemma 3.1 and the one following Lemma 3.2 are presented without
proof. Proofs of Theorem 3.1 and Theorem 3.2 are given in [6].

LEMMA 3.1. Let L be a Latin square of order n. If L', L* and L' ~* are Latin squares
for i and k being two positive integers, then L¥ | L' and L' ™% | L.

CoROLLARY 3.1. If L is a Latin square such that L* is also a Latin square then
L1L*andL L L'

COROLLARY 3.2. If L is a Latin square of order n and if the L', i = 1,2, -, 1,
are Latin squares thent < n—1.

LeMMA 3.2. L = (py, p,, -+, ps) is a Latin square if and only if pip;~" does not
leave any symbol unchanged for i # j.

COROLLARY 3.3. Every cyclic permutation group of order n and degree n gives
rise to a Latin square of order n.

THEOREM 3.1. Let L = (py, p,, -, p,) be any Latin square such that{p,p,, -, p,}
is a cyclic permutation group. If q,*'q,** --- q,* is the prime power decomposition
of n, then the set consisting of L can be embedded in an O(n, 1) set where A = q, — 1
and where q; = min (q, q,, -+, q,) [6].

Since a Latin square L = (p,,p,, ---, p,) can easily be obtained such that
G = {py, P2, ", Pu} 18 a cyclic permutation group and since 1 = 2 for any odd
number greater than unity, an O(n, 1) set can easily be generated by the procedure
of Theorem 3.1. When A = n—1, use of the method of this theorem produces a
complete set of orthogonal Latin squares. No restriction is placed on the form of
the generator of G, and this freedom is of importance in constructing certain classes
of experimental designs.

If n, A and L are defined as in Theorem 3.1. and if » is a non-prime odd number
we present the following conjecture: the set S = {L, L?, -, L*} which is an
O(n, 1) set (see [6]) cannot be embedded in an O(n, 1+ 1) set.
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THEOREM 3.2. If L = (py, p,, -+, P») is a Latin square of order n and if G =
{P1s P2, -+, Pn} forms a (cyclic or not) permutation group, then there is no t such
that L' 1 L if n is even [6].

This theorem demonstrates that if one has a Latin square of even order whose
rows form a permutation group then it is pointless to search for an orthogonal
mate to L through a power of L. The following restatement of a theorem previously
published [6] shows that L is orthogonally mateless if this group is cyclic.

THEOREM 3.3. If L = (py, P2, +**, Pu) is a Latin square of order n and if G =
{pi, P25+, Pu} forms a cyclic permutation group, then L cannot be embedded in an
O(n, 2) set if nis even.

We now present a theorem for determining a lower bound for » even (odd) on
the number of Latin squares of degree 1 (at least of degree 2). An idea of the
proportion of orthogonally mateless Latin squares is useful in searching for
orthogonal mates using a computer and a random generation of squares.

THEOREM 3.4. Let n = q,*'q,** --- q, be the prime power decomposition of n and
let

W(n) = [(”_1)!]3 ;:1 qi/l—[;=1 (‘1;'_1)~

Then, (i) if n is even there exist at least W(n) Latin squares of order n having no
orthogonal mates and (ii) if n is odd there exist at least W(n) Latin squares of order n
having orthogonal mates.

To prove the theorem consider the n-set ¥ on which the family of Latin squares
is defined. The number of cyclic permutation groups of order » that can be formed
from the » distinct symbols of X is (n—1)!. Also note that if ¢ is a generator of a
cyclic permutation group G of order # on I then ¢* is also a generator for G for
any k relatively prime to n. The preceding two facts together imply that we can
only generate (n—1)!/¢(n) distinct cyclic permutation groups based on X, or
equivalently there exist only (n—1)!/¢(n) standard Latin squares in the cyclic
transformation set. ¢(n) is the familiar Euler function and is the number of
integers less than » and relatively prime to n. Also, from any given standard Latin
square n!(n—1)! distinct Latin squares can be generated by row and column
changes, and these are all different from the Latin squares generated from any
other standard Latin square. Therefore, every cyclic transformation set contains
nl(n—1)![(n—1)!/p(n)] Latin squares. Since

¢(n) = n(g,—D(q—1) - (q,—D/q1q, -+ q,,

then the proof of (i) follows from Theorem 3.3 and the proof of (ii) follows from
Theorem 3.1.

Some observations in the form of corollaries are presented below. These relate
to the orthogonality of Latin squares of orders 3 to 7. A surprising result is the
relatively large number of orthogonally mateless Latin squares of orders 4, 5, and 7.

COROLLARY 3.4. There is no orthogonally mateless Latin square of order 3.
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There is only one transformation set associated with the family of Latin squares
of order 3. This set is naturally cyclic. Hence, the proof of the corollary follows
from Theorem 3.1.

COROLLARY 3.5. If L is a Latin square of order 4, then either L is orthogonally
mateless or L can be embedded in an O(4, 3) set.

In proving the corollary we note that the family of Latin squares of order 4
has two transformation sets with one being cyclic. If L falls in the cyclic trans-
formation set, it is mateless by Theorem 3.3. If L falls in the other transformation
set, then it can be embedded in an O(4, 3) set. To prove the last statement it will
be sufficient, using Definition 2.3, to exhibit a non-cyclic Latin square L such that
L can be embedded in an O(4, 3) set. As an example, let

1 2 3 4
L=2 1 4 3
341 2
4 3 21
L is obviously not cyclic. L together with
1 2 3 4 1 2 3 4
341 2 4 3 21
L, = and L, =
4 3 21 21 4 3
2 1 4 3 341 2

form an O(4, 3) set.

Since W(4) = 432 and since there are 576 Latin squares of order 4, 759, of all
Latin squares of order 4 are orthogonally mateless ; the remaining 259, are members
of an O(4, 3) set. From this corollary we note that there is no O(4, 2) set which
cannot be embedded in an O(4, 3) set.

COROLLARY 3.6. If L is a Latin square of order 5, then either L is orthogonally
mateless or L can be embedded in an O(5, 4) set.

There are only two transformation sets for Latin squares of order 5, with one
of them being cyclic. If L falls in the cyclic set, then L can be embedded in an
O(5, 4) set as shown in Theorem 3.1. If L falls in the other transformation set,
then it is orthogonally mateless because this set is of the form » = 4t+1 and
contains a sub-Latin square of order 2¢ [9]. As an example, the following Latin
square of order 5 is non-cyclic and is orthogonally mateless because it contains a
sub-Latin square of order 2 (numbers underlihed).

12345
24153
35 42 1.
41532
5321 4



ON EMBEDDING AND ENUMERATION OF ORTHOGONAL LATIN SQUARES 515

Since W(5) = 17,280 and since there are 161,280 Latin squares of order 3,
there are approximately 899, of all Latin squares of order 5 which are mateless.
Only about 119, can be members of an O(5, 4) set. Note that this corollary states
that there are no O(5, 2) and O(5, 3) sets which cannot be embedded in an O(5, 4)
set; it should also be pointed out that the last statement could be obtained from
Shrikhande’s [15] result stating that the existence of an O(n, n—3) set, except for
n = 4, implies the existence of an O(n, n— 1) set.

COROLLARY 3.7. If L is a Latin square of order 6, then L is orthogonally mateless
[3, 14, 16, 17].

From Theorem 3.4 W(6) = 6!5!(60) is not a very good lower bound since there
are 9408 standard Latin squares of order 6 resulting in a total of 6!5!(9408) Latin
squares of order 6.

COROLLARY 3.8. If L is a Latin square of order 7, then L is orthogonally mateless,
has only one mate or can be embedded in an O(7, 6) set. .

Norton (written communication and [10]) has used exhaustive enumerative
techniques to study all possible Latin squares of order 7. 16,888,830 standard
Latin squares of order 7 have been found to be orthogonally mateless, 53,130
standard Latin squares have been found to have only one mate, and only 120
standard Latin squares have been found to be in the complete O(7, 6) set. All
0(1,3), 0(7,4), and O(7,5) sets can be embedded in an O(7, 6) set. From
Shrikhande’s results we know that the O(7, 4) and O(7, 5) sets can be embedded in
an O(7, 6) set; the fact that an O(7, 3) set can also be embedded in an O(7, 6) set is
interesting.

From Theorem 3.4 we expect at least 7!6!(120) Latin squares which can be
embedded in an O(7, 6) set. This agrees with Norton’s [10] results exactly in that
he obtained 120 standard Latin squares or 7!6!(120) Latin squares of order 7
which can be embedded in an O(7, 6) set.

The above results are summarized in terms of standard Latin squares. To
obtain the total number of squares in the class multiply the given number by
" onl(n=1)L.

TABLE 1

Distribution of standard Latin squares of orders 2 to T with respect to the degree of
orthogonality

Number and percent ( ;) of standard Latin squares

O((n, 1)) O((n, 2)) o((n,3) < O((n,4) O((n, 5)) O((n, 6))

BN

2 1 (100) — — — — —
3 0(0) 1(100) — — — —
4 3(75) 0(0) 1(25) — — —
5 50(89) 0(0) 0(0) 6(11) — —
6 9408(100) 0(0) 0(0) 0(0) 0(0) —
7% 16,888,830 53,130 0(0) 0(0) 0(0) 120

* percentages are 99.6857, 0.3136, 0, 0, 0 and 0.0007, respectively.
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The symbol O((n, 1)) means that an O(n, 1) set cannot be embedded in an
O(n, A+ 1) set, i.e., the set is locked. Published results are not available for extend-
ing the above table.

Before closing this section we should mention that there are many problems
left to be solved in the theory of mutually orthogonal Latin squares. Finding
solutions to these problems is not only mathematically desirable in itself, but has
in addition immediate consequences in other branches of experimental design and
of combinatorial systems [4, 5, 7, 12]. Three major unsolved problems are: (i) Is
there an O(n, n—1) set for n not a prime power ? (ii} How many non-isomorphic
O(n, n—1) sets exist, if any at all? (iii) How many non-isomorphic O((n, i)) sets,
i=1,2,---,n—2, exist?
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efforts are greatly appreciated.
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