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Let x,(¢) be the position of a particle in one dimension that switches
between uniform velocities +# and —n at the jump times of a Poisson
process with intensity #2. In this note are constructed realizations of the
processes x,(f) that converge almost surely to Brownian motion, uniformly
on the unit time interval.

1. Introduction. Let v(¢) be a Markov chain with stationary transition prob-
abilities, states +1 and —1, and with infinitesimal matrix (71 _}). We define
a sequence of uniform transport processes by x,(t) = n [, v(ns)ds, n = 1,2, --- .
x,(t) represents the position at time ¢+ = 0 of a particle in one dimension that
switches between uniform velocities +#» and —n at the jump times of a Poisson
process N,(f) with intensity n%. A special case of a result of Pinsky [2] shows that
the processes x,(f) converge in distribution to standard one-dimensional Brownian
motion. See also [5]. In this note we strengthen the convergence to convergence
almost surely, uniformly on the unit time interval. The proof employs Skorokhod’s
result of the reproduction of independent random variables by evaluating Brownian
motion at random times. More precisely, we have the following theorem.

THEOREM. There exist realizations {x,(t), t = 0} of the above uniform transport
processes on the same probability space as a standard Brownian motion process
{x(1), t = 0}, with x(0) = 0, so that we have, lim,_, , max, <, <y |x,,(t)—x(t)| =0,
almost surely.

2. Proof of theorem. The proof depends on the construction of appropriate
realizations of the uniform transport processes. Let (Q, .«Z, P) be the probability
space for a standard Brownian motion {x(¢), t = 0}, with x(0) = 0.

On(Q, o, P)foreachn = 1,2, -+, let ™, &,(™ ... be asequence of independ-
ent random variables each with an exponential distribution with parameter 2x,
that is, P(£;,") > 1) = e~ 2" for A = 0, and assume the ¢, random variables are
independent of the process x(z).

Furthermore on (Q, <7, P) let ky, k,, ---, be a sequence of independent random
variables so that P(k; = 1) = P(k; = —1) = % for each i, and let the k;s be
independent of the &,’s and the Brownian motion process. All of this is easily
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accomplished by introducing a product space and for convenience we relabel the
new space (Q, <7, P).

Consider the sequence of independent, identically distributed random variables
k&, ™, k,E,™, -, for each n = 1. We note that E(k,£,”) = 0 and ¢?(k;£,") =
E((¢,M)?) = 1/2n*. By a theorem of Skorokhod ([4] page 163) (see also [3]) for each
n = 1 there exists a sequence a,, g,, -+, of nonnegative independent, identi-
cally distributed random variables on (Q, .2, P) so that the sequence x(c; ™),
x(a;™ +0,™), ---, has the same distribution as k&, "™, k;&, ™ +k,&,, -, and
E(0,") = 0*(k&,™) = 1/2n7.

For a fixed n we define fori = 1,2, ---,

(1) 7 =" ez 0,”) = x(Xi=60,7),

where 6, = 0. The random variables y;”, y,, ---, are independent, each with

an exponential distribution with parameter 2%, so that E(y,") = 1/2n*.
Now, let x("(z), t = 0, be piecewise linear in such a manner so that

(2) X517/ ") = x(Ci=10,"),

and x(™(0) = 0. Thus x”(-) has slope+n or —n. Also let 7, be the time of the
ith discontinuity of the right-hand derivative of x™(-).

We claim that x(")(¢) is a realization of the nth uniform transport process above.
We need only check that the increments ©{®—1{",, i = 1,2, -, with 7, = 0,
are independent with a common exponentlal dlstribution, parameter n2.

Now, the probability that x(Yi-,a,)—x(3.i2¢ 6,") is positive is }, independ-
ent of the past up to time ) =50, ®_Hence 7, KO =y, M4 .. 495", where
P(N=i)=2""i=1,2,--.Itiseasyto see ([1] page 54, (5.6)) that 7, has an
exponential distribution W1th parameter n?, one half of the parameter of the
exponentially distributed y;"’s. In the same way, each increment 7, {”’; has
an exponential distribution, parameter n%. The increments are independent since
they are sums of disjoint blocks of the 7,("’s.

By Kolmogorov’s inequality for each & > 0 we have

(3) P(max, <;<pm 717+ +yM—i2n*| z &) £ 1/e? Y2 a2 (y™)
=1/2¢*n?
By the Borel-Cantelli lemma it follows that
(4) lim, o Max; << o |71+ +7" —i[2n%| = 0,as.
Similarly,

(%) lim,_,,, Max, <;< o |0, ™+ +0,P—i[2n?| = 0,as.
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Finally, we have, letting y,™ = ¢, = 0, that
lim,, ,, maxo <, < [x"(1)—x(t)]
=lim, ., maxoc;<zm [X(Xj=07,") = 3(Xj=0 7" (by (4))
= lim, ., maXo << 202 [X(Xj -0 0,) = XX -0 7)) (by (2))
=0, by (4) and (5) and the uniform continuity of Brownian motion
on [0, 1]. This terminates the proof.

NOTE ADDED IN PROOF. It is possible to extend our result to N-dimensions. The
proof employs an N-dimensional extension of Skorokhod’s result; namely, given a
sequence Xy, X,, ..., of radially symmetric, independent, identically distributed
R"-valued random variables with finite variance (and hence mean zero) there exists
a sequence gy, 6, ..., of non-negative, independent, identically distributed random
variables on the same space as an N-dimensional Brownian motion process x"(¢) so
that the random variables ) i _; oy are stopping times and x"(} #_, 0,) — x"(3 %21
0,) have the same joint distributions as the x', x*, ..., and E(¢,) = 0(x,)/N. Now
define N-dimensional uniform transport processes as in [5]. Our extension is that
the N-dimensional uniform transport processes converge to x" (-) as before. As
to the proof of the extension; forget k;&,; instead let & be radially sym-
metric with distribution given by P(|&™| > 1) = exp (—2*n/AN?). Then (&™)
= N/n*. Choose ¢ corresponding to the sequence &, i = 1,2, ..., as assured
by Skorokhod’s result and define y," in terms of x"(-) and the o, as before.
Note that E(g;™) = 1/n*. There is no problem about the process constructed
from x"(:) being a transport process. The rest of the proof proceeds as before.
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