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ON THE INDIVIDUAL ERGODIC THEOREM FOR
SUBSEQUENCES'

By ULRICH KRENGEL
The Ohio State University

The purpose of this paper is to show that the individual ergodic theorem for
subsequences fails to hold for measure preserving (m.p.) transformations of
[0, 1] other than the identity.

Ten years ago Blum and Hanson [1] proved the following mean ergodic
theorem for subsequences:

THEOREM 1 [1]. Let T be an invertible m.p. transformation of a probability space
Q, F, w). If T is strongly mixing the averages
U

€] Sfo=nT Y fe T
converge in L,-norm for all fe L, and all strictly increasing sequences (k;) of
integers. Conversely, if the limit is required to be the constant [ fdy, the strong
mixing condition is also necessary.

N. Friedman and D. Ornstein [4] gave an example of a strongly mixing T for
which there exists an indicator function f = 1, and a strictly increasing sequence
(k;) such that

(2) liminf,, ./, =0 and limsup,,.f, =1

almost everywhere. Their construction is quite complicated. We show that every
strongly mixing 7T could serve as an example. In particular the individual ergodic
theorem for subsequences fails for Bernoulli shifts. This answers a question
raised in the book of N. Friedman ([3] page 134). Our approach to the problem is
quite different from that of [4].

If T is a m.p. transformation of a probability space (Q, &, 1) we denote by
Q, the largest (mod u) #-measurable set Be & such that T '4 = A4 (mod p)
holds for all #-measurable 4 = B. Q, is called the identity set of 7. If & is
countably generated and separates points we have Q, = {weQ: Tw = w} mod p.
We can now formulate our result as follows:

THEOREM 2. There exists a universal strictly increasing sequence (k;) of nonnegative
integers such that for every m.p. transformation T of a probability space (Q, F, p)
there exists an indicator function f = 1,(4 € F) with
(3) liminf,, . f, =0 and limsup,..f, =1 a.. on Q\Q,.

A m.p. transformation T in (Q, &, p) is called aperiodic if for every n = 1 the
identity set Q, of T" is a nullset. A modification of the proof of Theorem 2 yields
the following theorem, the proof of which we leave to the reader.
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THEOREM 3. There exists a universal strictly increasing sequence (k;) of nonnegative
integers such that for every aperiodic m.p. transformation T of a probability space
(Q, #, p) and for every p with 1 < p < o the set of functions f'€ L, with

4) liminf,, ,f, = —o0 and limsup,..f,+ =0 a..

is a dense Gy in L, and the system of sets A e F for which f = 1, satisfies (2) a.e.
is a dense G in &, (with metric d(A, B) = u(A A B)).

PROOF OF THEOREM 2. As Q, is T-invariant we may assume Q, = (. Forn = 2
let Q™ =Q,\| JiZ{ Q; be the set where T is periodic with period n. We shall make
frequent use of the following results of Rohlin (see [5], [6] Lemmas 2.1-2.3):

(i) Q™ is a disjoint union of n sets E,, -, E, ,€ # such that E,,,, =
T'E,,(k=1,,n-1)and E,, = T"'E,,

(i) Let Q@ =0\ )~ Q,. For every ¢ >0 and neN = {1,2,3, -} there
exists a set Ee & such that E < Q9 E,T7'E, ..., T~ " DE are disjoint, and
OO\ iz T™*E) < e.

We shall assume Q = Q® in our construction. The set 4 € & and the sequence
(k;) will be defined inductively. In the rth step we determine k., 11, Kpo 42, " Ky,
and an approximation 4, of 4 so as to produce divergence of £, on Q‘®. To prove
the theorem in full generality a subsequence of the sequence of steps of the con-
struction must be reserved to the definition of some k; in such a way as to produce
divergence on Q® (k = 2). It will be clear from the present proof, how to proceed.
The assumption Q = Q) is only made in order to keep notation and technicalities
down.

We start the construction (step 1) by defining m, = 1,k, =0, 4, = &.

At the end of step r—1 (# = 2) we have defined a strictly increasing finite
sequence 1 =m; <m, < -+ < m,_; of integers, a strictly increasing finite
sequence 0 = k, <k, < -+ <k,,_, of integersand r—1 sets 4, € F(z =1, ---,
t—1). Let

Sl =n"1Y0_11, T,

Gi’f = {0 § infmi<”§mi+1SnlAr < 2—i} and
H, = {1—2"' < SUPpy cnzmie, Sula, = 1}

The sets A, (1 < © = t—1) and the numbers k, and m; have been chosen in such a
way that the inequalities

(5) w(G; ) >1-2/(1-277) and
(©) W(H) > 1-27(1-27)
are satisfied for 1 £ i < t—1andi < t < t. (Note that nothing has to be proved

for t = 2, since there is no i with 1 £ i < t—1 in that case.)

Step t. Let oy =m 272+ If A,e F is such that u(4,_, A A,) £ o, the
inequalities (5) and (6) will hold for 1 £ i < t—1 and t = 1. To see this observe
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that G;,_; AG,;,and H;,_, AH;, are contained in the set {7y T%(4,_, A A4,),
so that

#(Gi) 2 W(Giy—1) = (Giy-1 AGyy)
> 1_2—i(1_2—r+1)_2—2(t+2) > 1_2—1'(1_2—!)‘

The same argument applies to (6).

Let p, be an integer with p, > 2a,”!. The idea is to choose g, very large and to
apply Rohlin’s result (ii) with n = p.q,. If g, is large T behaves for a long time just
like a periodic transformation with period p,.

Let ro = ro(¢) be the smallest multiple of p, which is larger than k,, . Pick
l; = 1,(t) e N such that

(7) ll(ll+mt_1)_1 > 1_'2_t.

Let k,,_,+;=ro+ip.(j=1,2,--, ;). If [;(s = 1) has been determined find
Lyt = ;1 1(1) e N with

(8) Lo+ L+ + g +me_ )"t >1-27"0

For j with I+, + - +L,<js L+L+ - +l4 (s < p,—1) define k,, _ ;
by

(9) km,_,+j =To+Jjp.+s.

Let m, = m,_;+ ) I,. We have now completely specified k, < k, < -+ < k,,.
Let ¢, N be such that g, > k,, -2'*3. We apply Rohlin’s theorem (ii) with
n=n=pgande =¢ = 2" (%) We obtain the existence of a set E,e # such
that the sets E,, T 'E, -, T~ ‘"'"”E and disjoint and

(10) O\ TVE,) <270+,

Let D, = )%, T™/"E,. We complete step ¢ of the construction by defining
A, =D, v (At—l\T_lDt)-

The set D, has measure at most equal to p,”' < 27 'a,. It follows that
u(A, AA,_,) <o, < 2@ D This implies that the sequence A4, converges to a set
A e Z. It remains to prove that (3) holds with /= 1, and with the inductively
defined sequence (k).

Letwe U"’ m ,T7'E,. For some integer p with 0 < p < p, we have w e T~°D,.
It follows that

(i1) Thne-1+1 gy €D, < A for all j with

Yooy l,<j<Yhill, because T?w e D, and then the point w revisits D, periodi-
cally with period p, until it reaches E,. This does not happen before time
Ky, = kp,_,+;. It follows from (11) that the last /,, terms in the sequence
1, o Tk (co)(l Sv<m,_+Y411,) are equal to 1. By (7) or (8) we obtain
weH,_y,. From H,_,, 2 (Jy5! T E, we get

p(H -y ) 21— “(Q\Unt_l T7'E)—i(E,)" Ky,
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The inequality (10) and the inequalities
#(Er)km, = "t—lkm, = pt—lqt—lkmt < —t+3)

now imply u(H,_;,,) > 1=270%» > 12701 =271,

We have proved (6) fori =t—1, 7 = t.

The proof of (5) is similar: Letwe ( J;<,! T E\D,. In this case there is an
integer p with 1 < p < p,and w € T™?D,. It follows that

(12) : Thme-1+igy = Trotipete=1e T1D, < A,°

for all j with YoZ11,<j<Y%_,1,. Using (7) or (8) we obtain weG,_, ..
Hence
ll(Gt— 1,:) 2 1_#(Q\U:t=_01 T_”E,)—u(E,)k,,,t—,u(D,).

Using the previous estimates and w(D,) < p,”' < 27 ¢*2) we get (5) fori =
t—1, 7t =1t

By our choice of «, the inequalities (5) and (6) remain valid for each larger .
Passing for fixed i with 7 to infinity we get fori > 1;

”{0 é infmi<n§m.-+1 SnlA é 2—i} g 1—2_i

and
#{1—_2_i = SUPm; <n<miy SnlA} = 1__2—1"

where S,1, = f,. Clearly this implies (3). []

In [7] Professor Sucheston and the author proved a mean ergodic theorem for
subsequences for m.p. ‘“‘mixing” transformations fo an infinite o-finite measure
space. Using stacking constructions (see [3] page 85) it is possible to see that the
corresponding individual ergodic theorem for subsequences fails for certain m.p.
“mixing” transformations 7. We have made no attempt to find out whether it fails
for all conservative m.p. transformations.

In [2] Brunel and Keane have proved the following individual ergodic theorem
with weighted averages: A m.p. transformation T of a probability space (Q, Z,
w) is strongly mixing if and only if for each strictly increasing sequence (k;) and
each fe L, there exists a decreasing sequence (c;) of positive real numbers with
divergent sum such that (Y-, ¢) 'Ot cifo TH) > [fdu ae. It is easy to
observe that (c;) can be chosen independent of (k;). Using the methods of the present
paper it is possible to see that (c;) cannot be chosen in such a way that it depends on
T only.

It is also shown in [2] that £, converges a.e., if T is weakly mixing and (k;) is a
sequence of a special type, called uniform in [2]. Professor Brunel has pointed out
to the author that the weak mixing condition in the Corollary on page 236 [2]
is also necessary. If 7" is not weakly mixing a uniform sequence (k;) for which f,
diverges for some f is obtained by considering a rotation of the unit circle by an

eigenvalue # 1.
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