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Let X; fori = 0, + 1, --- be independent random variables whose distributions
are symmetric about zero and such that

(1) P{|X)|z x}< M [re " dt

for all i and all x = 0 where M and y are positive constants. Suppose a;; for i, j =
0, + 1, --- are real numbers such that a;; = a;; for all i and j, and such that

(2) AZ =Zi-j a,%' < 0.

Let A denote the matrix ((|a;;]))ij=0,+1,-.» and let ||4] be the norm of A
considered as an operator on /,, the index on the sequences in /, taking on the
values 0, 4+ 1, --- . Define

The purpose of this paper is to prove:

THEOREM. Under the assumptions stated above, S exists as a limit, both in quadratic
mean and almost surely, of the sequence

{SN = Zﬁj= -N aij(Xin_EXin)}s

and there exist constants C, and C, depending on M and vy (but not on the coefficients
a;;) such that for every ¢ > 0

4) P{S z ¢} < exp(—min{C,¢/||4]|, C,*|A*}).

If {Y, =),a,X;_,} is amoving average, then quadratic sums of the form (3)
occur naturally when estimating its spectral density. This was the original moti-
vation behind our work.

We would very much like to remove the restriction that the distributions of the
X’s be symmetric. Unfortunately, our proof depends heavily on this symmetry.
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PROOF OF THEOREM. Let

(5) af? =a; if —N=Zi,j<N,
=0 otherwise;

and let

(6) Ax = (|’ j=0,= 1,

Define

m A = T (a)

A minor re-indexing of our X’s enables us to use Theorems 1 and 2 of Varberg
[2] to obtain both types of convergence of Sy to S.

The main part of our proof consists, first, of showing that (4) holds with S, A4,
and A replaced by Sy, Ay, and Ay respectively, and second, of a “‘continuity”
argument which removes the subscripts.

Before proceeding with the main part of the proof we establish several lemmas.

LEMMA 1. If EX? = 6% < oo, then forn = 0, 1,2, - andk = 1,3, 5, - we have
Ex2n(X2_O,2)k§ O_2nE(X2__G.2)k
if both sides exist and are finite.

LemMa 2. If Z is N(0, 1) (i.e., normal with EZ = 0 and EZ*> = 1), then

2n)!
2n __
Bz =
forn=20,1,2,-.
LEMMA 3. If Z is N(0, 1) and n = 2, then E(Z*—1)" > 1.

ProoF. For n = 2 we have (using Lemma 2)
E(Z2 = 1) = ¥, [()EZ20 2 — (o DEZ2 2]
= (DEZ"— (DEZ ™
=[@2n—1)—n]EZ*"" 2 = 1.

LemMA 4. If Z is N(O, 1) and X satisfies (1) then there exists A depending only on
M and y such that .

|EX2"(X2—EX2)”| < lzn+2vEZZn(Zz_1)v
forn =0,1,---andv =0,1, ---.
PROOF. Case v = 0. Setting x = y/(2y)* we get
EX?" < [§x*"Me "7 dx = (2y)"""EM [y e ¥ 2dy
=(2y)"(Mn*[2y%)[ 2, (2m) Ty e~¥ 2 dy.
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The desired inequality holds if
Az Ay = (2y) (1 +Mnt[2y?).
Case v = 1, n = 0. The conclusion of this lemma is 0 = 0.
Case v = 1,n = 1. Using Lemma 2 we get
EZ*(Z*-1)' 2 1> P{|Z| = 2}.
[Proof continued below.]

Case v = 2, v odd. Using Lemma 1 and then Lemma 3 we get
EZ*Z*—1) z E(Z*—1)" = 1 > P{|Z| = 2}.
[Proof continued below.]

Case v = 2, v even. EZ*"(Z*>—1)" 2 P{|Z| = 2}. We now continue the proof
for these last three cases. The symbols a, b, and C will denote various constants
whose exact values do not matter, and which may depend on M and y but not on
n and v. The inequality 1+C = C demonstrates our usage. Setting 12 = EX?
and x = y/(2y)* we get

|EX2n(X2—T2)v| § Cn+v+j':o x2n|x2_12|vMe—yx2dx

é Cn+v[1 +aj‘:?2y)‘/2 y2n|y2_2,y1.2,ve—y2/2 dy]

y = ’)’T —y2
< C"H[b'f‘ajzoizzyi/lyzn(y ) < ) € y/zdy:'

é acn+v[1 +j§o+2ry1/2 yzn(yz_l)ve—yZ/z dy]
S bC"ULIHEZ(ZE 1) + 5427 y2r |y = 1] e ™2 dy].
< aC"[1+EZ>(Z2—1)].

In the three cases under consideration we have 1 < EZ*"(Z*—1)*/P{|Z| = 2} so
in these cases
|EX2n(X2 _,L.Z)v| é bcn+vEZZn(ZZ _ l)v

If 2 = max {4, (1+b)C*} where b and C come from the inequality above, and
A, comes from the case v = 0, then the conclusion of the lemma holds.

LEMMA 5. If A is a real symmetric n xn matrix, then there exists a real nxn
orthogonal matrix D such that

D"AD = B = diag(b,," -, b,)

where by, ---, b, are the eigenvalues of A. It follows that tr A = tr B, tr A> = tr B2,
and | 4| = max |b,].
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- LEMMA 6. If X is a random variable with EX = 0 and Ee®® defined and finite for
0 in some open interval about zero, then there exist © > 0 and C > 0 such that for
0] = t we have Ee®™™ < 2.

PrOOF. See Lemma 3 in [1] and note that the tails of a distribution go down at
least exponentially fast if and only if its moment generating function is finite in
some open interval about zero.

We now proceed with the main part of our proof. We will use 4 both as defined

in (6) and as the matrix ((,aij|))i,j= NN
For all 0 = 0, P{Sy = ¢} < E¢’5¥~? which equals

N

3 o0 0" k
(8) e eﬂkgofc—!E[ij_z_ ”(X X EX X )]

for |6| less than the radius of convergence of the series. Terms in the expansion of
E[Zl i=-nai (X X;—EX;X)IFare of the form [ [¥_,a; ; [ [’= -nEX(X>—EX?)"
since the X;’s are 1ndependent and EX; = 0. Using A from Lemma 4 and letting
{Z;} be an i.i.d. sequence of N(0, 1) random variables we have

() EX/(X2—EX?)t = )% 2BEZ(Z2 —1)P = 0 from symmetry if o; is odd,
and

(i) |[EXA(X?—EX2)| £ 27PHEZ(Z7— 1)’ from Lemma 4 if «; is even
so that (8) is bounded by

k/{Zk N k
©) e " Z Xl [ij;_ laijl(ZiZj—EZ,.Zj)]
(10) e ®Eexp[0A*Y N, _yl|a;[(ZZ;—EZZ})]

for 0 = 6 < the radius of convergence of the series in (9). Now let Z be the vector
(Z_n, -, Zy), let D be a matrix such as is guaranteed by Lemma 5 for 4, let
W= (W_y, -, Wy)=Z2ZD, and let B = D"4yD. Then W_y, ---, Wy are indepen-
dent N(O, 1) random variables and

SVe w|ai|(ZiZ,—EZZ;) = ZANZ" —tr Ay

=(ZD)(DTAyD)(D"Z")—tr(D"AyD) = WBW" —tr B

Zl— =N bi(I'Vi2 - 1)~
Expression (10) becomes
(11) e [ R-_nEexp[04%b (W, > —1)]

since the random variables W,? are independent, each having the Chi-squared
distribution with one degree of freedom. Since E(W,2—1) = 0 we can apply
Lemma 6 to obtain 7 > 0 and C > 0 such that (11) is bounded by

(12) e Pexp{CO*A*Y Y. _y b}
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for 0 < 042 max, |b,| < 7. (Incidentally, a “backwards” inspection of our proof
shows that everything we have done so far is valid for 0 in this range.) Since
N _yak=trA,’, from Lemma 5 we see that (12) can be rewritten

Lj=

(13) exp[—e0+CO*A*AN*]

which is minimized if 6 = §/2CA*A,? if that is a permissible value of 6. Set

0, = min {e/2CA*Ay?%, 1/A%||AN]|}
and recall from Lemma 5 that ||Ay|| = max; <y |b;|- Then (13), and therefore (8),
is bounded by
exp { —0(e— COA*AN?)} < e™%/2,
Set C, = /24> and C, = 1/4CA* and the theorem is proved in the special case
S = S,
Since Sy — S in quadratic mean, Sy — S in probability so
P{S = ¢} < liminfyexp [ —min {C,(e—5)/||4n||, C2(e—8)*/Ay*}]

for every 0 < & < &. We know Ay? — A? and if we can show that |[4y] — || 4]
we can let N > oo and then & | 0 and be done. Now |4y has the same value
whether Ay is considered to be an operator on 2N+ 1 dimensional Hilbert space
or an operator on I,. If T = ((¢;;)) then ||T|| £ [Y;;t%]*. Thus

|iA—AN”2§Z|i|>N andfor |j|>N aizj"*o'

It follows that || Ay|| = ||4]|.
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