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UPPER AND LOWER POSTERIOR
PROBABILITIES FOR TRUNCATED MEANS!

By ROBERT KLEYLE
University of Massachusetts

1. Introduction and summary. In the recent literature a system of inference
which leads to upper and lower posterior distributions based on sample data has
been proposed by Dempster (1966, 1967, 1968). The purpose of this paper is to
apply this method to the problem of finding the upper and lower probabilities that
the mean of a distribution falls within a given interval, the only prior information
being that the distribution is continuous. Included in the class of all continuous
distributions are those having the property that 0 < F(y) < 1 for all real y. For
distributions of this type the approach used here leads to trivial results. The reason
for this is discussed in Section 2. To circumvent this difficulty the mean of the
truncated distribution is used. That is, for given ¢, and ¢, such that 0 < ¢, < 1—
g, < 1,

1 &2
(1.1) uley, &,) = i—_—gl—'_TZJ‘ 1 tdF(1)
where Fis a distribution function and &; < ¢, are real constants such that F(&,) =
g, while F(&,) = 1—¢,.

The device of truncating the mean is to some extent artificial and is unnecessary
when the continuous distribution function is constant except on an interval of
finite length. However, it does offer an approach to the more general (and in the
author’s opinion more interesting) problem where no restriction is placed on the
interval on which the distribution function is neither zero nor one.

Section 2 contains a brief restatement of some of Dempster’s basic definitions
in the context of this particular problem along with an exposition of the type of
reasoning required whenever this method is applied to problems involving truncated
moments. Exact expressions for the upper and lower probabilities are derived in
Section 3, and some asymptotic results are presented in Section 4. In particular,
it is shown that if the upper and lower probabilities converge, they converge to the
same limit. All relevant distribution theory is presented in an appendix.

2. The method of inference. The basic components of this inference system
are a probability space (X, &, u) and a class .# of measurable mappings of (X, &)
into the Borel subsets of the real line. These mappings along with initial probability
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measure p induce a class of univariate distribution functions € = {F,: 0 e Q},
where 0 is an indexing parameter and Q the parameter space. The only restriction
on class . is that it satisfy the two postulates given by Dempster (1966) which set
up a one to one correspondence between .#/ and % or equivalently between .#
and Q. Assuming that X contains an infinite number of elements, the random
sampling process consists of a drawing from the product space (X", #") governed
by the product measure p". The observer, however, identifies only the corresponding
point (¥4, -+, »,) and must on the basis of these observations infer which mapping
is the true mapping, or equivalently, which 0 € Q is the true 0.

Let % denote the class of all continuous univariate distributions, and let Q be any
set which can be put into one to one correspondence with the distributions in €.
Because of the well-known property of the transformation x = F(y), where F is
a continuous distribution function, there is no loss of generality in letting (X, &, u)
represent the uniform probability measure over the Borel subsets of the unit
interval (0, 1).

Let I denote a multivalued mapping of X" into Q in accordance with Dempster’s
consistency principle (cf. Dempster (1966)). That is, each sample point (x, -, X,
€ X" maps into a subset ['(x,, ---, x,) < Q where I'(x,, ---, x,) consists of all points
0 for which y; = F,"'(x;),i = 1,2, ---,n. Let & denote the class of all subsets of
Q of the type

2.1 X(eq, €2, A1y An) = {0: 4; < uley, €5) < Ay},

where 0 < ¢y < 1—¢, < 1 and 4, < 4,. For any X € § define

(2.2) S5, = {(x;, -, x,)e X", T(xy, -, x,)NZ # ¢}

and

(2.3) S, &) = {(xg, -, x) e X T(xy, -y x,) # ¢, I'xy, -+, x,) < X},

Finally if both upper and lower inverse sets are Borel subsets of the n-dimensional
unit cube X" for all ¥ € &, then upper and lower probabilities can be defined as

(2.4) Py(Z) = 1"(S,(2)/1"(S,)
and
(2.5) P.(Z) = W'(S(E)/'(S))s

where S, = 5,(Q) = S,(Q) is the domain of I' and p"(S,) > 0. (cf. Dempster
(1967)). Before proceeding further sets S,(%) and S,(X) must be explicitly identified.
This presents special difficulties for events in class & as can be seen from the
following discussion.

Since the order in which the data are observed is irrelevant when making infer-
ences concerning means, it is sufficient to know only the ordered data y, <
Y2y < '+ < Y. Furthermore, since the transformation x = F(y) is order-
preserving for all F e €, attention can be restricted to the ordered subset

(2.6) Se = {0 < x(py < Xg) < 0 < Xy < 11
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Thus T(x,, ---, x,) = ¢ forall(x,, -, x,) ¢ S,and S, = 5,(Q) = S,(Q) as required.
Now consider an arbitrary point (xyy, -, X(»y) € S,. For any such point, x; =
Fo(yp)s i = 1,2, -+, n for some 0 € Q. Thus the event x; < ¢, corresponds to the
event y(;, < &;, while x(;, > 1—e¢, corresponds to y;, > &,. From the foregoing
it is clear that observations which lie in the tails (i.e., values below &; or above ¢,)
should not be involved in inferences concerning the truncated mean u(e,, €,). But
since the values of &, and &, are unknown, a conditional argument must be
employed.

Let I* denote the largest integer such that x ., < &;. If no such integer exists,
let I* = 0. Let J* denote the smallest integer such that x ;. > 1—e&,. If no such
integer exists, let J* = n+1. Since the values of x(, < x,, < -+ < X, are
unknown, I* and J* are random variables whose joint distribution is given by
(3.23). Now for any given ¢, and ¢, if S(Z, J) denotes the subspace of S, for which

Q7)) x4y < <X <& < Xgap << Xyg-pn < 1—&y <Xy < <X,
then (x,, ---, x,) € S(Z,J) if and only if I* = Iand J* = J. Notice also that
(2.8) S, = Ui-oUst1+18(L, ),

and the components of the union are mutually disjoint. The problem of finding
upper and lower inverse sets for each X & & can now be attacked separately on each
disjoint subset.

Let (x(y), -*» X(y) denote an arbitrary point in S(1,J), and define I'(/,J) =
[(1,J; X(1), ***» X(n) to be that subset of Q which is consistent with the data for the
given sample point. That is, given data y;) < ¥y < = < Yy, 0 € T(L, 5 X(1)5 -7,
X(n) if and only if x;, = Fy(yy) foralli = 1, -, n. Therefore, if

(2.9) L(I,J) = L(I, J; X1y " "> Xny) = infg e rerp JE 1 dFO(1),
and
(2.10) ULJ)=U(LJ, x4y " x(,,)) = SUPy. r(I,J)fgf tdFy(1),

it is clear that ['(/,J)nE # ¢ if and only if the intervals (L(1,J), U(l,J)) and
((1—&;—e,)4;, (1—¢,—&,)2,) are not disjoint, while I'(/, J) = X if and only if
the first interval is contained in the second. Thus when attention is restricted to
subspace S(I,J), the upper and lower probabilities are generated by random
intervals. Some problems of this type havé been discussed by Dempster (1968).
Now if T,(I,J; A) and T*(I, J; A) are defined to be those subsets of S(/, J) for
which (1—¢, —&,)4 < L(I,J) and (1—&, —¢&,)A > U (I, J) respectively, then

(2.11) SU,J;2) = SU,J)—(T(I, J; 2)0T*(1, J; 4,))
and

(2.12) SULJ;E) = Ty, J; 20T, T 45).



UPPER AND LOWER POSTERIOR PROBABILITIES 979

Given the data y;) < -+ < Yy, however, it can be shown that for some com-
binations of I, J, and A, T, (1, J; 2) is the entire subspace S(I,J) while for other
combinations T(/, J; 4) is the null set ¢. The same is true of T*(1, J; 1). Thus if
Yoy < At < Va1 and yy < Ay < pg41y Where 0 £ p < g < n,

(213)  P(Z) =1=Y Y0t a1, 002 P(To(L J;5 22) | S, J))P(S(1, J)
=200 Xi=ret P(TH(L, T3 44) | S(L, J))P(S(T, J))
and
PZ) =120+ 0 f=r+1 P(S(L,T)
(2.14) +Zf:1 23=p+2 P(Ty(1,J5 2y) | S(1, J))P(S(1, J))
)0 pe1 Da=a+ 1 P(T*(1, T 25) | S(1, J))P(S(L, J))
A 01D gt P(T(L, T 5 2)NTH(, T A,) | S(1, J))P(S(1, J)),

where probability measure P is defined such that P(B) = u"(B) for all Borel
subsets B < (0, 1)" and probability measure u" is uniform over the Borel subsets
of (0, 1)".

Explicit expressions for the component probabilities of (2.13) and (2.14) will be
derived in the next section. For the moment, however, notice that if the range of
the class of measurable mappings is the entire real line, the ‘“non-truncated”
mean is

(2.15) u = |2 tdFy(1), 0eQ,

and /=0 and J =n+1 are the only possible values of I and J. However,
T«0,n+1;2) = T*0,n+1; 2) = ¢ for all values of A. Thus, for all 1, < A, the
upper and lower probabilities of events of the type 4; < u < A, are one and zero
respectively. This result also follows immediately from (2.13) and (2.14).

3. Exact upper and lower probabilities. In order to get explicit expressions for
the upper and lower probabilities of events in class & it is first necessary to obtain
explicit expressions for L(Z, J) and U({, J) which are given by the following lemma:

LemMMA 3.1. Given sample point (X 1), -+, X(y) and data y;y < -+ < Yy,

(3-1) L(Ia J) = J’(I)(x(1+1)_81)
+) i YoXg+n=Xp)+Yu+n(l—ea=Xu-1)s
(3-2) U(Ia J) = Ya+ 1)(x(1+1)_81)

+ X051 Yo X=X+ Yl ==X 1))
when J =2 I+2, and
3.3 L I+1) = yg(1—¢;—ey),
3.4 UL T+1) =y (1=, —¢,).
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PRrROOF. Suppose that J = I+2 and consider the intervals (£;, y+1y), (Va+1y
}’(1+2)), T (y(J—l)a &,) on Ry. Now for all 0 € T(1,J; Xy, 5 X())s

(3.5) £21dG (1) < [E1dFO(1) < [21dGy(r),

where G, and Gy, are step functions which put all the probability associated with the
above intervals on their lower and upper end points respectively. Now since
0 € I'(Z,J) implies that x;) = Fy(y;) foralli = 1,2, ---, n, and that (2.7) holds, the
corresponding intervals on (0, 1) are

(&1 X+ 1)), (X(1+ 1) x(1+2))a D (x(J— pl —&y).

Thus since the probability measure on (0, 1) is uniform,

Gu(y) =& SISy <Ya+n
{(3.6) = X(j) Vi SV <Vi+1 j=I1+1,---,J=2,
=Xy-1y Yu-n=y=&,
and
GL()’) =XI+1) LSy Ya+1)
(3.7 =XG+1y Vi) <VZ=Vi+n j=1+1,--,J=-2

=1-g, Yu-n <y =&,

Finally since (x(;), =", X@) € S(,J) implies y;y < & < yg+1y and yyipy <
&, < yy) the expression given by the right-hand side of (3.1) is the g.Lb. of
(1—¢&;—&,)uley, &,) for el ;), while the right-hand side of (3.2) gives the
L.u.b.

WhenJ = I+ 1, there are no observations between &, and £,, and

(3.8) Ef 1dGy(1) =& (11— —&2) > yuy(l—e1—&),
while
(3.9) JET tdGy(t) = &(1—e;—82) < Y+ 1l —&1—&2).

Expressions for the conditional probabilities which appear in lines (2.13) and
(2.14) can now be derived by the following argument. Conditioning on subspace
S(1,J) is equivalent to conditioning on the event {/* = I, J* = J}. Now for given
I and J set T (I,J; A) is defined in terms of L(/,J), where L(Z, J) is given by (3.1)
and (3.3). From (3.3) it is clear that T',(1, T+ 1; 1) is either S(Z, I+ 1) or ¢ depending
on whether A < y, or 4 > yy. Now when J = I+2, define
(3.10) Uy =(x(1+1)_31)/(1_81—82)a

v; = (x(1+i)_x(1+i—1))/(1 —&—&), =23, J-I-1.
Thus,

(3~11) T*(I, J; /1) = {Z{_I_ ! (J’(J—l)_)’(ni— 1))”:‘ = J’(J—1)_i}-
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Now when (x, -+, x,) € S(I, J), X141y < X(r+2) < =+ < Xy+1) are the order
statistics of a random sample of size /J—I—1 from the uniform distribution over
(g1, 1—¢,). It follows, therefore, from (3.10) that given S(I,J), vy, -+, v;_;_ are
jointly uniform on the simplex

(3.12) V(L) ={(vis s vyop-)i0; 20, i =1,2,++, J=I=1, 317" 'p, <1},
Thus when 4 = y_;, the conditional probability given (I,J) of T (I, J; A} is

zero, and when y,) < 4 < y,+1), 0 = p = J—2,itis an immediate consequence
of Theorem A.1 (cf. Appendix) that

(3.13) P(T (I, J; )| SU, ) = AU, J; p, A)

where

(3.14) AL T p, 2) = 1= P[(A=ya)’ T T % vy — Yol
or alternatively

(3.15) AL J; p, 2) = Zpﬂ[@ ym)J = 1/1_[11#!()}(1) y(,))]

From (3.15) it is clear that if p = J—1, A(1,J; p, 1) = 0, which is consistent with
what happens when 4 = y_ ).

By a completely analogous argument it can be shown that for0 < 7 < J < nand
Yy < A<yp+1» 0O =p= n),
(3.16) P(T*(I,J; ) | S(I,J) = 1— A+ 1,J+1;p, A).

The intersection which defines S(Z, J; ¥) can be written

(3-17) T*(I, J; ll)nT*(L J; /12) = {Z{_I_l(Y(J—l)—)’(1+i~1))vi = ,V(J—1)—/11,

Z{_I_l (y(.l)_y(1+i))vi > ,V(J)_/lz}-

Now if p,y <24y < Yp+1y and ygy < Ay < Y1y Where I=p=q=J-1,
Theorem A.2 is applicable withr = p—I+1 ands = g—1I. The expression obtained
from Theorem A.2 is a complicated function of 1, J, p, g, ;, A, and the ordered
observations. It can be written in several alternate forms, only one of which will
be given here. It is convenient to write this expression in terms of the following
component functions:

Oy = (J’(1+i)—y(1+k))/(J’(1+i—1)—J/(1+k—1)) for i #k,
(3.18) 0; = (y(J)—y(I+i))/(y(J—1)_y(1+i—1))9

0; = (J’(Hi)—/{z)/(y(ni‘—1)_/11)-
When §; > 0 let A(ij) denote the jth largest J;, and m; the integer such that

A(im;) = 8; > A(im;, ,), and when §; < 0. let A(ij) denote the jth smallest 64, and
m; the integer such that A(im;) £ J; < A(im;, ). Also define

(3.19)  b(A: LJ) =([A=yasi- ol T TG4 asi-n=Ya+i- v
(3.20)  A*(0i, mi: LJ) =1=378  {(A(i))=d) !
X[A\U)l—[u#;l(A (i))— A(’k))]_l}
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and

(3.21) By(6i, mi; I,J) = A*(6;, m;: 1, J) i
=1-A4*6;,m;, 1,J) i

lIA
2

-

\
N

Finally, having specified all component functions,
(3.22) P(T(I,J; A)NT*(1,J: 2,) | SU,J)) = 1—A(I+1,J+1;q, 1,)
+ Yo (=54 LI)B(6;, my, 1),

whenever y,, < A1 < Va1 V) < 42 < Vg+1) and I = p = g = J—1. Notice
from (2.14) that the conditional probability of the intersection occurs only when
I=sp=sq=J-1

The weighting probabilities P(S(Z,J)) which appear in (2.13) and (2.14) are
clearly trinomial since P(S(Z, J)) is simply the probability that in a random sample
of size n from the uniform distribution over (0, 1) exactly 7 observations fall in the
interval (0, ¢,), J—I—1 in the interval (¢;, | —¢,), and the remaining n—J+1 in
(1—¢,, 1). Thus,

n! I(l
& — &
NJ=I-1D)!'(n=J+ 1!

J—I-1_ n—J+1
1—¢2) ) .

(3.23) P(S(1,J)) =

Explicit formulae for the upper and lower probabilities of event £ can now be
obtained by substituting the expressions given by (3.13), (3.16), (3.22), and (3.23)
into (2.13) and (2.14) respectively.

Now let clsss & be extended to include “one-sided” events of the types

(3.24) L, = {0: uley, &) < 4,
and
(3.25) T, = {0: 1< uley, e,)}

SinceX - X,as A, > —oand X —» X,as 4, » o0, andsince p > 0 and g — n as
A, and A, approach —oo and + oo respectively, expressions for the upper pro-
babilities of events X, and X, can be obtained from (2.13) by setting p = 0 and
g = n. However, the lower probabilities of X, and X, cannot be determined by
considering the respective limits of P,(X) as 4; - —oo and 1, - +co. This is
because the cases where I = 0 or J = n+1 contribute nothing to the lower
probability of a two-sided event, but the case I = 0 contributes to the lower
probability of X,, while the case J/ = n+1 contributes to the lower probability of
¥,. However, since X, and X, are complementary events, the lower probability of
one can be found by subtracting the upper probability of the other from unity
(cf. Dempster, (1967)).

If € were to denote the class of continuous distribution functions having the
property that F(y) = 0 for all § e Q whenever y < a, it is necessary to truncate
only in the right-hand tail. This has the effect of fixing the value of I at zero and
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letting y oy = a. The conditional argument is still necessary, but now the condition-
ing is with respect to J only, and expressions for the upper and lower probabilities
of one and two sided events can be derived in a manner completely analogous
to the above approach. If Fy(y) = 1 for all § € Q whenever y = b, truncation
need take place only in the left-hand tail, J is fixed at n+1 and the conditioning
isonl.

Finally, if & were to denote the subclass of continuous distributions for which
0 < Fy(y) < 1 only when y € (a, b) for all € Q, the untruncated mean

(3.26) p=[tdFy(t) < o forall 0eQ.

Thus both truncation and the conditional argument are unnecessary and the
derivation of the upper and lower probabilities is straightforward.

4. Approximate upper and lower probabilities. From (2.13) and (2.14) it is seen
that the upper and lower probabilities of events in class & are weighted averages of
certain conditional probabilities. Exact expressions for these conditional pro-
babilities are extremely complicated functions of the ordered observations and

parameters A, < A,. It is desirable, therefore, to approximate these exact
expressions with more tractable functions.

Recall that the weights are trinomial probabilities given by (3.23). Thus for any
positive integer k it is clear that

(4.1) PU*—T1*<k) =YY, 1< P(S(I, J)) = B(n, 1—&, —&,; k—1),

where B(n, p: x) denotes the cumulative binomial distribution function. From
(4.1) it is clear that for small ¢; and ¢, (i.e., max (g, &,) < .05), B(n, 1 —¢g; —
&, k—1) will be close to zero unless & is relatively large with respect to n. Thus,
since almost all the weight is concentrated on those values of J and J for which the
difference J— 1 is large, approximate conditional probabilities will be derived for
large values of J— 1.

From the definitions of T, (Z, J: A) and T*(Z, J: ) it follows that

(4-2) T*(I, J, i) = {l = Z{ﬂ)’(zﬁ—nvi},
T*(I, J; '1) = {Z{_I Ya+nbi = l},

where random variables v,, v,, ---, v;_;_,; (defined by (3.10)) are uniformly dis-
tributed over the simplex given by (3.12), and v;_; = 1 =Y 17" 1o,
Now if ‘

I

(4.3) z(1,J) = (‘;’]('[_—’%[Jil Yaiyvi-r+1— ¥, J)],

where

~ 1 J-1
(44) y(Ia J) :J—_I ; y(i)’
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and

1 J-1
(45) SZ(I’ J) =J__j' ; (y(l)_.)—}([9 ‘]))29
and if
(4.6) (1, J: 2) = (J=D*(A=F(I,I)sI, J),
sets T (I, J; A) and T*(I, J; A) can be rewritten
4.7 T(LJ; A= {t,J; 4) £ z(1,J)},

T*(I,J;2) = (I+1,J+1) £ t(I+1,J+1; A)}.
Now for all I < J, let
(4-8) o, J) =max1gig1—1)’(2i)/Z§_IJ’(2i)-

If J’(ZI) < )’(21—1),
(4'9) Q(I, J) = y(ZJ—l)/Z{_l ,V(Zi) =1 _Zi_z J’(Zi)/Z{_l )’(Zi)-
Now

J-1 1 J-2

1 4
(4.10)  limy_ru0 57 ; Yoy =limy_ o777 ; Y

1 &2 5
=—_1_81—82J;1 t dF(t) ?/:0,
and thus

(4.11) lim,_,_., Q(1, J) =0.

It can be easily shown that (4.11) also holds if y, > y(zj_l). Thus condition
(A.9) is satisfied and by Theorem A.3 (cf. Appendix) z(1, J) converges in distribution
to N(0, 1) as J—I — co. Thus when the difference J—1 is large,

4.12) P(T (1, J; 2) | SU,J)) =~ 1-0(«(I, J; 1))

(4.13) P(T*(I,J; 7)) | SUI,J)) ~ ®(t(I+1,T+1; 2)),

and for A, < 4,,

(4.14) P(Ty (1, J; 2)NT*(L, J;5 45) | (L)) ~ O((I+1,J+1; 1,))
=L, J; Ay)),

where @ denotes the cumulative distribution function of the N(0, 1) distribution.
The trinomial weight functions can be approximated by the product of indepen-
dent Poissons. This follows since

@15) ps )y =Geia-arto(rs ) (o)

& 1—¢
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and since it is well known that the binomial distribution converges to the Poisson
distribution as n — oo and np — A. Thus for large n and small ¢, and ¢,, each of the
binomial terms of (4.15) can be approximated by Poisson probabilities, and

I ) 1_ L n—J+1
(4.16) P(S(1,J)) ~ exp(—ne;) (n;!) exp(—ne,/(1—¢y)) o (/,(1_.]:):)!

Approximate upper and lower probabilities can now be computed for large » and
small ¢, ¢, by determining which values of 7 and J carry essentially all of the weight
and summing over these values only, replacing the exact probabilities of (2.13)
and (2.14) with the approximations developed in this section.

The difficulty with this approach is that it attacks the problem in a piecemeal
fashion. Although asymptotic theory is used to develop approximations for each
piece of (2.13) and (2.14), the argument does not yield explicit limiting forms for
either P, or P,. Actually there would be only one limiting form since if either
sequence converges, the other converges to the same limit.

THEOREM 4.1. For events X € &,
lim,, ,[P,(Z)— P,(Z)] = O.
Proor. It follows immediately from Lemma 3.1 that for all values of I < J,
(4.17) UL ) =L, I) < 21" ar = Yo) Xae =)
<M(L I)yu—ywm)
where M(I,J) = max;<;<; (X(i+1)— X(p))-

Now since x(;y < X5y < --- < X,y are the order statistics of a random sample
from the uniform distribution over (0, 1), x;11,—X; has the beta (1, n) distri-
bution fori = 1,2, ---,n—1. Thus for all § > O,

4.18 P(xie1y—Xpn 20)=(1=06)" for i=1,2-n-1,
(i+1) (i)

and M(I,J) converges in probability to zero so long as I # 0 and J # n+1. It
follows, therefore, from (2.9), (2.10) and (4.17) that for given I # 0 and J # n+1
both L(1, J) and U(1, J) converge in probability to (1 —e; —e,)u(ey, €5).

Now if A(I, J; A) denotes that subset of S(Z, J) for which L(I, J) < (1 —¢g; —¢,)A<
Ud, J), it follows from (2.11) and (2.12) that,

4.19) SU,J:Z) = SU,J: 2)U(A, J; L)VAU, T; 1,)).

For fixed 7 # 0 and J # n+1 notice that (xy, -, X)) € A(Z, J; 4) implies that
L(I,J) < (1—&;—e,)A < U(l,J) which, were it to hold in the limit, would imply
that both L(Z, U) and U(I, J) converge in probability to (1 —e; —e,)A. This leads to
a contradiction. Thus

(4.20) lim,,., P(A(L, J; ) | SUI,J)) = 0

forall A # u(e;, &,) and forall 7 # 0,J # n+1.
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Finally from (2.13) and (2.14),
P(2)~PE) = Yoo Y3 thes [P(S(L, T : 5)| S, J))

—P(S(1, J : 2)| S(L, I)IP(S(Z, 1)

(4.21) S maX; o, yenr1 {P(S{, T Z)|SU, J))
—P(S(1, ;)| S(I, J)}PI # 0, J # n+1)
+P({I =0}U{J =n+1}).

The fact that

(4.22)  lim,.omaxrzq s2ae1 [P(SU, J:Z)|SU,J))

—P(S(1,J:%)|S(I,J))] =0
for all Z ¢ & follows immediately from (4.19) and (4.20). But
(4.23) P({I=0}u{J =n+1}) = (1—¢g)"+(1—e))"—(1—¢,—¢,)" > 0

as n — oo, and the proof is complete.

The prospect of finding explicitly a common limiting form for (2.13) and (2.14),
or even the more modest prospect of proving that sequence P,(X) (and thus P,(X))
converges, does not appear too encouraging because of the complicated way in
which 4,(I,J; P,, 4) depends on the order statistics.

However, the large sample approximations, while less than completely satisfying,
seem to give rather good results for moderately large samples. Table 4.1 gives both
exact and approximate upper and lower probability distributions of u(e;, &,)
where ¢; = ¢, = .025 and the data consists of a random sample of 30 standard
normal variates. The sample is drawn from the N(0, 1) distribution for convenience
only, since no distribution assumptions other than continuity are required. Because
the upper and lower probability distributions are posterior distributions, the
probabilities given in Table 4.1 will vary from sample to sample. Thus the only
purpose of the table is to illustrate how well the approximations work.

TABLE 4.1
Exact Probabilities . Approximate Probabilities
A upper lower A upper lower
—-1.0 527 .037 -1.0 473 .000
0 .594 .088 0 .606 .093

1 .693 171 1 703 178
2 .804 279 2 .806 279
3 897 385 3 .846 385

0 999 532 1.0 1.000 .535
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APPENDIX

The first two theorems in this appendix pertain to the distribution theory of
Section 3. Theorem A.3 is applied in Section 4.

THEOREM A.l. Let xy, X,, -+, X, be random variables which are uniformly dis-
tributed over the n-dimensional simplex

(A.D) Sy = {(x1, 5 x,):0 £ x; foralli, and Y[x; <1},
and let ¢, c,, -+, ¢, and ¢ be real constants such that

(A.2) C1>C> " >0 2C>Cyq > >c,>0.
Then

(A3) PQexi s c) =1=3"  {(c;—c)/e;[Th.ix;(c;— )}
=c"[Tiei==rs1 {(c—c))le; [ Th e (cime))}.
For a proof of this theorem the reader is referred to Dempster and Kleyle (1968).

Before proceeding to Theorem A.2 it is convenient to define a few terms which
will be used in the statement of the theorem. Suppose that ¢, c,, c,, -+, ¢, and

d,d, d,, -, d, are real constants, and let
¢(j) = (d_dj)/(c_cj)9
(A.4) o)) = (di_dj)/(ci_cj) for i # j, and

¢(J) = dj/c;.

When ¢(j) > 0, let A(/) denote the ith largest ¢,(j), $o(j), -, ¢o(j), and let
m; denote the integer for which A, (j) 2 ¢(j) > A, , (j)- When ¢(j) < 0, A())
denotes the ith smallest ¢,(j), ¢,(j), -+, ¢,(j), and m; the integer for which
Am,(j) é ¢(]) < Amj+1(j)'
Let
(A.5) FoiX) = = X" [T i [y = xil,
where x = (x, x{, x5, ---, Xx,,), and
(A.6) 9up, %) = 30 £,(%)
=TT el /) 5 < s %0,

THEOREM A.2. Suppose the hypotheses of Theorem A.1 hold and that
(A7) d>d, > >d;zd>d;,, > >d, >0.
Then

PQTexi = ¢, Y dx; > d) =g, (s, d)
(A.8) +25-1 (= D) {1 —g.(m;, A(j))}
+ 2551 (= 1) (0)gu(mys AG)),
where A(j) = (¢()), A1(7); Az(F)s =+, Au())).



988 ROBERT KLEYLE

The joint probability given by the left-hand side of (A.8) can be written in several
alternate forms, but the expression given by the right-hand side of (A.8) is the
simplest and is the one used in Section 3.

The proof of Theorem A.2 proceeds along the following lines. The probability
that '] ¢;x; < cis given by the right-hand side of (A.3). Each of the terms appear-
ing in (A.3) represents (except for a factor of n!) the volume of an n-dimensional
simplex. Imposing the additional condition Y} d;x; > d partitions each of these
simplices into two parts (one of which may be empty). The geometrical argument
used by Dempster and Kleyle to prove Theorem A.1 is then applied to each of these
partitioned simplices to find the desired volumes. Details of this argument, which
are tedious but straightforward, are given by Kleyle (1967).

Before proceeding to Theorem A.3 two preliminary lemmas will be proved.

LeMMA A.1. For every positive integer n, let z,, Z,s, "+, Zun be a sequence of
independent, identically distributed random variables having the exponential density
J(x) =e ", x > 0. Let ¢y, Cuas =5 Cun be a sequence of real constants having the
property that

(A.9) lim, ., (max; <<, e )(X] c2p)* = 0.
Then if

(A.10) Uy =Xiea) * Xhenfzai—1)
and

(A.11) Vo =21 (24— )/,

and if

(A.12) p=lim,, e, l(n )] en)

exists, (U,, V,) converges in distribution to the bivariate normal with zero means
and convariance matrix (} %).

Lemma A.1 is a special case of a more general result due to Chernoff, Gastwirth,
and Johns (1967). Condition (A.9), however, is essentially Lindeberg’s condition
(cf. Hajek and Sidak, page 153), and Lemma A.l can be easily proved by an
argument similar to that used to establish the sufficiency of the Lindeberg condition.

ProOF. By expanding the principal value of In (1—iy) in a power series, the
natural logarithm of the joint characteristic function of (U,, ¥,) can be written

(A.13) Ind,(11, t2) = =321 yaits, )+ R,(14, 1),
where

(A.14) Yuiltis t2) = t1c,;, (O enp) H 41, /0t
and

(A.15) Ry(ti,t) =312 (iynj(ts, t2))[k.
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Now for fixed M > 0let M* denote that region of the Euclidean plane for which
max (|r,], |1,]) £ M. Thus for (¢, t,) € M*

(A.16) |ni(tis 12)] £ M e, | (5 )~ +1/n*],

which implies that y,;(#,, ;) = O uniformly in (¢, t,) € M*. Thus there exists a
positive integer N independent of (¢,, ¢,) such that whenever (¢, f,) € M* and
n 2 N, |y, t, ;)| < i forallj < n,and

(A.17) |Rn(’1a ’2)' = Z?:1 ZI?O=3 |2ynj(t1a t2)|k/k2k

<Y ]2ynj(tl’ ’2)|3Zlio:3%k < Z;"=1 |2ynj(t1a tz)P-
But from (A.16)
(A18) Y 2yt )P = (M) Y51 [en | /(X0 cnp)* +1/n2 ]

< (2M)° max, < <, |cu /(X1 ea)F+0(1/n?).

Thus,

(A.19) lim,_ ., R,(t;, t,) =0,

and

(A.20) lim, ., In (1, t,) = —3(t,> +2pt 1, +1,%).

LEMMA A.2. Let (Uy, V), (U,, V), -+ be a sequence of random vectors such that
n*(U,, V,) converges in distribution to the bivariate normal with zero means, unit
variances and covariance p. Let (a, ,b;), (a5, b,), --- be a sequence of constant
vectors having the property that as n — o (a,, b,) — (a, b) where alb = p. Then if

(A.21) W, = (a,+U,)/(b,+V,)—a,/b,

n*W, converges in distribution to N(0, p*(1 — p?)/a®).
PROOF.

(A.22) W, = pU* =V, 5)/(1+ V%),

where U,* = U,/a,, V,* = V,/b,, and p, = a,/b,. The limiting distribution
of n*p,(U,*—V,*) is N0, p*(1—p?)/a*), and since V,* -, 0, n* W, has the same
asymptotic distribution as n*p,(U,* —V,*).

THEOREM A.3. Suppose that for each positive integer n, X,i, Xuzs ***s Xpni1

denotes a sequence of random variables uniformly distributed over the n-dimensional
simplex

(A.23) Sp={(xy, s Xp41):x; 20 Sforall i=1,2,---,n+1
and Y1 x, =1},
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and that c,i, Cya, ***» Cy w1 denotes a sequence of real constants for which condition
(A.9) holds. Then the asymptotic distribution of

(A24) VV,, =(Zr{+1 2) [(n_l_l)Zn+1 mxm_Zn+1
is N(O, 1—p?) where p is defined by (A.12).
Proor. For each n,

(A25) m - an/2n+1 ma

where z,;, Z,2, ***» Zu n+1 are independent, exponentially distributed random
variables. Moreover,

(A.26) = (n+1)7[(a,,+1+ Un+ 1)/(1+ +1) a"+1]
where U, ., and V,, are given by (A.10) and (A.11), and
(A.27) Apiy =20 eul(n+ )Y 2]

Thus, the proof is a direct consequence of Lemmas A.l1 and A.2.
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