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ON UNBIASED ESTIMATION OF DENSITY FUNCTIONS

By A. H. SEHEULT! AND C. P. QUESENBERRY
Durham University and North Carolina State University

1. Introduction and Summary. Let X = (X, ---, X,) be a random sample of size n
from the distribution of a real-valued random variable X with an absolutely
continuous distribution function F and a density function f. Rosenblatt (1956)
showed that in this setting there exists no unbiased estimator of f based on the
order statistics. His result follows from the fact that the empirical distribution
function is not absolutely continuous. He also assumed that f is continuous, but
this condition is unnecessary. Rosenblatt’s result also arises as a consequence of
general results by Bickel and Lehmann (1969) on unbiased estimation in convex
families, such as the family of all such F (above).

A number of writers (Kolmogorov (1950), Schmetterer (1960), Ghurye and
Olkin (1969)) have obtained unbiased estimators of particular normal-related
families as well as for other estimable functions. Washio, Morimoto and Ikeda
(1956) considered related questions for the Koopman-Pitman family of densities,
and Tate (1959) confined his attention to functions of scale and location para-
meters. A question arises as to exactly when unbiased—uniform minimum variance
unbiased (UMVU)—estimators of density functions exist and when they do not.
In a recent publication, Lumel’skii and Sapozhnikov (1969) considered such a
question in relation to estimating the density function at a point, whereas, in this
paper our definition of unbiasedness requires the estimator to be unbiased at every
point. The so-called ‘“Bayesian” methods they employ yield estimators for most of
the well-known families of distributions as well as for several types of p-dimensional
discrete distributions.

In Section 2 we formulate the problem in a fairly general setting and obtain
results in terms of unbiased estimators of probability measures (or distribution
functions) which always exist. In Section 3 we consider examples to illustrate the
theory of the preceding section and in Section 4 give a theorem which generalizes
a lemma stated by Ghurye and Olkin (1969) which formalizes the approach used
by Schmetterer (1960) for obtaining unbiased estimators of certain types of
parametric functions.

2. The Existence theorem. Suppose (£, ., u) is a o-finite Euclidean measure
space and that & is a family of probability measures P on .2/ dominated by u.
Denote the Radon-Nikodym derivative (density) of P with respect to u by p and
the family of such densities by p. Let X be a random variable with distribution
P(e #) and density p(ep); X = (Xy, ---, X,) be n independent random variables
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identically distributed as X, and x™ = (x,, -+-, x,) an observation on X®. Denote
by 4™ the sample space of observations x™, by .«7™ the product o-algebra of
subsets of ™, and by Q™ the product measure on /™ corresponding to any
measure Q on 7. Let T be a statistic that maps (£, o/™) to a Euclidean space
(7, #) and denote by Q,” a version of the conditional probability measure (given
T) induced on /™ from Q on 7. Then the class of cylinder sets of the form
Z"= Y x A for A € o is a sub-g-algebra of o#™ and we define a probability measure
Q" on o by QT(4) = Q,J(™ Y x A) for every A € o/. (Actually, the restriction
to Euclidean spaces is unnecessarily restrictive; as long as there exist regular
conditional probability measures the results of this section remain valid.)

We shall say that an estimator P = P(-; T) is an unbiased—uniform minimum
variance unbiased (UMVU)—estimator of P if P(4; T) is an unbiased—UMVU—
estimator of P(A4) for every A € &7. Hereafter we shall assume all statistics are
sufficient for 2. The following is an immediate consequence of properties of
conditional expectations, sufficiency, and the Rao-Blackwell, Lehmann-Scheffé
theory. Particular cases have been used or alluded to by a number of writers
including Tate (1959), Barton (1961), Laurent (1963), Pugh (1963), Basu (1964),
Folks, et al (1965), and Sathe and Varde (1969).

LEMMA 1. There always exists an unbiased estimator of P given by P = PT, where
PT is any determination of the conditional probability measure given T. Moreover, if
T is a complete and sufficient statistic then PT is the UMVU estimator of P.

By putting Z = R* and 4 = {(a,, -, a): a; £ x,, -, ay < x,} we have the
particular case of estimating distribution functions. In view of the foregoing we
shall consider only estimators P which are themselves probability measures on &/
foreach te 7.

We say that an estimator p = j(-; T) is an unbiased—UMYVU—estimator of p
if p(x;t) is o/ x B-measurable and Ep(x; T) = p(x) a.e. u. Note that the usual
subscript P (or Pp—the corresponding induced probability measure on %) on E
and the qualifying phrase, “for all P € #”°, have been suppressed. This practice
will be adhered to in the sequel and should present no difficulties.

THEOREM 1. An unbiased estimator p of p exists if and only if there is an estimator
P = PT of P such that (a) for each t € T the estimator is absolutely continuous with
respect to u, and (b) the Radon—Nikodym derivative is &/ x %-measurable. Moreover,
when such a P exists an unbiased estimator of p is given by the Radon-Nikodym
derivative, dP/dy.

PrOOF. If Ep = p, put P(4) = [,pdu; then, EP(A) = E[ pdu = [(Ep)du =
P(A), by applying Fubini’s Theorem. Hence P is unbiased, and u-continuous by
construction.

Next, if EP = Pand P < p, put p = dP/du. Then, [,pdu = Efpdu = [ (Ep)dp.
Hence, by the Radon-Nikodym Theorem, Ep = p a.e. pu.

THEOREM 2. If T is a complete and sufficient statistic for # then a UMV U estimator
p of p exists if and only if P satisfies conditions (a) and (b) of Theorem 1. Moreover,
when such a p exists, it is given by dP7/dyu.
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Proor. If pis UMVU it must be a function of T, and, hence, [4Pdp isan UMVU
estimator of P. Hence, by Lemma 1, PT < p.

Next, if PT < p then dPT/du is an unbiased estimator of p by Theorem 1. Since
it is a function of 7' it is UMVU.,

3. Examples. In this section we consider applications of Theorem 2 to particular
families of distributions. Where convenient we will characterize examples by the
vector {pg, Z', ©; T}, where p, is the density to be estimated, © is the parameter
space, and T is the complete and sufficient statistic.

When p is counting measure on a countable set of points of Z, Z is a family of
discrete distributions and, hence, for any statistic 7, PT (for P € %) is a discrete
distribution on a subset of the original set of points of . Therefore, if T is a
complete and sufficient statistic a UMVU estimator of p always exists. For such
discrete distributions, the simplest method for obtaining the UMVU estimators is
by direct application of the Rao-Blackwell, Lehmann-Scheffé theory. Patil (1963)
obtained such estimators of arbitrarily truncated Noak distributions of which the
binomial, Poisson, negative binomial, and logarithmic distributions are special
cases. The reader is referred to Patil’s paper for these results. For the remainder
of this section u will be taken to be Lebesgue measure of the appropriate dimension.

EXAMPLE 3.1. The family of all k-dimensional absolutely continuous distributions.
In this setting the k-dimensional empirical distribution function is the UMVU
estimator of the unknown distribution function. Hence, by Theorem 2, no unbiased
estimator of the density exists. Rosenblatt (1956) obtained the result for k = 1
under the unnecessary additional-assumption that the unknown density function
should be continuous.

EXAMPLE 3.2. Truncation distributions. This family of distributions includes two
types given by
(3.1 Type I: {k(6)h;(x)I5(x), R, (a, b); Y}
Type II {kz(o)hz(x)IA(x), R’ (aa b)’ Yn}3
where the interval (a, b) is either finite, semi-infinite or infinite, and k, and 4,, and
k, and h, satisfy
(3.2 1/k(0) = [5hy(x)dx, for all 0 € (a, b);
1/k,(0) = [ohy(x)dx, for all 6 € (a, b).

‘

I,(x) and Ip(x) are the indicator functions of the open intervals (a, ) and (6, b),
and the statistics Y, and Y, are the smallest and largest order statistics, respectively.
Tate (1959) has obtained the following UMVU distribution function estimators:

(3.3) Type I: F(x; ¥,) =0, a<x<Y <b,

_ 1+(1_l> §3 by (u)du

n n) o hiw)du’

; a<Y Zx<b
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~ 1\ [%hy(u)du
3.4 Type II: F(x; Y,) = [ 1—-) 52—, < Y, <b,
(3.4 ype (x5 Y,) ( n) ¥y ) a<x<

=1, a< Y, £x<b

Both of the above estimators are mixed distributions with a jump of l/nat x = Y,
in the first case and at x = Y, in the second case. Hence, by Theorem 2, there
exists no MVU estimator of the density function. As a particular case consider the
uniform distribution on (0, #). The Type II estimator specializes to:

(3.5) F(x; Y,) = (n—Dx/nY,, 0<x<Y,< o,
=1, 0<Y,=x< .

(It is worthwhile to note that, for n > 1, (n—1)/nY, is the UMVU estimator of
1/6).

4. Unbiased estimation of certain estimable functions. Let ® be the class of
functions ¢ of the form ¢(P) = Eph(X) such that ¢ exists for each Pe Z. The
following is a direct generalization of Lemma 1 in Ghurye and Olkin (1969). These
writers require the existence of an unbiased estimator of the density; a condition
that is unnecessarily restrictive.

THEOREM 3. An unbiased estimator of ¢ € ® is given by ¢(PT). Moreover, if T is
complete and sufficient (for ) ¢(P7) is the UMVU estimator of ¢.

Consider the following examples to illustrate Theorem 3 when no unbiased
estimator of the density function exists.

ExAMPLE 4.1. Let kK =1 in Example 3.1. Then the UMVU estimator of
¢(F) = EgX is given by [pxdF,(x) = X, the sample mean; where, F,(x) is the
empirical distribution function. This, is of course, a well-known result.

EXAMPLE 4.2. The mean 6/2 of the uniform distribution on (0, 0), on using F in
(3.5), is estimated by

(n—1)(nY,) " rxdx+ Y,/n = (n+1)Y,/2n;

once again, a well-known result.

Acknowledgment. The authors would like to thank the referee and Peter J.
Bickel, Princeton University for drawing their attention to references [8] and [3],
respectively.

REFERENCES

[1] BarTON, D. E. (1961). Unbiased estimation of a set of probabilities. Biometrika. 48 227-229.

[2] Basu, A. P. (1964). Estimates of reliability for some distributions useful in life testing.
Technometrics. 6 215-219.

[3] BickeL, P. J. and LEHMANN, E. L. (1969). Unbiased estimation in convex families. Ann.
Math. Statist. 40 1523-1536.



1438 A. H. SEHEULT AND C. P. QUESENBERRY

[4] Foiks, J. L., Piercg, D. A. and STEWART, C. (1965). Estimating the fraction of acceptable
product. Technometrics. 7 43-50.
[5] GHURYE, S. G. and OLKIN, 1. (1969). Unbiased estimation of some multivariate probability
densities and related functions. Ann. Math. Statist. 40 1261-1271.
[6] KoLmoGorov, A. N. (1950). Unbiased estimates. Izv. Akad. Nauk SSSR, Ser. Mat. 14
303-326. Amer. Math. Soc. Trans. No. 98. !
[7]1 LAURENT, A. G. (1963). Conditional distribution of order statistics and distribution of the
reduced ith order statistic of the exponential model. Ann. Math. Statist. 34 652-657.
[8] LumEeL’skII, YA. P. and SApozHNIKOV, P. N. (1969). Unbiased estimation of density functions.
Theor. Probability Appl. 14 357-364.
[9] PaTIL, G. P. (1963). Minimum variance unbiased estimation and certain problems of additive
number theory. Ann. Math. Statist. 34 1050-1056.
[10] PucH, E. L. (1963). The best estimate of reliability in the exponential case. Operations Res. 11
57-61.
[11] ROSENBLATT, M. (1956). Remarks on some nonparametric estimates of a density function.
Ann. Math. Statist. 27 832-837.
[12] SATHE, Y. S. and VARDE, S. D. (1969). On minimum variance unbiased estimation of re-
liability. Ann. Math. Statist. 40 710-714,
[13] SCHMETTERER, L. (1960). On a problem of J. Neyman and E. Scott. Ann. Math. Statist. 31
656-661.
[14] TaTEg, R. F. (1959). Unbiased estimation: functions of location and scale parameters. Ann.
Math. Statist. 30 341-366.
[15] WasHIO, Y., MorimoTo, H. and IKEDA, N. (1956). Unbiased estimation based on sufficient
statistics. Bull. Math. Statist. 6 69-94.



