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ON WEAK CONVERGENCE OF STOCHASTIC PROCESSES WITH
MULTIDIMENSIONAL TIME PARAMETER

By GEORG NEUHAUS
University of Miinster

0. Summary and introduction. The well-known space D [0, 1] is generalized to
k time dimensions and some properties of this space D, are derived. Then, following
the ““classical” lines as presented in Billingsley [1], a Skorohod-metric, tightness
criteria and some other results concerning weak convergence are given. The theory
is applied to prove weak convergence of two generalizations of the one-dimensional
empirical process and of the Kolmogorov—-Smirnov test statistic of independence.

Stochastic processes with multidimensional time parameter and their weak
convergence have been investigated by several authors. Dudley [4] established a
theory of convergence of stochastic processes with sample functions in nonseparable
metric spaces. Later on, Wichura [11] (see also Wichura [12]) modified the concepts
of Dudley and developed them systematically. He applied his theory to a space
which is with minor changes our space D,. Weak convergence in the sense of
Wichura [12] and ours differ usually, but both concepts coincide if the limit
process has—with probability one—continuous sample functions only. From here
it follows that the results of Dudley and Wichura concerning weak convergence of
multivariate empirical processes are equivalent to ours.

At least two further authors proved the convergence of multivariate empirical
processes, namely LeCam [8] and Bickel [1]. Our proof follows the classical
approach of Parthasarathy [9] using an argument of Kuelbs [7] to carry over the
proof from 1 to k dimensions. Kuelbs however deals properly with the “inter-
polated sum” process for two-dimensional time parameter.

The space D, seems to be defined for the first time in connection with multi-
variate processes by Winkler [13], yet his investigations are not concerned with
weak convergence. Another generalization of the space D[0, 1] and the Skorohod
metric to functions on more general spaces than E, is given in the paper [10] of
Straf, in which there are applications to genuinely discontinuous limit processes.

1. The space D,. In this section the space D, is introduced and some of its
properties are derived.

Before defining D, we need some other definitions and notations. Let E, =
[0, 1]x -+- x [0, 1] be the k-dimensional unit cube in R, with points ¢ = (¢, -+, #),
' = (t,, 1), etc. and |¢| = max {|t,|:i = 1, .-, k} be the maximum norm in
R,. The set consisting of the 2* vertices of E, is denoted by 2.

P = {,0 =(p1>""pk):pi =0,1Vi}.
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1286 GEORG NEUHAUS

For t € E, and p € 2 we define “quadrants” Q(p, t) and O(p, ¢) in E, with vertex
t by

0(p, 1) = DPlpg, t;) % -+ x D(ppo 1)
where the intervals I(z, u) and I(z, u) are given by
I(t,u) =[0,u) for ©=0,
=(u,1] for =1,
and

I(t,u) =[0,u) for t=0 and u<I,
=1[0,1] for 7=0 and u=1,
= @ for =1 and u=1,
=[u,1] for t=1 and u< 1.

The following properties are immediate consequences of the above definitions:

Q(p,t) = Q(p, 1) = O(p, 1),
Qp, 1) = B < 0(p, 1) = &,
0, )N 0, )= if p#p,
Ype O(p, 1) = E,, t€ k.

For every te E, there exists one and only one p = p(f) = o€ P* with
O(o, t) > t. The quadrants J(o, t) and Q(o, ¢) are called continuity quadrants in
t. This terminology will become clear in Definition 1.1. Clearly O(o, 1) # & and
Q(O', = Q(O’, 1).

Now we generalize the notion of one-sided limits for functions defined on
[0, 1]: Let f be a function defined on E,. If for t€ E,, pe & with Q(p,t) # &
and every sequence {f,} = Q(p, t) with ¢, — ¢ the sequence {f(#,)} converges,

then we denote (the necessarily unique) limit by f(#+0,) and call it p-limit of fin ¢
or shortly “quadrant limit”.

DEFINITION 1.1. The space D, is the set of all functions f: E;, — R for which the
p-limit of f in ¢ exists for every p € 2, t € E, with Q(p, t) # & and which are
“continuous from above” in the sense that f(t) = f(¢+0,), t € E,.

Apparently D, equals the function space D[0, 1] of Skorohod, so that we have
a natural generalization of functions with discontinuities of the first kind.

The requirement of continuity from above effects the existence of quadrant
limits not only for sequences in Q(p, ¢) but also in O(p, ). This is an easy conse-
quence of the fact that O(p, t) may be characterized by

O(p,t) = {t' €E,: Q(a('), ') " Q(p, 1) 3 1'}.

For A — E. A denotes the closure and A the interior of 4 in the IR x-topology.
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The only discontinuities of functions in D, are “jumps”:
DErFINITION 1.2. A function f € D, has a jump in ¢ € E iff
H(t) = max {|f(t+0,)—f(t+0,)|:p, p' € 2} > 0.

We call H () the magnitude of jump.

A function f€ D, is continuous at ¢ € E, if and only if H(t) = 0. For subsets
Je N, = {l, -~-,k} we define a magnitude of jump with respect to J by
H(t,J) = max {|f(t+0,)—f(t+0,)|:p, p' € P, p; = p;,j€J}. Clearly H/(t) =
H(t, &) and H(t,N,) = 0.

Let the numbers u; € [0, 1], j € J, be fixed and put L({u;},J) = {t€ E:t; = uj,
jeJ}. Elements of D[0, 1] have the property that there can exist only finite many
jumps of size greater than a given positive number. The following lemma gives a
k-dimensional version of this statement. The proof is straightforward.

LEMMA 1.3. For ¢ > 0 and fe D, every system of points t on L({u;}, J) with
pairwise different components t;, j € Ny—J, and Hy(t,J) = ¢ is finite.

A function f: E, - R belongs to C,, the space of continuous functions an E,
if and only if lim,_, o w,(8) = 0, where w, denotes the ‘“modulus of continuity”
w,(8) = sup {|f()—f(1)]:| t—1"| < 8}.

We shall introduce another “modulus” ,’, which characterizes the space Dy
in the same manner.

Let points ¢,, ---, t. € E, be given. The collection of all rectangles R of the follow-
ing form (1.4) is called the “partition generated by the 7;”” and denoted by #Z =
‘%(tla Ty tr):

(1‘4) R =[”1,“1/>X"'x[”ks”k,>
with uj, u/ e Ky = {t;, -, 1,,} V{0, 1}, u; <u; and (u;, u;’) " K; = . Here
“»” means “)” or “]” if the right end—point of the interval is < 1 or = 1.

We define the permeability m(Z%) of Z to be the length of the shortest side among
all rectangles R € Z. Now the modulus w,’ for Dy is defined by
(1.5) o,'(8) = inf, maxg o (R), 0<d<1,
with w (B) = sup {|f(t)—f(s)|:1, s € B}. The “inf” in (1.5) is to be taken w.r.t.
all Z with m(#) > 6 and the “max” w.rt. all ReZ. The modulus o,
characterizes D.

THEOREM 1.4. 4 function f: E;, — R belongs to D, if and only if
(1.6) limy, o ,() =0.
The crucial considerations for the “only if”” part are summarized in

LEMMA 1.5. Let f € D, be given. For every ¢ > O there exist ad > 0 and a partition
R such that for points t,t' € R, Re R, with |t—t'| < 6 the inequality
|[f(D—f(")] < & holds.

2 We write a = b or b = a if b is by definition equal to a.
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Proor. According to Lemma 1.3 with J = (7, it follows that there exists a finite
set Sy in E, such that every t € E, with H(t) = ¢ has at least one component in
common with one of the points in S;. Now we define finite sets .S, -+, S, by induc-
tion. For fixed j with 1 = j < k let H; consist:of all points having at least j com-
ponents in common with one of the points in S;. A second application of Lemma
1.3 yields the existence of a finite set S = H; with the property that every point
t € H; coinciding in at least j components, say f;,, -+, t; , with some point s€ §
and having a “jump” H(, {i;, -, i;}) 2 ¢ has a further component ¢; , in
common with s. Putting S;,, = S the partition Z = Z(| )5, S;) will satisfy
the assertion of the lemma. This follows from the fact that, if there does not exist
a § > 0 as stated above, we can find a rectangle R € %, sequences {t,'},,! = 1, 2,
in R with |f(z,")—f(t,%)| 2 € Vn and a point ¢ € R such that {z,'}, converges to ¢
in the way that each component converges either monotonically in the strict sense,
or is identically constant. Then the construction of Z implies {t,'},, {t,%}. € O(p, ?)
for some p € 2 which contradicts the existence of f(¢+0,). [|

REMARK. It is clear that by enlarging the number of generating points of #Z we
can assume in the above lemma that sup {(t—t/( ,t'eR} < 0,ReA.

COROLLARY 1.6. Every f'€ D, is bounded.

The ““only if”’ part of Theorem 1.4 is a trivial consequence of Lemma 1.5 and the
Remark. As regards the “if”” part, let ¢t € Ey, p € 2 and sequences {t,} = Q(p, )
be given with ¢, — 1. The existence of f(¢+0,) will follow if we show that {f(z,)} is
a Cauchy sequence. For ¢ > 0 we conclude from (1.6) that there exists a partition
% with max {w(R):ReZ#} < e. Then we can find a rectangle R, €% and an
integer n, with , € R, for n = n,. But then |f(,)—f(t,)| < & for n,m = n,. The
continuity from above follows in a similar manner.

For a function f: E, - R let ||f|| denote the supremum-norm. It can easily be
shown that || f,—f|| = O with f, € D, implies € D,. Clearly, primitive functions
S of the form f = ) .5 ag-Ix where Z is a partition, I the indicator of R and
agr€ R, ReZ, belong to D, as well as their uniform limits. On the other hand,
according to Lemma 1.5, every f€ D, is the uniform limit of such primitive
functions. Consequently, D, can be characterized as the class of all uniform limits
of primitive functions of the above form.

Applying the arguments of Billingsley [2], page 110, 111, to each of the k
components of ¢ € E, one obtains for functions f€ D,

(1.7) cof’(é) < a)(25), 0<od<3,
and for continuous functions
(1.8) wf(é) < kaf’(é), 0<odo<l.

2. The Skorohod topology in D,. In this section we generalize the well-known
Skorohod metric on DJ[0, 1] to a metric d on D, and record some results on it.
Since that generalization consists only in an extension from one to k& dimensions
and, since D, generalizes D[0, 1] in such a way that Theorem 1.4 holds in the same
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form as in D[0, 1], we can carry over all the proofs of Billingsley [2], page 111-118,
by componentwise argumentation. For completeness and easy reference we will
only record the results.

Let A denote the class of all strictly increasing continuous mappings p from
[0, 1] onto itself. For A= (A, -, 4) €A, = Ax--xA, k times, and =
(t1, -+, 1) € E, we write At = (Ayty, -, Aty)-

The Skorohod distance d(f, g) of functions f, g € D, is defined to be the infimum
of all ¢ > 0 such that there exists a A = A(¢) € A, with

(2.1) sup {|At—t|:teE} e
and
(22) sup {|f(1)—g(41)|:teE,} Ze.

The distance function d is a metric on D,, called Skorohod-metric, which
generates the Skorohod- or d-topology on D,. A necessary and sufficient condition
for a sequence {f,} = D, to converge to some f€ D, in the d-topology, shortly
fu = of; is that there exists a sequence {4,} = A, with

(2.3) limf,(4,t) =f(t)  uniformly in ¢,
and
(2.4) limA,t =¢  uniformly in ¢.

The metric space (D,, d) is separable. A countable, dense subset § = D, is
obtained as follows. For ne N let £, be the partition generated by the set of
points ¢ = (t, ---, t,) € E, with ¢,€ {0, l/n,2/n, ---, 1}, ieN,, and 9, be the
countable class of functions ) .4, aglg wWhere ag are rational numbers. Then
3 =, 9, is countable, dense in D,.

For p € A define

9) Il =sur
Now, replacing the condition (2.1) by

(26) |
we get another metric d, on D,.

The metrics d and d, are equivalent and (D,, d,) is a complete metric space.
Just as in Billingsley [2], page 113, we have the following relations between
dand d,:

iy — p

log cu,ve[0,17],u # u}-

u—v

.
A

Héga i:la"')k9

(2.7) d(f,9) <2do(f,9) if do(f9) <%
and
(2.8) do(f,9) < 46+ w,'(5) if d(f,9)<d* and0<d <.

On C, the d-, dy- and ||-||-topology coincide.
Furthermore, relative compact sets in (D,, d) have the same Arzela—Ascoli form
of characterization as in the one-dimensional case.
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THEOREM 2.1. A set A = D, has compact closure in the d-topology of D, if and
only if

(2.9) sup, .4 || /]| <
and
(2.10) lim,_,gsup,. 4 »,/(8) =0.

For points #;€ E;, j = 1, ---, r, and functions f:E, — R the projection =, ...,
is defined by 7, .., f= (f(t), -, f(t)). As in the one-dimensional case a
projection 7, is continuous at f'€ D, if and only if f is continuous at ¢. The Borel
o-algebra %, on (D, d) is the smallest o-algebra making the projections =,,
t € T, measurable. Here T denotes an arbitrary dense subset of E,.

This shows that the finite dimensional sets =, ... , H, with H running through
the Borel o-algebra in R, and ¢, ---, 1, € T, r € N, form a determining class in the
sense of Billingsley [2], page 15.

3. Weak convergence of measures on (D,, % ;). For a probability measure P on
(Dy, Z,) let T be the set of all ¢ € E, for which =, is continuous except on a set of
P-measure zero. Then T, = {t€ E,:P(J,) = 0} with J, = {fe D,:n, discon-
tinuous at f} = {f€ D,:H(t) > 0} = {fe D,:f discontinuous at 7} (see Section
2). J, is an element of £,

For fixed P there are countably many points {¢,} in E, such that from P(J,) > 0
it follows that ¢ has one component in common with some ¢,. The proof of this fact
is analogous to that in Billingsley [2], page 124, taking account of Lemma 1.3.
Thus: All points ¢ with P(J,) > 0 are concentrated on countably many (proper)
hyperplanes. T contains & and is dense in E,. If all ¢, ---, ¢, lie in Tp, then
M, ... is P-a.e. continuous. From these remarks we see by standard calculations
that a relatively sequentially compact sequence P,, n = 0, 1, 2, ---, of probability
measures on (D, £,) converges weakly, P, -4 P, if (3.1) holds:

(3.1) Pty Pyt ty, - 1,€ Ty, rEN.

Here we have used notation P'>">' = Pr, ' and the fact that for probability
measure P and Q on &, the set Tp N T, is dense in E;.

The Arzela—Ascoli-like characterization of compact sets in (D, d) (Theorem
2.1.) leads to the following criterion.

THEOREM 3.1. A sequence {P,} of probability measures on (D, ZL,) is relatively
sequentially compact if and only if (3.2) and (3.3) hold:

(3.2) For every ¢ > O there exists a M,, 0 < M, < oo, with
P({feDy:||f]|> M.}) e, nx1
and

(3.3) lim,_.o limsup,, ,, P,({/eDy: 0/ (0) 2 &}) =0, g> 0.
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In our later applications we can show even more, namely

(3.4) {psr 1 converges in distribution, ti, - t,eE,reN,
and
(3.5) lim;_o limsup,., , P,({/e Dy: w(6) 2 &}) =0, e>0.

Using that projections =, t € E,, are £ ,-measurable, one can prove that the
subsets of D, occurring in (3.2), (3.3) and (3.5) are elements of .Z,,.
Though (3.4) is often satisfied in applications, let us define the weaker condition

(3.6) {P,° ={P,m,” '} converges in distribution.

Then, using the same arguments as in the proof of Theorem 15.5 of Billingsley
[2] we can show: Condition (3.5) implies (3.3) and from (3.5 and 3.6) condition
(3.2) follows. Consequently, (3.5 and 3.6) entail (3.2 and 3.3). Furthermore, (3.5)
then causes that every weak limit P of a subsequence {P, } must fulfill P(C,) = 1.
Replacing (3.6) by (3.4) in (3.5 and 3.6), it follows that all subsequences {P, }
must have the same limit (for this it is used that the finite dimensional sets form a
determining class). Altogether we have: (3.4) and (3.5) entail the existence of a
probability P on (D,, &£ ) with P(C,) = 1 such that P, —»4 P.

As was shown by Dudley and Wichura, see e.g. Wichura [12], Theorem 2,
conditions (3.4) and (3.5) are necessary and sufficient for a sequence {P,} of
probabilities on (D,, £ ,) to converge weakly (in their sense) to some probability
P on (D, £,) with P(C,) = 1. In this special case, however, where the limiting
measure gives probability one to C, our concept of weak convergence coincides
with that of Dudley and Wichura.

4. Random variables with values in D,. Let (Q, o7, P) be a probability space and
X a measurable map from (Q, «7) into (D, £,). Then X is called a D,-valued
random variable (D,-rv). According to the fact that .Z, is generated by the finite-
dimensional sets, a map X:Q — D, is a D;-rv if and only if X(¢#) = X, = n,0 X
is a real valued random variable for every ¢ € E,. A D,-rv is a stochastic process in
the usual sense (with “‘time” space E}) and vice versa every stochastic process in the
usual sense with almost all realizations in D, can be regarded as a D,-rv. The same
remarks hold for C, instead of D,. The statements in Section 3 may be rewritten in
terms of D,- or C;-valued random variables in an obvious way, cf. Billingsley [1],
page 22.

We shall consider some examples of D,-valued random variables. For that
purpose let U; = (U;y, -+, Uy), j€N, be independent identically distributed
random vectors where all the U;; are uniformly distributed over (0, 1) with
U;; € (0, 1). Then the distribution function F of U, satisfies a Lipschitz condition

(4.1) |[F(t)—F(t")| < k|t—1'].
REMARK. In our considerations there is no loss of generality in assuming that

the marginals of U; are uniform. Otherwise—since F is continuous—this can be
achieved by suitable componentwise transformations.
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Now, for n ¢ N we define D,-valued random variables X," and Y, by

(4.2) X,5(r) = nl—_[j; Ion(U))— nF(t)], teE,,

where [0, 1] for ¢t = (t,, -+, 1,) € E, denotes the Cartesian product [0, 7,] % -+ x [0, #,],
and

(4.3) Y,(1) =£;Li [:]1 (Iou(U;)— t,.)il, teE,.

In the one-dimensional case (k = 1) X, and Y, are identical and they are equal
to the well-known one-dimensional empirical process.

If the components in each U, are independent, i.e. if F(1) = ¢, - t,, there is an
explicit relationship between Y, and X, = X,*: Let L denote an ordered subset
of N, and |Z| the number of elements in L. Define for ¢ € E, the vector 7, replacing
t;in t by 1 if i ¢ L. Now, an easy calculation leads to:

(44) V(1) = Yo F(t) Xo(tn,-2) (= D™,
where the sum extends over all ordered subsets of N,. From relation (4.4) it

follows at once that if (3.5) is satisfied for X, then it is satisfied for Y, too.
For points ¢, ---, ¢, in F, a standard calculation shows:

(4.5) (X (t0), -, XF(1) = 0 /(0 yxe(tr, 5 1),

where the right-hand side denotes an r-dimensional normal distribution with
expectation vector 0 and covariance matrix

Yxe(ty, o ty) = (F(t, A1) = F(t)F(t,)s =1, rs

here 1, A t, denotes the vector (min (2, 2,1), =+, min ({5, ,4))- Analogue con-
siderations for Y, are only possible if the components in each U; are independent,
i.e. F(t) = t, --- t,. In this case we have

(4.6) (Yu(t1)s - V(1) = o A0, x(t1, 5 1))
where
yY(tl’ Y tr) = (ni“:l (tvi A tui— tvi : t;u'))v,u= 1,0,

In the next section we shall prove that (3.5) is fulfilled for {X,"}. This implies,
according to (4.5) and the results at the end of Section 3, that {X,"} converges
weakly to a D,-valued random variable X* with P(X" e C,) = | and with finite
dimensional distributions given by the right side of (4.5). Because of (4.4) and
(4.6) an analogue statement is true for {Y,} with some limiting process Y.

nJ

5. Convergence of the empirical processes X," and Y,. In order to verify
condition (3.5) for X, we shall extend the ‘“classical” proof for the one-
dimensional case (see Parthasarathy [9], page 262) using some special “‘k-dimen-
sional” considerations where the classical proof does not work.
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Since X,F(f)+n*F(t) is a monotonically increasing function in each component
of ¢, it follows as in Pathasarathy [9], page 262, that the modulus of continuity
wy,r(6) may be bounded essentially by a modulus of continuity where the “sup”
is to be taken only over points from L(r), where L(r) is the set of all points
(I -+, L)r ' with [; e N, U {0}, i € N,. More precisely, we have

(5.1 wy,(8) £ 6sup | X,F(1,)— X,F(I,)| +4kn*27™"

where the “sup” is to be taken over all /;, [, € L(2™) with |11—12| < o427mFL,
For m, = max {m:n = 2™} we have

(5.2) n2"mn > 1, n=1, and n*27™ 0.
Consequently, (3.5) will follow if we show that
(5.3) lim,,olimsup,. , P(sup | X, (l;)— X, (1,)| > &) =0 forall &¢>0,

where the “‘sup” is to be taken over /,, /, € L(2™) with |/, —1,| £ 4. To carry out
the proof of (5.3) we shall need two auxiliary results.

LEMMA 5.1. Let 6 > 0, m(6) = max {reN:5-2" = 1}, meN with m > m(d)
and f:E, — R be given. Then for points t,, t, € L(2"™) with |t;—t,| £ 27"® the
Sfollowing inequality holds
(5-4) |f(t1)“f(t2)| <4k Z:'l:m(a) ZZ= 18uUp; ,f(])“f(]"" e#2—r)|’
where the *‘sup” is to be taken over all j € L(2") with j+e,27" € E, (e, denotes the
u-th unit-vector of E,).

LEMMA 5.2. Let C be a positive constant and p, n, h positive numbers which fulfill
simultaneously the conditions
(5.5) 1/ngh<l, p=C-h.

Then for the central moments p,(n, p) of a binomial distribution B(n, p), there exists
a constant K, (independent of p, n and h) such that (5.6) holds

(5.6) |u(n, p)| £ K, n'2h¥2,

Before giving comments to the proof of the lemmas, we first prove (5.3) using the
lemmas. Applying (5.4) with m = m, and f = X,F, we get

sup {IX,,F(II)—X,,F(lz)I i1y, e L(2™), |l1 - lz| <9}
SAkY kY sup | XS ()= X (e 27N
If the left-hand side exceeds ¢, then there exists a u such that
Z:né'm(o) sup; |XnF(j)"XnF(j+ €u2_r)| > 8(4k2)— L

Let a be a real number with 0 < @ < 1 and 2-¢?>®*V > 1. Hence we can find
at least one re {m(J), ---, m,} with

sup; | X, ()— X,f(j+e2™")| > (1—a)a" @ g(dk?)~ 1.
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It follows that
P(sup | X, (1) = X,"(1)] > &) < 34—, 3,05 P(sup; X, ()= X (G+e.27)
> (1—a)a"~"@¢(4k*)~1)
=D WD YL P FARILD Y et S0 3 4 PIIX (- X (j+e2™")|
> (1—a)a"""O)(e/4k?)]
k m 2r 2r—1 2r 4k2 20D
| S D=1 2y Y= Ju=0""" 2jk=1 m
. E(XnF(j)—XnF(j+eu2_r))2(k+ 1).

Since n*(X,"(j+e,27")— X,F(j)) has a centred B(n, p) distribution with p=
F(j+e,2™")—F(j) = k27", (see 4.1)), we can apply Lemma 5.2 with C = k and
h=2""2 27" > p~! Then the above chain of inequalities can be extended to

4k2 >2(k+1) 1

3(1 _a)ar—m(é) K2(k+ 1)'2r(k+1)

4k2 2(k+1) 1 1 2(k+1)
= Z;"gm(a) l:k . (é_l(l——_(;j> Kz(k+ 1)] ’ ?(a(r-m(ﬁ))) '

If H denotes the expression in the square brackets we therefore get

k mn 2r L \2r-1 N2
S D=1 2 ) =1 u=0 1k=1(

1 My, 1 1 2(k+1)
P(sup IX,,F(II)—X,,F(IZ)] >e)<H 27 Y SG=m@) (ar—m(a))

=m(8)
1 o0 1 1 ,
H 2m(a)p;0<a2(k+1)'§>'

Because of 2-a***! > 1 the infinite series converges and since moreover,
m(6) — oo for 6 — 0, the proof of (5.3) and therefore that of X,F -4, XF and of
Y, =4 Y is complete.

As regards the proof of Lemma 5.1, the relevant considerations for the case
k = 2 can be found in the proof of Lemma 1 of Kuelbs [7]. The extension of the
method of Kuelbs to k& dimensions, & > 2, then is a natural one but rather long to
describe.

Lemma 5.2 can be proved by induction on /: For/ = 1 (5.6) is obviously satisfied.

Let the assertion be true for /” < /—1,/ > 2. Then according to Kendall-Stuart
[5], page 122,

IIA

ti(n, p) =328 [npap,(n, p)— i+ 1(n, p)I(5Y)
and, consequently,

IH!(”:P)I <C- nt2. Zjl;g [th(j+2)/2n(j+2_l)/2+Kj+lh(j+3)/2n(j_l+1)/2](151).

Since 1/n < h < 1 we get (5.6) with K, = c-z;;g(’;l)(Kj+K,.+1).
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As another application we use the weak convergence of X, and Y, for k = 2
to prove that under the null hypothesis the well-known Kolmogorov-Smirnov test
statistic of independence converges in distribution (in the case of continuous
distribution function), cf. Blum, Kiefer, Rosenblatt [3]. After a standard reduction
we may assume that independent random vectors U; = (U;;, Uj,), j = 1, are
given with uniform distribution on £, and U;; € (0, 1) Vi, Vj. Then the Kolmogorov—
Smirnov statistic for n € N is ||Z,||, where Z,, is defined by

1 n
(59) z(1)= ”%[; ‘Zl Tio,0,1(Uj1) * 110,,(U)2)
&

1 =n n
=3 2 Tro.u(Uj)* D I[o,u](sz)]
i=1 ji=1
for t = (¢, t,) € E,. Z, is a D,-valued random variable and can be rewritten as

(5.10) Z,(1) = Y,,(t)—r;l;X,,(tL,)X,,(th), 1eE,,

with L, = {1}, L, = {2}(¢, was defined before (4.4)). Now, from X, -, X it
follows that the last term in (5.10) tends to zero in probability. Hence Z, and Y,
converge weakly to the same limit, namely Y, so that ||Z,|| -4 || Y]|-
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